1,723 research outputs found

    Distributed memory compiler methods for irregular problems: Data copy reuse and runtime partitioning

    Get PDF
    Outlined here are two methods which we believe will play an important role in any distributed memory compiler able to handle sparse and unstructured problems. We describe how to link runtime partitioners to distributed memory compilers. In our scheme, programmers can implicitly specify how data and loop iterations are to be distributed between processors. This insulates users from having to deal explicitly with potentially complex algorithms that carry out work and data partitioning. We also describe a viable mechanism for tracking and reusing copies of off-processor data. In many programs, several loops access the same off-processor memory locations. As long as it can be verified that the values assigned to off-processor memory locations remain unmodified, we show that we can effectively reuse stored off-processor data. We present experimental data from a 3-D unstructured Euler solver run on iPSC/860 to demonstrate the usefulness of our methods

    Mapping and Scheduling of Directed Acyclic Graphs on An FPFA Tile

    Get PDF
    An architecture for a hand-held multimedia device requires components that are energy-efficient, flexible, and provide high performance. In the CHAMELEON [4] project we develop a coarse grained reconfigurable device for DSP-like algorithms, the so-called Field Programmable Function Array (FPFA). The FPFA devices are reminiscent to FPGAs, but with a matrix of Processing Parts (PP) instead of CLBs. The design of the FPFA focuses on: (1) Keeping each PP small to maximize the number of PPs that can fit on a chip; (2) providing sufficient flexibility; (3) Low energy consumption; (4) Exploiting the maximum amount of parallelism; (5) A strong support tool for FPFA-based applications. The challenge in providing compiler support for the FPFA-based design stems from the flexibility of the FPFA structure. If we do not use the characteristics of the FPFA structure properly, the advantages of an FPFA may become its disadvantages. The GECKO1project focuses on this problem. In this paper, we present a mapping and scheduling scheme for applications running on one FPFA tile. Applications are written in C and C code is translated to a Directed Acyclic Graphs (DAG) [4]. This scheme can map a DAG directly onto the reconfigurable PPs of an FPFA tile. It tries to achieve low power consumption by exploiting locality of reference and high performance by exploiting maximum parallelism

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    Mapping Applications to an FPFA Tile

    Get PDF
    This paper introduces a transformational design method which can be used to map code written in a high level source language, like C, to a coarse grain reconfigurable architecture. The source code is first translated into a control data flow graph (CDFG), which is minimized using a set of behaviour preserving transformations, such as dependency analysis, common subexpression elimination, etc. After applying graph clustering, scheduling and allocation transformations on this minimized graph, it can be mapped onto the target architecture

    A partitioning strategy for nonuniform problems on multiprocessors

    Get PDF
    The partitioning of a problem on a domain with unequal work estimates in different subddomains is considered in a way that balances the work load across multiple processors. Such a problem arises for example in solving partial differential equations using an adaptive method that places extra grid points in certain subregions of the domain. A binary decomposition of the domain is used to partition it into rectangles requiring equal computational effort. The communication costs of mapping this partitioning onto different microprocessors: a mesh-connected array, a tree machine and a hypercube is then studied. The communication cost expressions can be used to determine the optimal depth of the above partitioning

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Partitioning SKA Dataflows for Optimal Graph Execution

    Full text link
    Optimizing data-intensive workflow execution is essential to many modern scientific projects such as the Square Kilometre Array (SKA), which will be the largest radio telescope in the world, collecting terabytes of data per second for the next few decades. At the core of the SKA Science Data Processor is the graph execution engine, scheduling tens of thousands of algorithmic components to ingest and transform millions of parallel data chunks in order to solve a series of large-scale inverse problems within the power budget. To tackle this challenge, we have developed the Data Activated Liu Graph Engine (DALiuGE) to manage data processing pipelines for several SKA pathfinder projects. In this paper, we discuss the DALiuGE graph scheduling sub-system. By extending previous studies on graph scheduling and partitioning, we lay the foundation on which we can develop polynomial time optimization methods that minimize both workflow execution time and resource footprint while satisfying resource constraints imposed by individual algorithms. We show preliminary results obtained from three radio astronomy data pipelines.Comment: Accepted in HPDC ScienceCloud 2018 Worksho

    Domain Decomposition Based High Performance Parallel Computing\ud

    Get PDF
    The study deals with the parallelization of finite element based Navier-Stokes codes using domain decomposition and state-ofart sparse direct solvers. There has been significant improvement in the performance of sparse direct solvers. Parallel sparse direct solvers are not found to exhibit good scalability. Hence, the parallelization of sparse direct solvers is done using domain decomposition techniques. A highly efficient sparse direct solver PARDISO is used in this study. The scalability of both Newton and modified Newton algorithms are tested
    corecore