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e two operations, deletion and contraction of an edge, on multigraphs directly lead to the Tutte polynomial which satis�es a
universal problem. As observed by Brylawski (1972) in terms of order relations, these operations may be interpreted as a particular
instance of a general theory which involves universal invariants like the Tutte polynomial and a universal group, called the Tutte-
Grothendieck group. In this contribution, Brylawski’s theory is extended in two ways: �rst of all, the order relation is replaced
by a string rewriting system, and secondly, commutativity by partial commutations (that permits a kind of interpolation between
noncommutativity and full commutativity). is allows us to clarify the relations between the semigroup subject to rewriting and
the Tutte-Grothendieck group: the latter is actually the Grothendieck group completion of the former, up to the free adjunction of
a unit (this was not even mentioned by Brylawski), and normal forms may be seen as universal invariants. Moreover we prove that
such universal constructions are also possible in case of a nonconvergent rewriting system, outside the scope of Brylawski’s work.

1. Introduction

In his paper [1], Tutte took advantage of two natural oper-
ations on (�nite multi) graphs (actually on isomorphism
classes of multigraphs), deletion and contraction of an edge,
in order to introduce the ring ℤ[𝑥𝑥𝑥 𝑥𝑥𝑥 and a polynomial in
two commuting variables 𝑥𝑥𝑥 𝑥𝑥, also known by Whitney [2],
unique up to isomorphism since solutions of a universal
problem.is polynomial, since called the Tutte polynomial,
is a graph invariant in at least two di�erent meanings: �rst of
all, it is de�ned on isomorphism classes, rather than on actual
graphs, in such a way that two graphs with distinct Tutte
polynomials are not isomorphic (a well-known functorial
point of view), and, secondly, it is invariant with respect to
a graph decomposition. Indeed, let 𝐺𝐺 be a graph, and let 𝑒𝑒 be
an edge of𝐺𝐺, which is not a loop (an edgewith the same vertex
as source and target) nor a bridge (an edge that connects two
connected components of a graph).e edge contraction𝐺𝐺𝐺𝐺𝐺
of 𝐺𝐺 is the graph obtained by identifying the vertices source
and target of 𝑒𝑒, and removing the edge 𝑒𝑒.Wewrite𝐺𝐺𝐺𝐺𝐺 for the
graph where the edge 𝑒𝑒 is merely removed; this operation is
the edge deletion. Let us consider the graph𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (well-
de�ned as isomorphic classes) which can be interpreted as a

decomposition of𝐺𝐺.en, the Tutte polynomial 𝑡𝑡 is invariant
with respect to this decomposition in the sense that 𝑡𝑡𝑡𝑡𝑡𝑡 𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  . Moreover this decomposition eventually
terminates with graphs with bridges and loops only as edges,
and the choice of edges to decompose is irrelevant.

In his paper [3], Brylawski observed that the previous
construction (and many others, for instance the Tutte poly-
nomial for matroids) may be explained in terms of an elegant
and uni�ed categorical framework (namely, a universal prob-
lem of invariants). In brief, Brylawski considered an abstract
notion of decomposition. Let 𝑋𝑋 be a set, and let ≤ be an
order relation on (a part of) the free commutative semigroup
𝑋𝑋⊕ (actually Brylawski consideredmultisets, nevertheless the
choice is here made to deal with semigroups since they play
a central role in this contribution), which satis�es a certain
number of axioms that are quickly reviewed in informal terms
below for the sake of completeness (the appendix contains
a short review of Brylawski’s theory in mathematical terms
but it may be skipped) and to show how natural is their
translations in terms of rewriting systems.

Let 𝐷𝐷𝐷𝐷𝐷𝐷 be a set of formal (�nite) sums ∑1≤𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖𝑥𝑥𝑖𝑖,
where 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋, 𝑛𝑛𝑖𝑖 ∈ ℕ not all of them being zero (an ele-
ment of the free commutative semigroup 𝑋𝑋⊕ on 𝑋𝑋) partially
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ordered by ≤. If 𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 such that 𝑓𝑓 𝑓 𝑓𝑓, then we
say that 𝑓𝑓 decomposes into 𝑔𝑔 or that 𝑔𝑔 is a decomposition
of 𝑓𝑓. erefore 𝐷𝐷𝐷𝐷𝐷𝐷 is seen as a set of commutative
decompositions. Elements of 𝑋𝑋 that belong to 𝐷𝐷𝐷𝐷𝐷𝐷 are
assumed to be minimal with respect to ≤. Elements of 𝑋𝑋 𝑋
𝐷𝐷𝐷𝐷𝐷𝐷 that are maximal (and therefore incomparable since
they are also minimal) are said to be irreducible. According
to a second axiom satis�ed by the order relation ≤, an
element 𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 cannot be decomposed further into any
other element of 𝐷𝐷𝐷𝐷𝐷𝐷 if and only if, 𝑓𝑓 is a �nite linear
combination, with nonnegative integers as coefficients, of
incomparable elements, that is, if Irr(𝑋𝑋𝑋 is the set of all
irreducibles, then 𝑓𝑓 is not decomposed into another element
if and only if, 𝑓𝑓 is a formal (�nite) sum of elements of Irr(𝑋𝑋𝑋
with nonnegative integers as coefficients. is property is
similar to the notion of termination in rewriting systems.
Two other properties (re�nabilit� and �niteness) on 𝐷𝐷𝐷𝐷𝐷𝐷
ensure that every element of 𝑋𝑋 has one, and only one,
“terminal” decomposition into irreducible elements.ey are
equivalent to convergence of a rewriting system. For instance,
the order 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐺 𝐺𝐺𝐺 𝐺 𝐺𝐺𝐺 on the free commutative
semigroup generated by all (isomorphism classes of) �nite
graphs satis�es these axioms and properties.

Now, to a decomposition (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  with the above prop-
erties may be attached a group in a universal way. A func-
tion 𝑓𝑓 from 𝑋𝑋 to an Abelian group 𝐺𝐺 is said to be invariant
if for every 𝑥𝑥 𝑥𝑥𝑥  such that 𝑥𝑥 𝑥 𝑥1≤𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖𝑥𝑥𝑖𝑖 (𝑥𝑥𝑖𝑖 ∈𝑋𝑋 ,
and 𝑛𝑛𝑖𝑖 ∈ ℕ), then 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑖𝑖). Recall here that Tutte
polynomial 𝑡𝑡 is invariant because 𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑡𝑡𝑡𝑡𝑡𝑡
𝑒𝑒𝑒. Brylawski proved the following theorem, which was his
main result. ere exist an Abelian group, called Tutte-
Grothendieck group, and an invariant mapping 𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡,
called universal Tutte-Grothendieck invariant, such that for
every Abelian group 𝐺𝐺 and every invariant mapping
𝑓𝑓 𝑓 𝑓𝑓 𝑓𝑓𝑓 , there exists a unique group homomorphism ℎ ∶
𝐴𝐴𝐴𝐴𝐴  with ℎ∘𝑡𝑡 𝑡𝑡𝑡 . In addition,𝐴𝐴 is isomorphic to the free
Abelian group with the irreducible elements as generators. In
the classical context of graph theory, as expected, 𝐴𝐴 is the
additive structure of ℤ[𝑥𝑥𝑥 𝑥𝑥𝑥 and 𝑡𝑡 is the Tutte polynomial.
Many other decompositions enter in the scope of Brylawski’s
theory (see his paper [3], examples and references therein).

In the present contribution, we adapt Brylawski’s results
to the theory of (string) rewriting systems which we think
is the natural framework to deal with theoretical notions
of decomposition. Moreover we extend previous works by
allowing noncommutative and even partially commutative,
decompositions. Our main result, eorem 16, similar to
Brylawski’s main theorem, states the existence and unique-
ness of a universal group and a universal invariant associated
to some kind of string rewriting systems, even if they are not
convergent (which is beyond the scope of Brylawski’s work).
In case of convergence, we prove that the universal group
under consideration is the free partially commutative group
generated by irreducible letters, which is a generalization of
the original result, and that the universal invariant is nothing
else than the normal form function that maps an element to
its normal form. We mention the fact that in this case, the
universal group is proved to be the Grothendieck completion

of a monoid (obtained from the semigroup subject to rewrit-
ing by free adjunction of an identity), which was not seen by
Brylawski even if he called Tutte-Grothendieck his universal
construction.

We warm the reader that this work is not a contribution
to the theory of string rewriting systems but should only
be considered as a use of this theory to provide a uni�ed
treatment of several phenomena of decompositions that seem
different in appearance but which are actually quite similar
(see Section 4.3). It is not our goal to prove convergence
or con�uence or other properties of the reduction rules we
consider, and sometimes these properties are even assumed
to hold. Our few results about rewriting systems are quite
easy to check (nevertheless, for the sake of completeness their
proofs are given) and may even be considered as obvious for
specialists of the �eld of string rewriting systems, but the goal
of this paper is to provide some theoretical explanations of
some phenomena that are encountered by nonspecialists.

2. Some Universal Constructions

e categorical notions used in this contribution, that are
not de�ned here, come from [4]. is section is devoted to
the presentation of Grothendieck group completion and free
partially commutative structures which are used here aer.

2.1. Basic Notions and SomeNotations. Inwhat follows𝒮𝒮,ℳ,
and 𝒢𝒢 denote the well-known categories of (small (“small”
refers to some given �xed universe, see [4])) semigroups,
monoids, and groups respectively, with their usual arrows
(the so-called homomorphisms of semigroups, monoids, or
groups).

Each of the categories𝒮𝒮,ℳ, and𝒢𝒢 has a free object freely
generated by a given (small) set. In other terms their forgetful
functors to the category of sets have a le adjoint. In what
follows we denote by𝑋𝑋+,𝑋𝑋∗, and 𝐹𝐹𝐹𝐹𝐹𝐹, respectively, the free
semigroup, monoid, group generated by 𝑋𝑋 (see [5]), and we
identify 𝑋𝑋 as a subset of each of these algebraic structures.
Note also that we denote by 𝑋𝑋⊕ the free commutative
semigroup on𝑋𝑋.

ere are also obvious forgetful functors from 𝒢𝒢 to
ℳ, and from ℳ to 𝒮𝒮 (therefore also from 𝒢𝒢 to 𝒮𝒮 by
composition). Both of them have a le adjoint (see [4]). e
le adjoint of the forgetful functor fromℳ to 𝒮𝒮 is known to
be the free adjunction 𝑆𝑆1 = 𝑆𝑆 𝑆 𝑆𝑆𝑆 of a unit to a semigroup
𝑆𝑆 in order to obtain a monoid in a natural way (the symbol
“⊔” denotes the set-theoretical disjoint sum). e unit of
this adjunction, 𝑖𝑖𝒮𝒮𝒮𝒮𝒮 ∶ 𝑥𝑥 𝑥𝑥𝑥𝑥   𝑥𝑥 𝑥𝑥𝑥 1, which is an
homomorphism of semigroups, is obviously one-to-one.

e forgetful functor from 𝒢𝒢 𝒢𝒢  has both a le
and a right adjoint. Its right adjoint is given, at the object
level, as a class mapping that associates a monoid to its
group of invertible elements. Its le adjoint, more involved,
is described below as group completion.

2.2. Group Completion. e le adjoint of the forgetful
functor from groups to monoids may be described as the
(unique) solution of the following universal problem. Let
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𝑀𝑀 be a monoid. en there exists a unique group 𝓖𝓖𝓖𝓖𝓖𝓖,
called the group completion or universal enveloping group or
Grothendieck group of 𝑀𝑀 (see [6] and references therein,
and also [7]), and a unique homomorphism of monoids
𝑖𝑖ℳ,𝑀𝑀 ∶ 𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀𝑀𝑀 such that for every group 𝐺𝐺 and every
homomorphism of monoids 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓   , there is a unique
homomorphism of groups 󵰁󵰁𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓    such that the
following diagram commutes (in the category of monoids):

G

(1)

It is not difficult to check that 𝓖𝓖𝓖𝓖𝓖𝓖 is given either as
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀⟩, where 𝐼𝐼𝑀𝑀 is the subset {𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−1 ∶ 𝑚𝑚𝑚 𝑚𝑚 𝑚 𝑚𝑚𝑚
(where “∗” is the monoid multiplication of 𝑀𝑀, and where
𝐹𝐹𝐹𝐹𝐹𝐹 denotes the free group of 𝑋𝑋, see Section 2.1 and if 𝐺𝐺
is a group and 𝐴𝐴 is any subset of 𝐺𝐺, then ⟨𝐴𝐴𝐴 is the normal
subgroup of 𝐺𝐺 generated by 𝐴𝐴), see [7], or as the quotient
monoid (𝑀𝑀 𝑀 𝑀𝑀−1)∗/≡𝑅𝑅 where 𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅−1, 𝜖𝜖𝜖𝜖𝜖𝜖𝜖  
𝑀𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀−1𝑚𝑚𝑚𝑚𝑚𝑚𝑚   𝑚𝑚 𝑚 𝑚𝑚𝑚 (here the star “∗” stands for the
free monoid functor, see also Section 2.1, and 𝜖𝜖 is the empty
word) where𝑀𝑀−1 is the set of (formal) symbols {𝑚𝑚−1 ∶ 𝑚𝑚 𝑚
𝑀𝑀𝑀 equipotent to𝑀𝑀.

2.3. Free Partially Commutative Structures. Other universal
problems, which will play an important role in what follows,
are the free partially commutative structures. ese struc-
tures have been introduced in [8] (see also [9]). A good review
of these objects is [10]. Since such constructions may be
performed in any of the categories of semigroups, monoids,
and groups, they are presented here in a generic way on a
category 𝒞𝒞 𝒞𝒞 𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞 so that all statements make sense
in any of these categories.

Let𝑋𝑋 be a set and let 𝜃𝜃 𝜃 𝜃𝜃 𝜃 𝜃𝜃 be a symmetric (i.e., for
every 𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥 , (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥   implies (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦   ) and irre�exive
relation on 𝑋𝑋 (i.e., for each 𝑥𝑥 𝑥𝑥𝑥 , (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥 𝑥𝑥). Let 𝐶𝐶 be an
object in 𝒞𝒞, and 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓    be a set-theoretical mapping.
is function is said to respect the commutations whenever
(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥   then 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, for every 𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥 . A
pair (𝑋𝑋𝑋𝑋𝑋𝑋  is called a commutation alphabet.

It can be shown that there exists a unique object𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞
of 𝒞𝒞 and a unique mapping 𝑗𝑗𝒞𝒞𝒞𝒞𝒞 ∶ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋    that
respects the commutations such that for every object 𝐶𝐶 of
𝒞𝒞 and every mapping 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓    that respects the
commutations, there is a unique arrow (in 𝒞𝒞) 𝑓𝑓𝒞𝒞 ∶

𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞    such that the following diagram commutes
in the category of sets:

(2)

e object𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞  is usually called the free partially commu-
tative semigroup (resp., monoid, group) on𝑋𝑋 (or on (𝑋𝑋𝑋𝑋𝑋𝑋  to
be more precise) depending on𝒞𝒞, andmay be constructed as
follows:𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮   +/≡𝜃𝜃 andℳ(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋   ∗/≡𝜃𝜃 where ≡𝜃𝜃 is
the congruence on 𝑋𝑋+ or 𝑋𝑋∗generated by (𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 whenever
(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥   for all 𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥  (the least congruence on 𝑋𝑋+ or
𝑋𝑋∗ containing the relation (𝑥𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 whenever (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥   for
all 𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥 , see [11]), and 𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢     −1𝑦𝑦−1 ∶
(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   .

We may note that 𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞 is nothing else than the
usual free (noncommutative) object in the category𝒞𝒞, while
𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞    𝒞 𝒞𝑋𝑋), where Δ𝑋𝑋 is the equality relation on𝑋𝑋,
is the free commutative object in𝒞𝒞 (in particular,𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 
𝑋𝑋𝑋𝑋𝑋  𝑋𝑋)=𝑋𝑋 

⊕ is the free commutative semigroup).
We may clarify the relations between the free partially

commutative structures. Using universal properties, it is not
difficult to check that ℳ(𝑋𝑋𝑋𝑋𝑋𝑋  is isomorphic to 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 1
(actually ℳ(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋      , where 𝜖𝜖 is the empty
word) in such a way that 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  embeds in ℳ(𝑋𝑋𝑋𝑋𝑋𝑋  as a
subsemigroup.

Lemma 1. e monoid ℳ(𝑋𝑋𝑋𝑋𝑋𝑋  is isomorphic to the free
adjunction 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 1 of an identity to the semigroup 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 .

Proof. To prove this lemma it is sufficient to check that
ℳ(𝑋𝑋𝑋𝑋𝑋𝑋  is a solution of the universal problem of adjunction
of a unit to 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 . According to the universal problem of
the free partially commutative semigroup 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 , there is
a unique homomorphism of semigroups 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼   
ℳ(𝑋𝑋𝑋𝑋𝑋𝑋  such that the following diagram is commutative:

id

(3)

Now, let 𝑀𝑀 be a monoid and 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓     be
a semigroup homomorphism. erefore there exists 𝑓𝑓0 ∶
𝑋𝑋𝑋𝑋𝑋   that respects the commutations and such that
𝑓𝑓𝒮𝒮0 ∘𝑗𝑗𝒮𝒮𝒮𝒮𝒮 = 𝑓𝑓. According to the universal problem attached to
ℳ(𝑋𝑋𝑋𝑋𝑋𝑋 , there is a unique homomorphism of monoids 𝑓𝑓ℳ0 ∶
ℳ(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋   0 such that𝑓𝑓

ℳ
0 ∘𝑗𝑗ℳ,𝑋𝑋 = 𝑓𝑓0.erefore,𝑓𝑓ℳ0 ∘𝐼𝐼𝐼

𝑗𝑗𝒮𝒮𝒮𝒮𝒮 = 𝑓𝑓0, but then 𝑓𝑓ℳ0 ∘ 𝐼𝐼𝐼𝐼𝐼  𝒮𝒮0 = 𝑓𝑓. e relations between
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all the arrows are summarized in the following commutative
diagram:

00

(4)

ere is also an important relation between 𝒢𝒢𝒢𝒢𝒢𝒢 𝒢𝒢𝒢 and
ℳ(𝑋𝑋𝑋𝑋𝑋𝑋  given in the following lemma.

Lemma 2. Let (𝑋𝑋𝑋𝑋𝑋𝑋  be a commutation alphabet. en,
𝒢𝒢𝒢𝒢𝒢𝒢 𝒢𝒢𝒢 is (isomorphic to) the universal enveloping group
𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖  ofℳ(𝑋𝑋𝑋𝑋𝑋𝑋 .

Proof. e set-theoretical mapping 𝑗𝑗𝒢𝒢𝒢𝒢𝒢 ∶ 𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋
respects the commutations, therefore according to the uni-
versal problem of the free partially commutativemonoid over
(𝑋𝑋𝑋𝑋𝑋𝑋  there is a unique homomorphism ofmonoids 𝑗𝑗ℳ𝒢𝒢𝒢𝒢𝒢 that
makes commutes the following diagram:

(5)

Now, let 𝐺𝐺 be any group, and 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓     be an
homomorphismofmonoids.en, according to the universal
problem of the free partially commutative monoid, there is a
unique set-theoretical mapping 𝑓𝑓0 ∶ 𝑋𝑋 𝑋 𝑋𝑋 that respects
the commutations and 𝑓𝑓 𝑓 𝑓𝑓ℳ,𝑋𝑋 = 𝑓𝑓0. Now according to
universal problem of 𝒢𝒢𝒢𝒢𝒢𝒢 𝒢𝒢𝒢, 𝑓𝑓0 is uniquely extended as
a group homomorphism 𝑓𝑓𝒢𝒢0 ∶ 𝒢𝒢𝒢𝒢𝒢𝒢 𝒢𝒢𝒢 𝒢𝒢𝒢  such that
𝑓𝑓𝒢𝒢0 ∘ 𝑗𝑗𝒢𝒢𝒢𝒢𝒢 = 𝑓𝑓0. erefore, 𝑓𝑓𝒢𝒢0 ∘ 𝑗𝑗ℳ𝒢𝒢𝒢𝒢𝒢 ∘ 𝑗𝑗ℳ,𝑋𝑋 = 𝑓𝑓𝒢𝒢0 ∘ 𝑗𝑗𝒢𝒢𝒢𝒢𝒢 =
𝑓𝑓0 = 𝑓𝑓 𝑓 𝑓𝑓ℳ,𝑋𝑋 so that 𝑓𝑓𝒢𝒢0 ∘ 𝑗𝑗ℳ𝒢𝒢𝒢𝒢𝒢 = 𝑓𝑓 (by uniqueness of a
solution of a universal problem). erefore (𝒢𝒢𝒢𝒢𝒢𝒢 𝒢𝒢𝒢𝒢 𝒢𝒢𝒢𝒢0 ) is
a solution of the universal problem of the group completion
𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖  ofℳ(𝑋𝑋𝑋𝑋𝑋𝑋 .e relations between all the arrows
are summarized in the following commutative diagram:

0

0
(6)

Actually a result from [12, page 66] (see also [10]) states that
the natural mapping 𝑗𝑗ℳ𝒢𝒢𝒢𝒢𝒢 of the proof of Lemma 2 is one-to-
one so thatℳ(𝑋𝑋𝑋𝑋𝑋𝑋  may be identi�ed with a submonoid of
its Grothendieck completion𝒢𝒢𝒢𝒢𝒢𝒢 𝒢𝒢𝒢.

�e�nition �. Let 𝑋𝑋 be any set. For every 𝑥𝑥 𝑥 𝑥𝑥 and every
𝑤𝑤 𝑤𝑤𝑤 ∗, let us de�ne |𝑤𝑤𝑤𝑥𝑥 as the number of occurrences of the
letter 𝑥𝑥 in the word 𝑤𝑤. More precisely, if 𝜖𝜖 is the empty word,
then |𝜖𝜖𝜖𝑥𝑥 = 0, |𝑦𝑦𝑦𝑥𝑥 = 0 if 𝑦𝑦𝑦𝑦𝑦, |𝑦𝑦𝑦𝑥𝑥 = 1 if 𝑦𝑦 𝑦𝑦𝑦  for all 𝑦𝑦 𝑦𝑦𝑦 ,
and if the length of 𝑤𝑤 𝑤𝑤𝑤 ∗ is >1, then 𝑤𝑤 𝑤𝑤𝑤 𝑤𝑤′ for some
letter 𝑦𝑦 𝑦𝑦𝑦 , and𝑤𝑤′ ∈𝑋𝑋 +, then |𝑤𝑤𝑤𝑥𝑥 = |𝑦𝑦𝑦𝑥𝑥 + |𝑤𝑤

′|𝑥𝑥. Let ≡ be a
congruence on𝑋𝑋+ or𝑋𝑋∗. It is said to bemultihomogeneous if
for every 𝑤𝑤𝑤𝑤𝑤′ in𝑋𝑋+ or𝑋𝑋∗, such that 𝑤𝑤 𝑤 𝑤𝑤′, then for every
𝑥𝑥 𝑥 𝑥𝑥, |𝑤𝑤𝑤𝑥𝑥 = |𝑤𝑤′|𝑥𝑥. erefore we may de�ne |[𝑤𝑤𝑤≡|𝑥𝑥 = |𝑤𝑤𝑤𝑥𝑥
for the class [𝑤𝑤𝑤≡ of 𝑤𝑤 modulo ≡ (it does not depend on the
representative of the class modulo ≡).

According to [10], any congruence of the form ≡𝜃𝜃 is a
multihomogenous congruence, so that we may de�ne |𝑤𝑤𝑤𝑥𝑥
for all 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  and all 𝑥𝑥 𝑥 𝑥𝑥 (where 𝒞𝒞𝒞  𝒞𝒞 or ℳ).
e notion ofmultihomogeneity is used to check that wemay
identify the alphabet 𝑋𝑋 as a generating set of 𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞  using
themap 𝑗𝑗𝒞𝒞𝒞𝒞𝒞, which is shown to be one-to-one, in such a way
that we consider that𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 . Indeed, for semigroup or
monoid case, let 𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥 such that their classes modulo ≡𝜃𝜃
be equal. But≡𝜃𝜃 is amultihomogenous congruence (see [10]).
erefore 𝑥𝑥 𝑥𝑥𝑥 . Concerning the group case, let us assume
that 𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥 are equivalent modulo the normal subgroup
𝑁𝑁𝜃𝜃 = ⟨{𝑥𝑥𝑥𝑥𝑥𝑥−1𝑦𝑦−1 ∶ (𝑥𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥𝑥𝑥 so that there is some
𝑤𝑤 𝑤𝑤𝑤 𝜃𝜃 with 𝑥𝑥𝑥𝑥

−1 = 𝑤𝑤. Because the group is free, it means
that 𝑥𝑥 𝑥𝑥𝑥  (no nontrivial relations between the generators).
In the sequel, we will treat𝑋𝑋 as a subset of𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞 .

More generally, let (𝑋𝑋𝑋𝑋𝑋𝑋  be a commutation alphabet and
let𝑌𝑌 𝑌𝑌𝑌 . We de�ne 𝜃𝜃𝑌𝑌 = 𝜃𝜃𝜃 𝜃𝜃𝜃𝜃𝜃𝜃𝜃. It is possible to embed
𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞 𝑌𝑌) into𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞  as illustrated in the following lemma.

Lemma 4. Under the previous assumptions, there is an arrow
𝐽𝐽 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝑌𝑌)→𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞    in the category 𝒞𝒞 which is one-to-
one.

Proof. Let incl ∶ 𝑌𝑌 𝑌𝑌𝑌  be the canonical inclusion. �e�ne
𝐽𝐽 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  𝑌𝑌)→𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞    as the unique arrow (in 𝒞𝒞) such
that the following diagram commutes:

incl

j
,Y

j
,X (7)

erefore, 𝐽𝐽 𝐽𝐽𝐽 𝒞𝒞𝒞𝒞𝒞 = 𝑗𝑗𝒞𝒞𝒞𝒞𝒞 ∘ incl.
Let 𝑤𝑤0 ∈𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞  𝑌𝑌). Let us de�ne 𝜋𝜋𝑤𝑤0

∶ 𝑋𝑋 𝑋 𝑋𝑋 such
that 𝜋𝜋𝑤𝑤0

(𝑦𝑦𝑦𝑦  𝑦𝑦 for every 𝑦𝑦 𝑦𝑦𝑦𝑦𝑦𝑦   , and 𝜋𝜋𝑤𝑤0
(𝑥𝑥𝑥𝑥𝑥𝑥  0 for

𝑥𝑥 𝑥 𝑥𝑥𝑥𝑥𝑥.We note that𝜋𝜋𝑤𝑤0
∘incl = 𝑖𝑖𝑖𝑖𝑌𝑌.enwemay consider
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Π𝑤𝑤0
∶ 𝒞𝒞𝒞𝒞𝒞𝒞 𝒞𝒞𝒞 𝒞 𝒞𝒞𝒞𝒞𝒞𝒞 𝒞𝒞𝑌𝑌) as the unique arrow (in 𝒞𝒞) that

makes commutes the following diagram:

j
,Yj

,X (8)

erefore Π𝑤𝑤0
∘ 𝑗𝑗𝒞𝒞𝒞𝒞𝒞 = 𝑗𝑗𝒞𝒞𝒞𝒞𝒞 ∘ 𝜋𝜋𝑤𝑤0

. Now, Π𝑤𝑤0
∘ 𝐽𝐽 𝐽𝐽𝐽 𝒞𝒞𝒞𝒞𝒞 =

Π𝑤𝑤0
∘ 𝑗𝑗𝒞𝒞𝒞𝒞𝒞 ∘ incl = 𝑗𝑗𝒞𝒞𝒞𝒞𝒞 ∘ 𝜋𝜋𝑤𝑤0

∘ incl = 𝑗𝑗𝒞𝒞𝒞𝒞𝒞 ∘ 𝑖𝑖𝑖𝑖𝑌𝑌 = 𝑗𝑗𝒞𝒞𝒞𝒞𝒞 =
𝑖𝑖𝑖𝑖𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝑌𝑌) ∘ 𝑗𝑗𝒞𝒞𝒞𝒞𝒞, so that (by uniqueness) Π𝑤𝑤0

∘ 𝐽𝐽 𝐽𝐽𝐽𝐽𝐽 𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝑌𝑌),
and then 𝐽𝐽 is one-to-one (and Π𝑤𝑤0

is onto).

According to Lemma4we identify𝒞𝒞𝒞𝒞𝒞𝒞 𝒞𝒞𝑌𝑌) as a subsemi-
group, submonoid or subgroup (depending on the choice of
𝒞𝒞) of 𝒞𝒞𝒞𝒞𝒞𝒞 𝒞𝒞𝒞. In such situations we may use the following
characterization.

Lemma 5. Let (𝑋𝑋𝑋𝑋𝑋𝑋  be a commutation alphabet, and let 𝑌𝑌 𝑌
𝑋𝑋 be any subset. Let𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 .e following statements are
equivalent.

(1) 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑌𝑌).
(2) For all 𝑥𝑥 𝑥𝑥𝑥 , |𝑤𝑤𝑤𝑥𝑥 ≠ 0 implies that 𝑥𝑥 𝑥𝑥𝑥 .

Proof. Let 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 . If 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑌𝑌), then for all 𝜔𝜔 𝜔𝜔𝜔 +

such that 𝜔𝜔 𝜔𝜔𝜔 , 𝜔𝜔 𝜔𝜔𝜔 + (since 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝑌𝑌) ≅ 𝑌𝑌+/≡𝜃𝜃). Because
≡𝜃𝜃 is a multihomogeneous congruence, |𝜔𝜔𝜔𝑥𝑥 = |𝑤𝑤𝑤𝑥𝑥 for all
𝜔𝜔 𝜔𝜔𝜔  and 𝑥𝑥 𝑥𝑥𝑥 . en the point (2). is obtained. Now, let
𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  such that for all 𝑥𝑥 𝑥𝑥𝑥 , |𝑤𝑤𝑤𝑥𝑥 ≠ 0 implies that
𝑥𝑥 𝑥𝑥𝑥 . en, for all 𝜔𝜔 𝜔𝜔𝜔  (𝜔𝜔 𝜔𝜔𝜔 +), |𝜔𝜔𝜔𝑥𝑥 = 0 for all 𝑥𝑥 𝑥 𝑥𝑥
whichmeans that𝜔𝜔 𝜔𝜔𝜔 +, and therefore𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑌𝑌) so that
(1) is obtained.

3. Basic Notions on Rewriting Systems

3.1. Abstract Rewriting Systems. In this short section, as in the
following, we adopt several notations and de�nitions from
[13] that we summarize here.

Let𝐸𝐸 be a set, and⇒⊆ 𝐸𝐸𝐸𝐸𝐸 be any binary relation, called
a (one-step) reduction relation, and (𝐸𝐸𝐸𝐸𝐸 is called an abstract
rewriting system. We denote by “𝑥𝑥 𝑥 𝑥𝑥” the membership
“(𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 ”, and “𝑥𝑥 𝑥 𝑥𝑥” stands for “(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥”. Let 𝑅𝑅∗
be the re�exive transitive closure of a binary relation 𝑅𝑅. We
use 𝑥𝑥 𝑥 𝑥𝑥 or 𝑥𝑥

∗
⇐𝑦𝑦  to mean that 𝑦𝑦𝑦𝑦𝑦   or 𝑦𝑦

∗
⇒ 𝑥𝑥. An

element 𝑥𝑥 𝑥𝑥𝑥  is said to be reducible if there exists 𝑦𝑦𝑦𝑦𝑦 
such that 𝑥𝑥 𝑥 𝑥𝑥. 𝑥𝑥 is irreducible if it is not reducible, or,
in other terms, if 𝑥𝑥 is ⇒-minimal: there is no 𝑦𝑦𝑦𝑦𝑦   such
that 𝑥𝑥 𝑥 𝑥𝑥. A normal form of 𝑥𝑥 is an irreducible element
𝑦𝑦𝑦𝑦𝑦   such that 𝑥𝑥

∗
⇒ 𝑦𝑦. If it exists and is unique (see

below), the normal form of 𝑥𝑥 is denoted by𝒩𝒩𝒩𝒩𝒩𝒩. e set of
all normal forms, or equivalently, of all irreducible elements is
denoted by Irr(𝐸𝐸𝐸𝐸𝐸 or Irr(𝐸𝐸𝐸when this causes no ambiguity.
Note that two distinct normal forms𝑥𝑥𝑥 𝑥𝑥 are⇒-incomparable,
that is 𝑥𝑥 𝑥 𝑥𝑥 and 𝑦𝑦𝑦𝑦𝑦  . A reduction relation ⇒ is said
to be terminating or Noetherian if there is no in�nite ⇒-
descending chain (𝑥𝑥𝑛𝑛)𝑛𝑛𝑛𝑛 of elements of 𝐸𝐸 such that 𝑥𝑥𝑛𝑛 ⇒
𝑥𝑥𝑛𝑛𝑛𝑛 for every 𝑛𝑛 𝑛 𝑛. In particular, if⇒ is terminating, then

it is irre�exive (otherwise 𝑥𝑥𝑛𝑛 = 𝑥𝑥 for some 𝑥𝑥 𝑥𝑥𝑥  such that
𝑥𝑥 𝑥 𝑥𝑥 𝑥𝑥𝑥  would be an in�nite⇒-descending chain), that is
the reason why we freely make use terminology from order
relations (such as minimal, Noetherian, descending chain,
etc.). We also say that the abstract rewriting system (𝐸𝐸𝐸𝐸)
is terminating orNoetherianwhenever⇒ is so. Two elements
𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥  are said to be joinable if there is some 𝑧𝑧 𝑧𝑧𝑧  such that
𝑥𝑥

∗
⇒ 𝑧𝑧

∗
⇐𝑦𝑦 , and⇒ (and also (𝐸𝐸𝐸𝐸)) is said to be con�uent

if for every 𝑥𝑥𝑥 𝑥𝑥1,𝑦𝑦 2 ∈ 𝐸𝐸 such that 𝑦𝑦1
∗
⇐ 𝑥𝑥

∗
⇒ 𝑦𝑦2, then

𝑦𝑦1,𝑦𝑦 2 are joinable. A reduction relation ⇒, and an abstract
rewriting system (𝐸𝐸𝐸𝐸𝐸, are said to be convergent if it they
are both con�uent and terminating. Such reduction relations
are interesting because in this case any element of 𝐸𝐸 has
one, and only one, normal form, and if we denote by

∗
⇔ the

re�exive transitive symmetric closure of ⇒ (that is the least
equivalence relation on 𝐸𝐸 containing⇒), then 𝑥𝑥

∗
⇔ 𝑦𝑦 if and

only if, 𝒩𝒩𝒩𝒩𝒩𝒩𝒩  𝒩𝒩𝒩𝒩𝒩𝒩, therefore 𝒩𝒩 𝒩𝒩𝒩𝒩   Irr(𝐸𝐸𝐸 satis�es
𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩  𝒩𝒩𝒩𝒩𝒩𝒩 and so is onto and moreover, the function
𝒩𝒩 𝒩𝒩𝒩𝒩

∗
⇔→ Irr(𝐸𝐸𝐸 which maps the class of 𝑥𝑥modulo

∗
⇔ to

𝒩𝒩𝒩𝒩𝒩𝒩 is well de�ned, onto and one-to-one.

3.2. Semigroup Rewriting Systems. Now, let us assume that 𝐸𝐸
is actually a semigroup 𝑆𝑆. Let𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅  be any binary relation.
We de�ne the following relation ⇒𝑅𝑅 ⊆ 𝑆𝑆 𝑆 𝑆𝑆 by 𝑥𝑥𝑥𝑅𝑅𝑦𝑦 if
and only if, there are 𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢 1 and (𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎   such that
𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥  and 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  . A relation⇒𝑅𝑅 is called the (one-step)
reduction rule associated with 𝑅𝑅. A relation 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅    is said
to be two-sided compatible if (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥   (𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥 ) implies
(𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  . Now, the intersection of the family of all
two-sided compatible relations containing a given 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅  
(this family is nonvoid since it contains the universal relation
𝑆𝑆 𝑆 𝑆𝑆) also is a two-sided compatible relation, and so we
obtain the least two-sided compatible relation that contains
𝑅𝑅. It is called the two-sided compatible relation generated by
𝑅𝑅, and it can be shown that this is precisely⇒𝑅𝑅. Now, given
𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅   , (𝑆𝑆𝑆𝑆𝑅𝑅) is called a (semigroup) rewriting system;
de�nitions and properties of an abstract rewriting system
may be applied to such a rewriting system.When 𝑆𝑆 is the free
monoid 𝑋𝑋∗, then this kind of rewriting systems is known as
string rewriting systems or semi-ue systems (see [14]). We
note that the re�exive transitive symmetric closure

∗
⇔𝑅𝑅 of⇒𝑅𝑅

is actually a semigroup congruence, because⇒𝑅𝑅 is two-sided
compatible. e quotient semigroup 𝑆𝑆𝑆

∗
⇔𝑅𝑅 is called theue

semigroup associated with the semigroup rewriting system
(𝑆𝑆𝑆𝑆𝑅𝑅).

In what follows are considered (particular) string rewrit-
ing systems on free partially commutative semigroups. As
explained in the end of Section 1, this paper is not a contri-
bution to the theory of string rewriting systems and even not
to the well-established theory of trace rewriting systems (that
is rewriting systems on free partially commutative monoids).
e reader should refer to [15] (in particular to chapters 4
and 5) for more information on this domain. In this work, we
consider free partially commutative structures essentially to
enlarge the original theory of Brylawski (see also Section 4.3).
We recall that our goal is to provide a uni�ed treatment of
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some similar phenomena of decompositions using the theory
of string rewriting systems but for non-specialists.

4. The Tutte-Grothendieck Group of
an Alphabetic Rewriting System

4.1. A Free Partially Commutative Structure on Normal Forms

�e�nition �. Let (𝑋𝑋𝑋 𝑋𝑋𝑋 be a commutation alphabet, and 𝑅𝑅 𝑅
𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋 𝑋𝑋𝑋. en (𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅) is called an alphabetic
semigroup rewriting system.

In this paper we only consider this kind of rewriting
systems that may be considered as really restricted but we
warm the reader that the alphabets we have inmindmay have
rich structures: see for instance Section 4.3 where𝑋𝑋 is the set
of all (isomorphism classes of) �nite multigraphs, or a free
(commutative) semigroup or monoid.

Convention. From now on in this current Section 4.1, and
only for this subsection, we assume that (𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅) is
a convergent alphabetic semigroup rewriting system. (In
Section 4.2 convergence is not assumed anymore.)

We study some algebraic consequences of convergence of
this alphabetic rewriting system on irreducible elements in
the form of some lemmas and corollaries. e main result
(Proposition 12) of this subsection is that the set of all
normal forms of a convergent alphabetic semigroup rewriting
system is actually the free partially commutative semigroup
generated by the irreducible letters.

Lemma 7. Let 𝑤𝑤𝑤𝑤𝑤′ ∈ Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅). en, 𝑤𝑤𝑤𝑤′ ∈
Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅). As a result, Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅) is a subsemi-
group of 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 .

Proof. Let us assume that 𝑤𝑤𝑤𝑤′ ∉ Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅). erefore
there are 𝑥𝑥 𝑥𝑥𝑥 , 𝑤𝑤′′, 𝑤𝑤′′′ ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 , 𝑢𝑢𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  such
that (𝑥𝑥𝑥𝑥𝑥 ′′′) ∈ 𝑅𝑅, 𝑤𝑤𝑤𝑤′ = 𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑤𝑤′′ = 𝑢𝑢𝑢𝑢′′′𝑣𝑣 (so that
𝑤𝑤𝑤𝑤′⇒𝑅𝑅 𝑤𝑤′′). Because ≡𝜃𝜃 is multihomogeneous, either 𝑤𝑤 𝑤
𝑢𝑢′𝑥𝑥𝑥𝑥′ or 𝑤𝑤′ = 𝑢𝑢′𝑥𝑥𝑥𝑥′ for some 𝑢𝑢′,𝑣𝑣 ′ ∈ ℳ(𝑋𝑋𝑋 𝑋𝑋𝑋. But in this
case, either 𝑤𝑤 or 𝑤𝑤′ is reducible, which is a contradiction. As
a result, Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅)⊆𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮    is closed under the oper-
ation of𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  so that Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅) is a subsemigroup of
𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 .

Corollary 8. emap𝒩𝒩 𝒩 𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩  𝒩 Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅) is a
surjective homomorphism of semigroups.

Proof. Let 𝑤𝑤𝑤𝑤𝑤′ ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 . According to Lemma 7, 𝒩𝒩𝒩𝒩𝒩)
𝒩𝒩𝒩𝒩𝒩′) ∈ Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅). erefore, 𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩′)) =
𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩′). Since

∗
⇔ is a congruence of 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 , 𝑤𝑤𝑤𝑤′ ∗

⇔
𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩′) in such a way that 𝒩𝒩𝒩𝒩𝒩𝒩𝒩′) = 𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩)
𝒩𝒩𝒩𝒩𝒩′)) = 𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩′) and𝒩𝒩 is an homomorphism of semi-
groups. It is obviously onto.

Corollary 9. e semigroups Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅) and 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 /
∗
⇔ are isomorphic.

Proof. As introduced in Section 3.1, let 𝒩𝒩 𝒩 𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩𝒩 𝒩
∗
⇔

→ Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅) be the function that maps the class of
𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤   modulo

∗
⇔ to the normal form 𝒩𝒩𝒩𝒩𝒩𝒩. It is a

one-to-one and onto set-theoretical mapping. But according
to Corollary 8,𝒩𝒩 is a semigroup homomorphism, in such a
way that𝒩𝒩 also is.

e fact that the rewriting system is alphabetic (�e�-
nition 6) actually implies that the (isomorphic) semigroups
Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅) and 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮

∗
⇔ are actually free partially

commutative.e objective is now to prove this statement. In
order to do that, we exhibit the commutation alphabet that
generates them. Let Irr(𝑋𝑋𝑋 𝑋 Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅) ∩ 𝑋𝑋 (recall
from Section 2.3 that𝑋𝑋 is considered as a subset of𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 ).
It is clear that Irr(𝑋𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋  𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋  𝑋𝑋𝑋𝑋𝑋𝑋 𝑋𝑋𝑋𝑋 𝑋𝑋𝑋𝑋 𝑋𝑋𝑋 𝑋𝑋𝑋 𝑋.
Indeed, for every 𝑥𝑥 𝑥𝑥𝑥 , 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  , 𝑥𝑥𝑥𝑅𝑅 𝑤𝑤 if and only
if, there are 𝑢𝑢𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , 𝑥𝑥1 ∈ 𝑋𝑋, 𝑤𝑤1 ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  such that
𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥1𝑣𝑣 and 𝑤𝑤 𝑤𝑤𝑤 𝑤𝑤1𝑣𝑣. Since ≡𝜃𝜃 is a multihomogenous
congruence (see Section 2.3), 𝑢𝑢 𝑢 𝑢𝑢 is the empty word, and
𝑥𝑥 𝑥 𝑥𝑥1, 𝑤𝑤 𝑤 𝑤𝑤1. erefore 𝑥𝑥𝑥𝑅𝑅𝑤𝑤 if and only if, (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   .

is characterization of Irr(𝑋𝑋𝑋 is used in the following
lemma.

Lemma 10. If𝑋𝑋𝑋𝑋, then Irr(𝑋𝑋𝑋 𝑋𝑋.

Proof. Let us assume that 𝑋𝑋𝑋𝑋 and Irr(𝑋𝑋𝑋 𝑋 𝑋. Let 𝑥𝑥 𝑥
𝑋𝑋. Since 𝑥𝑥 𝑥 Irr(𝑋𝑋𝑋, there is some 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤   such
that (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   . Because 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  , and 𝑋𝑋 generates
𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 , it can be written as 𝑥𝑥1𝑢𝑢 for some 𝑥𝑥1 ∈ 𝑋𝑋, and
𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 . Because 𝑥𝑥1 ∉ Irr(𝑋𝑋𝑋, there is 𝑣𝑣1 ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  such
that (𝑥𝑥1,𝑣𝑣 1) ∈ 𝑅𝑅.en,𝑤𝑤𝑤𝑅𝑅𝑣𝑣1𝑢𝑢. Replacing𝑤𝑤 by 𝑣𝑣1𝑢𝑢, wemay
construct an in�nite descending chain 𝑥𝑥𝑥𝑅𝑅𝑤𝑤𝑤𝑅𝑅𝑣𝑣1𝑢𝑢𝑢𝑅𝑅⋯,
which is impossible since ⇒𝑅𝑅 is assumed to be convergent,
and therefore terminating. So Irr(𝑋𝑋𝑋 𝑋𝑋.

Remark 11. Forthcoming Proposition 12, Lemma 14 and
Corollary 15 and eorem 16 are obviously valid when 𝑋𝑋 𝑋
∅.

e following lemma reveals the structure of free partially
commutative semigroup of Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅), and therefore
also of 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮

∗
⇔ according to Corollary 9.

Proposition 12. e semigroup Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅) is equal to
the free partially commutative semigroup 𝒮𝒮𝒮Irr(𝑋𝑋𝑋𝑋 𝑋𝑋Irr(𝑋𝑋𝑋)
where 𝜃𝜃Irr(𝑋𝑋𝑋 = 𝜃𝜃𝜃𝜃  Irr(𝑋𝑋𝑋 𝑋 Irr(𝑋𝑋𝑋𝑋 (see Lemma 4).

Proof. Let 𝑤𝑤 𝑤 Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝑅𝑅). Let us assume that 𝑤𝑤 𝑤
𝒮𝒮𝒮Irr(𝑋𝑋𝑋𝑋 𝑋𝑋Irr(𝑋𝑋𝑋). According to Lemma 5, there exists 𝑥𝑥 𝑥
𝑋𝑋 𝑋 Irr(𝑋𝑋𝑋 such that for all 𝜔𝜔 𝜔𝜔𝜔 +, 𝜔𝜔 𝜔𝜔𝜔  (𝑤𝑤 is seen as
a congruence class), |𝜔𝜔𝜔𝑥𝑥 ≠ 0. erefore 𝜔𝜔 𝜔𝜔𝜔𝜔𝜔𝜔𝜔  for some
𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢 ∗ and𝑤𝑤 𝑤 𝑤𝑤𝜃𝜃(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝜃𝜃(𝑣𝑣𝑣 (where 𝜋𝜋𝜃𝜃 ∶ 𝑋𝑋

∗ →ℳ (𝑋𝑋𝑋 𝑋𝑋𝑋
is the canonical epimorphism and where we recall that 𝑋𝑋 is
seen as a subset of 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 , 𝑋𝑋∗ = 𝑋𝑋+ ⊔ {𝜖𝜖𝜖, andℳ(𝑋𝑋𝑋 𝑋𝑋𝑋 𝑋
𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮   ). But 𝑥𝑥 𝑥 Irr(𝑋𝑋𝑋, then there exists 𝑤𝑤′ ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮
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such that (𝑥𝑥𝑥 𝑥𝑥′) ∈ 𝑅𝑅, and therefore𝑤𝑤𝑤𝑅𝑅𝜋𝜋𝜃𝜃(𝑢𝑢𝑢𝑢𝑢
′𝜋𝜋𝜃𝜃(𝑣𝑣𝑣which

contradicts the fact that 𝑤𝑤𝑤  Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝑅𝑅). Let 𝑤𝑤𝑤
𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  such that 𝑤𝑤𝑤𝑤𝑤𝑤  Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋). Let us assume that
𝑤𝑤 𝑤 Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝑅𝑅). erefore 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 for some 𝑢𝑢𝑢𝑢𝑢𝑢 
ℳ(𝑋𝑋𝑋𝑋𝑋𝑋 , 𝑥𝑥 𝑥𝑥𝑥  such that there is𝑤𝑤′ ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 with (𝑥𝑥𝑥 𝑥𝑥′) ∈
𝑅𝑅. erefore 𝑥𝑥 𝑥 Irr(𝑋𝑋𝑋. It is then clear that for every 𝜔𝜔 𝜔𝜔𝜔 +

such that 𝜔𝜔 𝜔𝜔𝜔 , |𝜔𝜔𝜔𝑥𝑥 > 0. But according to Lemma 5, this
is impossible because 𝑥𝑥 𝑥 Irr(𝑋𝑋𝑋 and 𝑤𝑤𝑤𝑤𝑤𝑤  Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋).
We have proved that Irr(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝑅𝑅) and 𝒮𝒮𝒮Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋)
are equal as sets. But since they are both subsemigroups of
𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 , then they are equal as semigroups.

4.2. e Tutte-Grothendieck Group of an Alphabetic Rewriting
System

�e�nition �3. Let (𝑋𝑋𝑋𝑋𝑋𝑋  be a commutation alphabet, and let
⇒𝑅𝑅 be an alphabetic rewriting system. Let 𝑆𝑆 be any semi-
group, and let 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓 that respects the commutations.
Let 𝑓𝑓𝒮𝒮 ∶ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮    be the unique homomorphism of
semigroups such that the following diagram commutes (see
Section 2.3):

j
,X (9)

en 𝑓𝑓 is said to be an 𝑅𝑅-invariant if for every 𝑥𝑥 𝑥𝑥𝑥  and
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤    such that (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  , then 𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓𝑓𝒮𝒮(𝑤𝑤𝑤.

Informally speaking, according to �e�nition 13, a func-
tion 𝑓𝑓 that respects the commutations is an 𝑅𝑅-invariant
if its canonical semigroup extension 𝑓𝑓𝒮𝒮 is constant for all
reductions (𝑥𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  .

Let us assume that (𝑋𝑋𝑋𝑋𝑋𝑋  is a commutation alphabet, and
let ⇒𝑆𝑆 be an alphabetic rewriting system on 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  (not
necessarily convergent). e fact that the rewriting system is
alphabetic implies in an essential way the following results.

Lemma 14. Let 𝑆𝑆 be a semigroup, and let 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓
be a function that respects the commutations. Let 𝑓𝑓𝒮𝒮 be its
canonical semigroup extension from 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  to 𝑆𝑆. If 𝑓𝑓 is a 𝑅𝑅-
invariant, then for every 𝑤𝑤𝑤𝑤𝑤′ ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  such that 𝑤𝑤𝑤𝑅𝑅𝑤𝑤

′,
one has 𝑓𝑓𝒮𝒮(𝑤𝑤𝑤 𝑤 𝑤𝑤𝒮𝒮(𝑤𝑤′).

Proof. Since we will deal with the empty word, one needs
to recall the following. According to Lemma 1, ℳ(𝑋𝑋𝑋𝑋𝑋𝑋𝑋 
𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  𝒮 𝒮𝒮𝒮𝒮, where 𝜖𝜖 is the empty word. Let us de�ne
𝑓𝑓𝒮𝒮1 ∶ ℳ(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋   1 the canonical extension of 𝑓𝑓𝒮𝒮
as a monoid homomorphism. at is, whenever 𝑤𝑤𝑤
𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 , 𝑓𝑓𝒮𝒮1 (𝑤𝑤𝑤 𝑤 𝑤𝑤𝒮𝒮(𝑤𝑤𝑤, and 𝑓𝑓𝒮𝒮1 (𝜖𝜖𝜖𝜖𝜖  . Let 𝑤𝑤,
𝑤𝑤′ ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  such that 𝑤𝑤𝑤𝑅𝑅 𝑤𝑤′. en there exist 𝑥𝑥 𝑥𝑥𝑥 ,
𝑤𝑤′′ ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 , 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢     such that (𝑥𝑥𝑥 𝑥𝑥′′) ∈ 𝑅𝑅,
𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 and 𝑤𝑤′ = 𝑢𝑢𝑢𝑢′′𝑣𝑣. Because 𝑓𝑓 is 𝑅𝑅-invariant, 𝑓𝑓𝑓𝑓𝑓)
= 𝑓𝑓𝒮𝒮(𝑤𝑤′), and then we have 𝑓𝑓𝒮𝒮(𝑤𝑤𝑤 𝑤 𝑤𝑤𝒮𝒮(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  𝒮𝒮1
(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  𝒮𝒮1 (𝑢𝑢𝑢𝑢𝑢

𝒮𝒮
1 (𝑥𝑥𝑥𝑥𝑥

𝒮𝒮
1 (𝑣𝑣𝑣𝑣𝑣𝑣  𝒮𝒮1 (𝑢𝑢𝑢𝑢𝑢

𝒮𝒮(𝑥𝑥𝑥𝑥𝑥𝒮𝒮1 (𝑣𝑣𝑣𝑣

𝑓𝑓𝒮𝒮1 (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝒮𝒮
1 (𝑣𝑣𝑣𝑣𝑣𝑣  𝒮𝒮1 (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

′′)𝑓𝑓𝒮𝒮1 (𝑣𝑣𝑣𝑣𝑣𝑣  𝒮𝒮1 (𝑢𝑢𝑢𝑢𝑢𝑢𝑢1(𝑤𝑤
′′)

𝑓𝑓𝒮𝒮1 (𝑣𝑣𝑣𝑣𝑣𝑣 
𝒮𝒮
1 (𝑢𝑢𝑢𝑢

′′𝑣𝑣𝑣𝑣𝑣𝑣  𝒮𝒮1 (𝑤𝑤
′) = 𝑓𝑓𝒮𝒮(𝑤𝑤′).

Corollary 15. Let 𝑆𝑆 be a semigroup, and let 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓 be a
function that respects the commutations. If 𝑓𝑓 is a 𝑅𝑅-invariant,
then its canonical semigroup extension 𝑓𝑓𝒮𝒮 factors through the
quotient 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮

∗
⇔𝑅𝑅.

Proof. Let𝑤𝑤𝑤𝑤𝑤′ ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮  such that𝑤𝑤
∗
⇔𝑅𝑅 𝑤𝑤′. en there are

𝑛𝑛 𝑛𝑛 , 𝑤𝑤0,… ,𝑤𝑤𝑛𝑛 ∈ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 , 𝑤𝑤0 =𝑤𝑤 , 𝑤𝑤𝑛𝑛 =𝑤𝑤 ′ such that for
every 0 ≤ 𝑖𝑖 𝑖 𝑖𝑖, 𝑤𝑤𝑖𝑖 =𝑤𝑤 𝑖𝑖𝑖𝑖 or 𝑤𝑤𝑖𝑖⇔𝑅𝑅 𝑤𝑤𝑖𝑖𝑖𝑖. erefore for every
0 ≤ 𝑖𝑖 𝑖 𝑖𝑖, either 𝑤𝑤𝑖𝑖 =𝑤𝑤 𝑖𝑖𝑖𝑖, or 𝑤𝑤𝑖𝑖⇒𝑅𝑅𝑤𝑤𝑖𝑖𝑖𝑖, or 𝑤𝑤𝑖𝑖⇐𝑅𝑅 𝑤𝑤𝑖𝑖𝑖𝑖.
Because 𝑓𝑓 is a 𝑅𝑅-invariant, according to Lemma 14, for every
0 ≤ 𝑖𝑖 𝑖 𝑖𝑖, 𝑓𝑓𝒮𝒮(𝑤𝑤𝑖𝑖) = 𝑓𝑓𝒮𝒮(𝑤𝑤𝑖𝑖𝑖𝑖). erefore 𝑓𝑓𝒮𝒮(𝑤𝑤𝑤 𝑤
𝑓𝑓𝒮𝒮(𝑤𝑤0) = ⋯ = 𝑓𝑓𝒮𝒮(𝑤𝑤𝑛𝑛) = 𝑓𝑓𝒮𝒮(𝑤𝑤′). en, there exists a
unique semigroup homomorphism 𝑓𝑓𝒮𝒮𝑅𝑅 ∶ 𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝒮

∗
⇔𝑅𝑅 → 𝑆𝑆

such that 𝑓𝑓𝒮𝒮𝑅𝑅([𝑤𝑤𝑤 ∗
⇔𝑅𝑅
) = 𝑓𝑓𝒮𝒮(𝑤𝑤𝑤 for every 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤    (where

[𝑤𝑤𝑤 ∗
⇔𝑅𝑅

denotes the class of 𝑤𝑤modulo
∗
⇔𝑅𝑅).

We are now in position to establish the main result of this
paper.

eorem 16. Let (𝑋𝑋𝑋𝑋𝑋𝑋  be a commutation alphabet, and let
(𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮 𝑅𝑅) be an alphabetic rewriting system.ere exist a
group 𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯   and a mapping 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    
that respects the commutations which is an 𝑅𝑅-invariant such
that for every group 𝐺𝐺, and every (commutations respecting)
𝑅𝑅-invariant mapping 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓, there is a unique group
homomorphismℎ ∶ 𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯     such that the following
diagram commutes:

(10)

Moreover, if ⇒𝑅𝑅 is convergent, then the group 𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯 ,
𝑅𝑅𝑅 is isomorphic to the free partially commutative group
𝒢𝒢𝒢Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋) and 𝑡𝑡 is the normal form 𝒩𝒩 𝒩 𝒩𝒩𝒮𝒮𝒮𝒮𝒮 ∶
𝑋𝑋𝑋𝑋𝑋𝑋  Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋) restricted to the alphabet 𝑋𝑋 (recall
that one has 𝑋𝑋 𝑋 𝑋𝑋𝑋Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋) ⊆ ℳ(Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋) ⊆
𝒢𝒢𝒢Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋) under natural identi�cations� see Sec-
tion 2.3).

Proof. Let 𝐺𝐺 be a group and let 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓 be a
commutations respecting𝑅𝑅-invariantmapping. According to
the universal problem of free partially commutative semi-
groups, because 𝐺𝐺 is also a semigroup, we have the following
commutative diagram:

j
,X (11)
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According to Corollary 15, we may complete the previous
diagram in a natural way (the notations from the proof of
Corollary 15 are used) as fellows:

j

/

,X

(12)

Now, we extend in a natural way 𝑓𝑓𝒮𝒮𝑅𝑅 as a monoid homomor-
phism 𝑓𝑓𝒮𝒮𝑅𝑅𝑅𝑅 ∶ (𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝒮𝒮𝒮

∗
⇔𝑅𝑅)

1 → 𝐺𝐺 (because 𝐺𝐺 is also a
monoid). Let us denote by𝑀𝑀 themonoid (𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝒮𝒮𝒮

∗
⇔𝑅𝑅)

1.We
obtain the following diagram:

,1

/,

/

j ,X

(13)

Finally, using the Grothendieck group𝓖𝓖𝓖𝓖𝓖𝓖 of𝑀𝑀, we com-
plete the previous commutative diagram as follows (where
𝑖𝑖 𝑖 𝑖𝑖

𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮
∗
⇔𝑅𝑅

∘ [⋅] ∗
⇔𝑅𝑅

∘ 𝑗𝑗𝒮𝒮𝒮𝒮𝒮):

,1

,1
Mi

(14)

Now, as illustrated in the previous diagram, let𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯  
𝓖𝓖𝓖𝓖𝓖𝓖, 𝑡𝑡 𝑡𝑡𝑡 ℳ,𝑀𝑀 ∘𝑖𝑖

𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮
∗
⇔𝑅𝑅

∘[⋅] ∗
⇔𝑅𝑅

∘𝑗𝑗𝒮𝒮𝒮𝒮𝒮, and ℎ =󵰇󵰇𝑓𝑓
𝒮𝒮
𝑅𝑅𝑅𝑅. First

of all, 𝑡𝑡 obviously respects the commutations. Let us consider
the canonical extension 𝑡𝑡𝒮𝒮 ∶ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋    of 𝑡𝑡. So we have
the following commutative diagram:

j
,X (15)

By uniqueness of the solution of a universal problem, and
according to the diagram (14), we have 𝑡𝑡𝒮𝒮 = 𝑖𝑖ℳ,𝑀𝑀 ∘
𝑖𝑖
𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮𝒮

∗
⇔𝑅𝑅

∘ [⋅] ∗
⇔𝑅𝑅

. Now, let 𝑥𝑥 𝑥 𝑥𝑥, 𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤   such
that (𝑥𝑥𝑥𝑥𝑥𝑥  𝑥 𝑥𝑥. en, [𝑥𝑥𝑥 ∗

⇔𝑅𝑅
= [𝑤𝑤𝑤 ∗

⇔𝑅𝑅
. erefore, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝒮𝒮(𝑥𝑥𝑥𝑥𝑥𝑥  𝒮𝒮(𝑤𝑤𝑤, so that 𝑡𝑡 is 𝑅𝑅-invariant. en the �rst part
of the theorem is proved.

Now, let us assume that (𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝒮𝒮𝒮𝒮𝑅𝑅) is convergent.
en, by Proposition 12, 𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝒮𝒮𝒮

∗
⇔𝑅𝑅 is isomorphic to

the free partially commutative semigroup 𝒮𝒮𝒮Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋).
erefore, 𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

∗
⇔𝑅𝑅)

1 is isomorphic to the
free partially commutative monoid ℳ(𝑋𝑋𝑋𝑋𝑋𝑋  (by Lemma 1).
Finally, the Grothendieck group 𝓖𝓖𝓖𝓖𝓖𝓖 is isomorphic to the
Grothendieck group𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖𝓖  (because𝓖𝓖𝓖𝓖𝓖 is functorial)
so that it is isomorphic to the free partially commutative
group𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢  (by Lemma 2).e fact that in this case, 𝑡𝑡 is the
normal form𝒩𝒩 𝒩𝒩𝒩 𝒮𝒮𝒮𝒮𝒮 ∶ 𝑋𝑋𝑋𝑋𝑋𝑋  Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋) restricted to
the alphabet𝑋𝑋 (where𝒮𝒮𝒮Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋) is naturally identi�ed
with a subsemigroup of 𝒢𝒢𝒢Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋)) is quite obvious to
check.

�e�nition 1�. e group 𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯   is called the Tutte-
Grothendieck group and 𝑡𝑡 the universal Tutte-Grothendieck 𝑅𝑅-
invariant of the alphabetic rewriting system (𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝒮𝒮𝒮𝒮𝑅𝑅).

4.3. Some Examples. is section is devoted to the presenta-
tion of several examples of Tutte-Grothendieck groups and
universal invariants corresponding to convergent alphabetic
rewriting systems. ese examples come from the theory of
graphs (Tutte polynomial), from algebra (Weyl algebra, and
Poincaré-Birkhoff-Witt theorem) and from combinatorics
(prefabs).

4.3.1. e Tutte Polynomial. In its famous paper [1], Tutte
used the following decomposition of (isomorphism classes
of) �nitemultigraphs (graphs withmultiple edges and loops).
Let𝐺𝐺 be amultigraph, and 𝑒𝑒 be a link (edgewhich is not a loop
nor a bridge) in𝐺𝐺. Let𝐺𝐺𝐺𝐺𝐺 be the graph obtained from𝐺𝐺 by
erasing 𝑒𝑒, and let𝐺𝐺𝐺𝐺𝐺 be the graph obtained by contraction of
𝑒𝑒 in𝐺𝐺 (𝑒𝑒 is removed, and its origin and source are identi�ed).
en 𝐺𝐺 is decomposed into (𝐺𝐺 𝐺 𝐺𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺𝐺 (+ being the free
commutative juxtaposition). As explained in [3] in terms of
an order relation, a rewriting system may be de�ned, and the
universal invariant attached to this system is the well-known
Tutte polynomials (see [1]). In [16] Stanley uses the theory
developed by Brylawski to de�ne a similar decomposition on
�nite ordered sets.

4.3.2. Integral Weyl Algebra. For any set𝑋𝑋, let𝑋𝑋⊕ be the free
commutative semigroup generated by 𝑋𝑋 (i.e., 𝑋𝑋⊕ = 𝒮𝒮𝒮𝒮𝒮𝒮 𝒮𝒮𝒮,
where 𝜃𝜃𝜃𝜃𝜃𝜃   𝜃 𝜃𝜃𝜃 𝜃 𝜃𝑋𝑋 and Δ𝑋𝑋 is the equality relation on
𝑋𝑋), written additively. Recall also that the free Abelian group
generated by 𝑋𝑋, namely 𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢𝒢 , is isomorphic to the group
(under point-wise addition)ℤ(𝑋𝑋𝑋 of allmappings from𝑋𝑋 toℤ
with a �nite support (the support of a function 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓  
is the set of all 𝑥𝑥 𝑥 𝑥𝑥 such that 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓), see for instance
[5]. Let 𝑌𝑌 𝑌 𝑌𝑌𝑌𝑌 𝑌𝑌𝑌 be a two element set. Let 𝑋𝑋𝑋𝑋𝑋  ∗, and
𝑅𝑅 𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝑅 ∗} ⊆ 𝑋𝑋𝑋𝑋𝑋  ⊕. It is clear
that Irr(𝑋𝑋𝑋𝑋𝑋𝑋𝑋  𝑖𝑖𝑎𝑎𝑗𝑗 ∶ 𝑖𝑖𝑖𝑖𝑖𝑖   𝑖𝑖. Moreover the alphabetic
rewriting system (𝑋𝑋⊕,⇒𝑅𝑅) is convergent (it is not difficult to
check this property using for instance techniques from [17]).
Let 𝜃𝜃𝜃𝜃𝜃𝜃  𝜃𝜃𝜃𝜃𝜃𝜃𝑋𝑋.en𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯    𝒯𝒯𝒯Irr(𝑋𝑋𝑋𝑋𝑋𝑋 Irr(𝑋𝑋𝑋)=
ℤ(Irr(𝑋𝑋𝑋𝑋. erefore we recover the well-known fact (see [18])
that the integral Weyl algebra 𝐴𝐴ℤ = ℤ⟨𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎[𝑎𝑎𝑎𝑎𝑎𝑎 with two
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generators (whereℤ⟨𝑎𝑎𝑎 𝑎𝑎𝑎 denotes the ring of the freemonoid
𝑋𝑋 𝑋 𝑋𝑋∗ = {𝑎𝑎𝑎 𝑎𝑎 𝑎∗, and where 𝐼𝐼[𝑎𝑎𝑎𝑎𝑎𝑎 is the two-sided ideal of
ℤ⟨𝑎𝑎𝑎 𝑎𝑎𝑎 generated by 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎) is free as an Abelian group
with generators Irr(𝑋𝑋𝑋. e universal Tutte-Grothendieck 𝑅𝑅-
invariant 𝑡𝑡 of (𝑋𝑋⊕,⇒𝑅𝑅) is the normal form of the words in
𝑋𝑋 𝑋 𝑋𝑋∗. For instance, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  2𝑎𝑎2 + 3𝑏𝑏2𝑎𝑎 𝑎 𝑎𝑎.

Let 𝑐𝑐 be a variable (distinct from 𝑎𝑎𝑎 𝑎𝑎) and let 𝑌𝑌𝑐𝑐 =𝑌𝑌  𝑌
{𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐    𝑐𝑐𝑐. Consider the relation 𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃𝜃𝜃𝜃𝜃  𝜃 𝜃𝜃 𝜃
𝑌𝑌𝑌 𝑌 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌     . Finally let 𝑋𝑋𝑐𝑐 = 𝒮𝒮𝒮𝒮𝒮𝑐𝑐, 𝜃𝜃𝜃. erefore
𝑐𝑐 commutes with all elements of𝑋𝑋𝑐𝑐. Let 𝑅𝑅𝑐𝑐 = {(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢
𝑢𝑢𝑢𝑢𝑢𝑢  𝑢𝑢𝑢 𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑐𝑐, 𝜃𝜃𝜃𝜃 𝜃 𝜃𝜃𝑐𝑐 × 𝑋𝑋⊕

𝑐𝑐 . en we can check
that (𝑋𝑋⊕

𝑐𝑐 ,⇒𝑅𝑅𝑐𝑐) is a convergent alphabetic rewriting system
whose Tutte-Grothendieck group is ℤIrr(𝑋𝑋𝑐𝑐) where Irr(𝑋𝑋𝑐𝑐)=
{𝑐𝑐𝑖𝑖𝑏𝑏𝑗𝑗𝑎𝑎𝑘𝑘 ∶ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖    𝑖𝑖 (note that 𝑐𝑐𝑖𝑖𝑏𝑏𝑗𝑗𝑎𝑎𝑘𝑘 = 𝑐𝑐𝑖𝑖1𝑏𝑏𝑗𝑗𝑐𝑐𝑖𝑖2𝑎𝑎𝑘𝑘𝑐𝑐𝑖𝑖3
for every nonnegative integers 𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, 𝑖𝑖 𝑖 𝑖𝑖1 + 𝑖𝑖2 + 𝑖𝑖3,
𝑗𝑗 and 𝑘𝑘, since 𝑐𝑐 commutes with all other elements). is
gives us immediately a free ℤ-basis for the central extension
ℤ⟨𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (where 𝐼𝐼[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the two-sided ideal of the
ringℤ⟨𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎𝑎𝑎 of the monoid𝑌𝑌∗

𝑐𝑐 generated by 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and
𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑐𝑐 for every 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   ) of the integral Weyl algebra 𝐴𝐴ℤ.

4.3.3. Integral Temperley-Lieb Algebra. Let 𝑛𝑛 𝑛𝑛  such that
𝑛𝑛 𝑛 𝑛. Let us consider 𝑌𝑌𝑌𝑌𝑌𝑌  1,… ,𝑥𝑥 𝑛𝑛𝑛𝑛}. Let 𝜃𝜃 𝜃𝜃𝜃 𝜃𝜃𝑖𝑖,𝑥𝑥 𝑗𝑗)∶
|𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     𝑗𝑗,𝑥𝑥 𝑖𝑖)∶  |𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖   . Let 𝑋𝑋 𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 𝑋.
Let 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑖𝑖𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣           
{(𝑢𝑢𝑢𝑢2𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑣𝑣𝑣𝑣𝑣   𝑣 𝑣𝑣 𝑣 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣         
𝑋𝑋⊕. is alphabetic rewriting system is easily shown to be
convergent. e corresponding Tutte-Grothendieck ring is
ℤ(𝑌𝑌𝑌. We recover the fact that the 𝑛𝑛-th Temperley-Lieb ℤ-
algebra (with parameter 1) ℤ⟨𝑌𝑌𝑌𝑌𝑌𝑌, where 𝐼𝐼 the two-sided
ideal generated by the following relations 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 =𝑥𝑥 𝑗𝑗𝑥𝑥𝑖𝑖 for
|𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖   , 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖 =𝑥𝑥 𝑖𝑖 for |𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖   , 𝑥𝑥

2
𝑖𝑖 =𝑥𝑥 𝑖𝑖 for 1≤  𝑖𝑖 𝑖𝑖𝑖𝑖𝑖  

is free with basis 𝑌𝑌.

4.3.4. e Poincaré-Birkhoff-Witt eorem. Let 𝔤𝔤 be a Lie
algebra overℤwhich is free as anℤ-module (see [19]). Letℬ
be a basis of 𝔤𝔤 seen as a (free) ℤ-module. Let us assume that
ℬ is linearly ordered by ≤. Let 𝑋𝑋 𝑋 𝑋∗ be the free monoid
generated by ℬ. Let 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅  𝑅𝑅 𝑅
ℎ, 𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢 ∗}⊆  𝑋𝑋 𝑋 𝑋𝑋⊕. It is obvious that (𝑋𝑋⊕,⇒𝑅𝑅) is a
convergent alphabetic rewriting system. Moreover, Irr(𝑋𝑋𝑋 𝑋
{𝑔𝑔1 ⋯𝑔𝑔𝑛𝑛 ∶ 𝑛𝑛 𝑛 𝑛𝑛𝑛𝑛 𝑖𝑖 ∈ ℬ for all 0≤  𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖  𝑖𝑖 ≤
𝑔𝑔𝑖𝑖𝑖𝑖 for all 0≤  𝑖𝑖 𝑖𝑖𝑖𝑖  and its Tutte-Grotendieck group
is ℤ(Irr(𝑋𝑋𝑋𝑋, while its universal Tutte-Grothendieck invariant
𝑡𝑡 is the reordering of an element of 𝑋𝑋 in an increasing order
(relative to ≤). We recognize the famous Poincaré-Birkhoff-
Witt theorem ([20–22]) since the universal enveloping ℤ-
algebra of 𝔤𝔤 over ℤ is free with basis Irr(𝑋𝑋𝑋.

4.3.5. Prefabs. In [23], Bender and Goldman introduced the
notion of a prefab for combinatorial purposes (computation
of some generating functions). We recall here (a part of) this
concept. Let 𝑋𝑋 be a set together with a multivalued binary
operation ∘ (meaning that 𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥  implies that 𝑥𝑥𝑥  𝑥𝑥 𝑥𝑥𝑥 )
subjected to properties given below. For every 𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥 , 𝑥𝑥𝑥  𝑥𝑥

is a �nite set. e operation ∘ is extended to the power set 2𝑋𝑋
of𝑋𝑋 by𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    for some 𝑥𝑥𝑥𝑥𝑥𝑥   𝑥𝑥 𝑥𝑥𝑥𝑥 . If
𝑥𝑥𝑥𝑥𝑥   and𝐴𝐴 𝐴𝐴𝐴 , thenwe let𝑥𝑥𝑥𝑥𝑥 be equal to {𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  ,
and 𝑥𝑥𝑖𝑖 is de�ned by induction: 𝑥𝑥1 = {𝑥𝑥𝑥, and 𝑥𝑥𝑖𝑖𝑖𝑖 =𝑥𝑥𝑥𝑥𝑥   𝑖𝑖 for
every positive integer 𝑖𝑖. We say that (𝑋𝑋𝑋𝑋 𝑋 is a prefab if the
composition ∘ on 2𝑋𝑋 is associative, commutative (therefore
2𝑋𝑋 becomes a semigroup), and has an identity (the identity
plays also a role in counting arguments in [23]) 𝑖𝑖 𝑖𝑖𝑖  such
that 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥         for every 𝑥𝑥𝑥𝑥𝑥   (then 2𝑋𝑋 is a monoid).
An element𝑝𝑝 𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝 is called a prime if𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝  implies𝑥𝑥𝑥𝑥𝑥 
or 𝑦𝑦𝑦𝑦𝑦  . We say that (𝑋𝑋𝑋𝑋 𝑋 is a unique factorization prefab if
every 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   factors uniquely into primes in the sense that
𝑥𝑥𝑥𝑥𝑥  𝑖𝑖11 ∘⋯∘𝑝𝑝𝑖𝑖𝑛𝑛𝑛𝑛 for a unique set of 𝑛𝑛 𝑛 𝑛primes {𝑝𝑝𝑖𝑖 ∶1≤   𝑖𝑖 𝑖𝑖𝑖𝑖
and unique positive integers 𝑖𝑖1,… , 𝑖𝑖𝑛𝑛. We say that (𝑋𝑋𝑋𝑋 𝑋 is a
very unique factorization prefab if 𝑥𝑥𝑥𝑥𝑥𝑥  𝑖𝑖11 ∘⋯∘𝑝𝑝𝑖𝑖𝑚𝑚𝑚𝑚 )∘(𝑞𝑞

𝑗𝑗1
1 ∘⋯∘

𝑞𝑞𝑗𝑗𝑛𝑛𝑛𝑛 ) where 𝑚𝑚 𝑚𝑚 , 𝑛𝑛 𝑛 𝑛, all the 𝑖𝑖’s and all the 𝑗𝑗’s are positive
integers, all the 𝑝𝑝’s are mutually distinct primes, and all the
𝑞𝑞’s are mutually distinct primes (but some 𝑞𝑞’s may be equal to
some 𝑝𝑝’s), then there exist unique elements 𝑦𝑦𝑦𝑦𝑦  𝑖𝑖11 ∘ ⋯ ∘ 𝑝𝑝𝑖𝑖𝑚𝑚𝑚𝑚
and 𝑧𝑧𝑧𝑧𝑧  𝑗𝑗11 ∘ ⋯ ∘ 𝑞𝑞𝑗𝑗𝑛𝑛𝑛𝑛 such that 𝑥𝑥𝑥  𝑥𝑥 𝑥𝑥𝑥 . In the original
de�nition of a prefab, there is also a mapping 𝑓𝑓 𝑓𝑓 𝑋𝑋 → ℕ
which serves as a weigth function for a combinatorial use but
which is not needed here.

Let (𝑌𝑌𝑌𝑌𝑌  be a unique and very unique factorization
prefab. Let 𝑃𝑃 be the set of primes of this prefab. Let 𝑋𝑋 𝑋
𝑌𝑌𝑌𝑌𝑌𝑌𝑌  . Let 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅      𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅        
𝑋𝑋 𝑋 𝑋𝑋⊕. According to the properties of unique factorization,
very unique factorization, associativity, and commutativity of
∘, it is clear that (𝑋𝑋⊕,⇒𝑅𝑅) is a convergent alphabetic rewriting
system. We have Irr(𝑋𝑋𝑋 𝑋 𝑋𝑋, and the Tutte-Grothendieck
group is, as expected, ℤ(𝑃𝑃𝑃. It is also immediate that 𝑡𝑡𝑡𝑡𝑡𝑡𝑡
∑𝑛𝑛
𝑗𝑗𝑗𝑗 𝑖𝑖𝑗𝑗𝑝𝑝𝑗𝑗 where 𝑝𝑝

𝑖𝑖1
1 ∘⋯∘𝑝𝑝𝑖𝑖𝑛𝑛𝑛𝑛 is the unique prime factorization

of 𝑥𝑥.
As examples of (unique and very unique factorization)

prefabs, one can cite the following two from [23]. Let 𝑋𝑋 be
any set, and let 𝑤𝑤𝑤𝑤𝑤′ ∈ 𝑋𝑋+ be two words. A shuffle of these
two words is a word 𝑤𝑤′′ =𝑥𝑥 1 ⋯𝑥𝑥𝑛𝑛 ∈ 𝑋𝑋+, 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋 for
1≤  𝑖𝑖 𝑖𝑖𝑖  (where 𝑛𝑛 is the sumof lengths of𝑤𝑤 and𝑤𝑤′) such that
there exists {𝐼𝐼𝐼 𝐼𝐼𝐼 a partition of {1,… , 𝑛𝑛𝑛 with 𝑤𝑤 𝑤𝑤𝑤 𝑖𝑖1 ⋯𝑥𝑥𝑖𝑖𝑘𝑘 ,
𝑖𝑖1 < ⋯ < 𝑖𝑖𝑘𝑘, 𝑘𝑘 is the cardinal of 𝐼𝐼, 𝐼𝐼 𝐼𝐼𝐼𝐼 1,… , 𝑖𝑖𝑘𝑘}, and
𝑤𝑤′ =𝑥𝑥 𝑗𝑗1 ⋯𝑥𝑥𝑗𝑗ℓ , 𝑗𝑗1 < ⋯ < 𝑗𝑗ℓ, ℓ is the cardinal of 𝐽𝐽, 𝐽𝐽𝐽
{𝑗𝑗1,… , 𝑗𝑗ℓ} (such constructions appear in the shuffle product
of two words; see [24]). Let 𝑤𝑤 𝑤 𝑤𝑤′ be the set of all shuffles
of 𝑤𝑤 and 𝑤𝑤′. As an example, 𝑤𝑤 𝑤 𝑤𝑤𝑤𝑤 and 𝑤𝑤′ = 𝛽𝛽𝛽𝛽. en
𝑤𝑤 𝑤 𝑤𝑤′ = {𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼     . It is clear
that the identity is the empty word (therefore we allow to
choose word in 𝑋𝑋∗) while the prime elements are the letters
in𝑋𝑋.e prime decomposition of a word is then the set of the
letters that form the words. e rewriting system associated
to this prefab is the following: (𝑤𝑤𝑤 𝑤𝑤′ + 𝑤𝑤′′) where 𝑤𝑤′ + 𝑤𝑤′′ ∈
(𝑋𝑋+)⊕ such that 𝑤𝑤 𝑤 𝑤𝑤′ ∘ 𝑤𝑤′′. To summarize, the set Irr(𝑋𝑋+)
is𝑋𝑋, the Tutte-Grothendieck group isℤ(𝑋𝑋𝑋, and the universal
invariant is given by 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑥𝑥𝑥𝑥𝑥 |𝑤𝑤𝑤𝑥𝑥𝑥𝑥 (which is sometimes
called the commutative image; see [25]).
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Let 𝑥𝑥𝑖𝑖 be an indeterminate for each 𝑖𝑖 𝑖 𝑖 𝑖 𝑖𝑖𝑖 such that
𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑗𝑗 whenever 𝑖𝑖 𝑖𝑖𝑖 . Let 𝑌𝑌 𝑌 𝑌𝑌𝑌𝑖𝑖 ∶ 𝑖𝑖 𝑖 𝑖𝑖. Let 𝐷𝐷𝐷𝐷𝐷𝑛𝑛)=
{∑𝑖𝑖𝑖𝑖 𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖 ∈ 𝑌𝑌⊕ ∶ 𝑘𝑘𝑖𝑖 ∈ℕ , for all 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖 =0  except a
�nite number, ∑𝑖𝑖𝑖𝑖 𝑘𝑘𝑖𝑖𝑖𝑖 𝑖𝑖𝑖 𝑖 𝑖 𝑖𝑖⊕. Finally let us de�ne
𝑥𝑥𝑚𝑚 ∘𝑥𝑥𝑛𝑛 ={ 𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓

⊕ ∶ 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚), 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑛𝑛)}. For instance,
𝑥𝑥8∘𝑥𝑥4 ={ 6𝑥𝑥2, 3𝑥𝑥2+𝑥𝑥4, 𝑥𝑥2+2𝑥𝑥4, 2𝑥𝑥2+𝑥𝑥8, 𝑥𝑥4+𝑥𝑥8}.e identity
is 𝑥𝑥1, while the primes are exactly the 𝑥𝑥𝑝𝑝 for 𝑝𝑝 𝑝 𝑝, where ℙ
is the set of all prime integers. Attached with these datas, the
rewriting system on (𝑌𝑌 𝑌𝑌𝑌𝑌 1})

⊕ is given by 𝑅𝑅 𝑅𝑅𝑅𝑅𝑅 𝑛𝑛, 𝑓𝑓𝑓𝑓
𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛)}. e Tutte-Grothendieck group is ℤ(ℙ), and the
universal invariant is given by 𝑡𝑡𝑡𝑡𝑡𝑚𝑚) = ∑ℓ

𝑖𝑖𝑖𝑖 𝑘𝑘𝑖𝑖𝑥𝑥𝑝𝑝𝑖𝑖 , where
𝑝𝑝𝑘𝑘11 ⋯𝑝𝑝𝑘𝑘ℓℓ is the decomposition of𝑚𝑚 into prime numbers.

Appendix

A Short Review of Brylawski’s Theory

In this appendix are brie�y presented the main de�nitions
and results of Brylawski’s theory that are extended and
clari�ed in this contribution.

Let 𝑋𝑋 be a set, and let 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  ⊕. Let (𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷 be a
partially ordered set with𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  ⊕ such that

(1) for every 𝑓𝑓𝑓 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , if 𝑓𝑓 𝑓 𝑓𝑓, then |𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 or
𝑓𝑓 𝑓 𝑓𝑓 (where |𝑓𝑓𝑓𝑓𝑓  𝑥𝑥𝑥𝑥𝑥 𝑓𝑓𝑓𝑓𝑓𝑓),

(2) for every𝑓𝑓𝑓 𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓 if and only if, there
exist ℎ1, ℎ2 in𝐷𝐷𝐷𝐷𝐷𝐷 such that ℎ1 +ℎ 2 =ℎ , 𝑓𝑓 𝑓 𝑓1, and
𝑔𝑔𝑔𝑔  2.

A partial ordered set of this kind is called a decomposition
of 𝑆𝑆, and we say that 𝑓𝑓decomposes into 𝑔𝑔 when 𝑓𝑓 𝑓 𝑓𝑓. An
element 𝑥𝑥 of𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 is said to be irreducible if 𝑥𝑥 is maximal
with respect to ≤. According to axiom (1), the elements of𝑋𝑋
that belong to𝐷𝐷𝐷𝐷𝐷𝐷 are minimal with respect to ≤, therefore
the irreducible elements are the incomparable elements. Let
us denote by Irr(𝑋𝑋𝑋 their totality. A decomposition 𝐷𝐷𝐷𝐷𝐷𝐷
is said to be �nite when for every 𝑥𝑥 𝑥𝑥𝑥 , there exists
𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓   Irr(𝑋𝑋𝑋⊕ ⊆ 𝑋𝑋⊕ such that 𝑥𝑥 𝑥𝑥𝑥  (we say
that 𝑥𝑥 fully decomposed into 𝑓𝑓); in particular 𝑋𝑋 𝑋𝑋𝑋𝑋 𝑋𝑋𝑋.
A decomposition 𝐷𝐷𝐷𝐷𝐷𝐷 is said to be re�nable if 𝑓𝑓 𝑓 𝑓𝑓 and
𝑓𝑓 𝑓 𝑓 imply that there is 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘  such that 𝑔𝑔𝑔𝑔𝑔 
and ℎ≤  𝑘𝑘. By the second axiom, an element 𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓
cannot be decomposed into any other element of𝐷𝐷𝐷𝐷𝐷𝐷 if and
only if, it is an element of the free commutative semigroup
Irr(𝑋𝑋𝑋⊕ generated by the irreducible elements, that is, a �nite
linear combination of irreducible elements (with nonnegative
integer coefficients). Hence, when𝐷𝐷𝐷𝐷𝐷𝐷 is re�nable, for each
𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   , there is at most one way to decompose 𝑥𝑥
into irreducibles (that is to fully decompose 𝑥𝑥). In terms of
rewriting systems, it is known as the property of con�uence.
Finally, if 𝐷𝐷𝐷𝐷𝐷𝐷 is both re�nable and �nite, then any 𝑥𝑥 𝑥𝑥𝑥
as a unique decomposition into irreducibles. is is precisely
the property of convergence of a (Noetherian and con�uent)
rewriting system. Let 𝐺𝐺 be any Abelian group, and 𝐷𝐷𝐷𝐷𝐷𝐷 be
any decomposition of 𝑋𝑋. A mapping 𝑓𝑓 𝑓𝑓𝑓  𝑓 𝑓𝑓 is said
to be an invariant when for every 𝑥𝑥 𝑥𝑥 𝑘𝑘

𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖𝑥𝑥𝑖𝑖 in 𝐷𝐷𝐷𝐷𝐷𝐷, we
have 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑘𝑘

𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑖𝑖). We are now in position to state
Brylawski’s main result (to compare toeorem 16).

eorem 18 (see [3]). Let 𝐷𝐷𝐷𝐷𝐷𝐷 be a �nite and re�nable
decomposition of 𝑋𝑋. ere exist an Abelian group 𝐴𝐴 and an
invariant mapping 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡    such that for every Abelian
group and every invariant mapping 𝑓𝑓 𝑓𝑓𝑓  𝑓 𝑓𝑓, there exists
a unique group homomorphism ℎ ∶ 𝐴𝐴 𝐴𝐴𝐴  such that the
following diagram commutes:

(A.1)

Moreover, 𝐴𝐴 is freely generated by Irr(𝑋𝑋𝑋.
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