569 research outputs found

    First order convergence of matroids

    Get PDF
    The model theory based notion of the first order convergence unifies the notions of the left-convergence for dense structures and the Benjamini-Schramm convergence for sparse structures. It is known that every first order convergent sequence of graphs with bounded tree-depth can be represented by an analytic limit object called a limit modeling. We establish the matroid counterpart of this result: every first order convergent sequence of matroids with bounded branch-depth representable over a fixed finite field has a limit modeling, i.e., there exists an infinite matroid with the elements forming a probability space that has asymptotically the same first order properties. We show that neither of the bounded branch-depth assumption nor the representability assumption can be removed.Comment: Accepted to the European Journal of Combinatoric

    An obstacle to a decomposition theorem for near-regular matroids

    Get PDF
    Seymour's Decomposition Theorem for regular matroids states that any matroid representable over both GF(2) and GF(3) can be obtained from matroids that are graphic, cographic, or isomorphic to R10 by 1-, 2-, and 3-sums. It is hoped that similar characterizations hold for other classes of matroids, notably for the class of near-regular matroids. Suppose that all near-regular matroids can be obtained from matroids that belong to a few basic classes through k-sums. Also suppose that these basic classes are such that, whenever a class contains all graphic matroids, it does not contain all cographic matroids. We show that in that case 3-sums will not suffice.Comment: 11 pages, 1 figur

    Fork-decompositions of matroids

    Get PDF
    For the abstract of this paper, please see the PDF file

    Branch-depth: Generalizing tree-depth of graphs

    Get PDF
    We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E)G = (V,E) and a subset AA of EE we let λG(A)\lambda_G (A) be the number of vertices incident with an edge in AA and an edge in EAE \setminus A. For a subset XX of VV, let ρG(X)\rho_G(X) be the rank of the adjacency matrix between XX and VXV \setminus X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG\lambda_G has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG\rho_G has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by the restriction.Comment: 34 pages, 2 figure

    The matroid secretary problem for minor-closed classes and random matroids

    Full text link
    We prove that for every proper minor-closed class MM of matroids representable over a prime field, there exists a constant-competitive matroid secretary algorithm for the matroids in MM. This result relies on the extremely powerful matroid minor structure theory being developed by Geelen, Gerards and Whittle. We also note that for asymptotically almost all matroids, the matroid secretary algorithm that selects a random basis, ignoring weights, is (2+o(1))(2+o(1))-competitive. In fact, assuming the conjecture that almost all matroids are paving, there is a (1+o(1))(1+o(1))-competitive algorithm for almost all matroids.Comment: 15 pages, 0 figure

    Branch-depth: Generalizing tree-depth of graphs

    Full text link
    We present a concept called the branch-depth of a connectivity function, that generalizes the tree-depth of graphs. Then we prove two theorems showing that this concept aligns closely with the notions of tree-depth and shrub-depth of graphs as follows. For a graph G=(V,E)G = (V,E) and a subset AA of EE we let λG(A)\lambda_G (A) be the number of vertices incident with an edge in AA and an edge in EAE \setminus A. For a subset XX of VV, let ρG(X)\rho_G(X) be the rank of the adjacency matrix between XX and VXV \setminus X over the binary field. We prove that a class of graphs has bounded tree-depth if and only if the corresponding class of functions λG\lambda_G has bounded branch-depth and similarly a class of graphs has bounded shrub-depth if and only if the corresponding class of functions ρG\rho_G has bounded branch-depth, which we call the rank-depth of graphs. Furthermore we investigate various potential generalizations of tree-depth to matroids and prove that matroids representable over a fixed finite field having no large circuits are well-quasi-ordered by the restriction.Comment: 36 pages, 2 figures. Final versio

    On matroids of branch-width three

    Get PDF
    For the abstract of this paper, please see the PDF file
    corecore