23 research outputs found

    On 2-switches and isomorphism classes

    Get PDF
    A 2-switch is an edge addition/deletion operation that changes adjacencies in the graph while preserving the degree of each vertex. A well known result states that graphs with the same degree sequence may be changed into each other via sequences of 2-switches. We show that if a 2-switch changes the isomorphism class of a graph, then it must take place in one of four configurations. We also present a sufficient condition for a 2-switch to change the isomorphism class of a graph. As consequences, we give a new characterization of matrogenic graphs and determine the largest hereditary graph family whose members are all the unique realizations (up to isomorphism) of their respective degree sequences.Comment: 11 pages, 6 figure

    On realization graphs of degree sequences

    Get PDF
    Given the degree sequence dd of a graph, the realization graph of dd is the graph having as its vertices the labeled realizations of dd, with two vertices adjacent if one realization may be obtained from the other via an edge-switching operation. We describe a connection between Cartesian products in realization graphs and the canonical decomposition of degree sequences described by R.I. Tyshkevich and others. As applications, we characterize the degree sequences whose realization graphs are triangle-free graphs or hypercubes.Comment: 10 pages, 5 figure

    К гипотезе Хартсфилда-Рингеля об антимагичности связных графов

    Get PDF

    On fractional realizations of graph degree sequences

    Full text link
    We introduce fractional realizations of a graph degree sequence and a closely associated convex polytope. Simple graph realizations correspond to a subset of the vertices of this polytope. We describe properties of the polytope vertices and characterize degree sequences for which each polytope vertex corresponds to a simple graph realization. These include the degree sequences of pseudo-split graphs, and we characterize their realizations both in terms of forbidden subgraphs and graph structure.Comment: 18 pages, 4 figure

    Split digraphs

    Get PDF
    We generalize the class of split graphs to the directed case and show that these split digraphs can be identified from their degree sequences. The first degree sequence characterization is an extension of the concept of splittance to directed graphs, while the second characterization says a digraph is split if and only if its degree sequence satisfies one of the Fulkerson inequalities (which determine when an integer-pair sequence is digraphic) with equality.Comment: 14 pages, 2 figures; Accepted author manuscript (AAM) versio
    corecore