808 research outputs found

    The Tutte-Grothendieck group of a convergent alphabetic rewriting system

    Get PDF
    The two operations, deletion and contraction of an edge, on multigraphs directly lead to the Tutte polynomial which satisfies a universal problem. As observed by Brylawski in terms of order relations, these operations may be interpreted as a particular instance of a general theory which involves universal invariants like the Tutte polynomial, and a universal group, called the Tutte-Grothendieck group. In this contribution, Brylawski's theory is extended in two ways: first of all, the order relation is replaced by a string rewriting system, and secondly, commutativity by partial commutations (that permits a kind of interpolation between non commutativity and full commutativity). This allows us to clarify the relations between the semigroup subject to rewriting and the Tutte-Grothendieck group: the later is actually the Grothendieck group completion of the former, up to the free adjunction of a unit (this was even not mention by Brylawski), and normal forms may be seen as universal invariants. Moreover we prove that such universal constructions are also possible in case of a non convergent rewriting system, outside the scope of Brylawski's work.Comment: 17 page

    The Stability of the Minkowski space for the Einstein-Vlasov system

    Full text link
    We prove the global stability of the Minkowski space viewed as the trivial solution of the Einstein-Vlasov system. To estimate the Vlasov field, we use the vector field and modified vector field techniques developed in [FJS15; FJS17]. In particular, the initial support in the velocity variable does not need to be compact. To control the effect of the large velocities, we identify and exploit several structural properties of the Vlasov equation to prove that the worst non-linear terms in the Vlasov equation either enjoy a form of the null condition or can be controlled using the wave coordinate gauge. The basic propagation estimates for the Vlasov field are then obtained using only weak interior decay for the metric components. Since some of the error terms are not time-integrable, several hierarchies in the commuted equations are exploited to close the top order estimates. For the Einstein equations, we use wave coordinates and the main new difficulty arises from the commutation of the energy-momentum tensor, which needs to be rewritten using the modified vector fields.Comment: 139 page
    corecore