526 research outputs found

    Decomposing tournaments into paths

    Get PDF
    We consider a generalisation of Kelly's conjecture which is due to Alspach, Mason, and Pullman from 1976. Kelly's conjecture states that every regular tournament has an edge decomposition into Hamilton cycles, and this was proved by Kühn and Osthus for large tournaments. The conjecture of Alspach, Mason, and Pullman asks for the minimum number of paths needed in a path decomposition of a general tournament T . There is a natural lower bound for this number in terms of the degree sequence of T and it is conjectured that this bound is correct for tournaments of even order. Almost all cases of the conjecture are open and we prove many of them

    Decomposing tournaments into paths

    Get PDF
    In this work we consider a generalisation of Kelly's conjecture which is due Alspach, Mason, and Pullman from 1976. Kelly's conjecture states that every regular tournament has an edge decomposition into Hamilton cycles, and this was proved by Kühn and Osthus for large tournaments. The conjecture of Alspach, Mason, and Pullman concerns general tournaments and asks for the minimum number of paths needed in an edge decomposition of each tournament into paths. There is a natural lower bound for this number in terms of the degree sequence of the tournament and they conjecture this bound is correct for tournaments of even order. Almost all cases of the conjecture are open and we prove many of them

    Hamilton decompositions of regular tournaments

    Full text link
    We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each \eta>0 every regular tournament G of sufficiently large order n contains at least (1/2-\eta)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournaments.Comment: 38 pages, 2 figures. Added section sketching how we can extend our main result. To appear in the Proceedings of the LM

    Arc-Disjoint Paths and Trees in 2-Regular Digraphs

    Full text link
    An out-(in-)branching B_s^+ (B_s^-) rooted at s in a digraph D is a connected spanning subdigraph of D in which every vertex x != s has precisely one arc entering (leaving) it and s has no arcs entering (leaving) it. We settle the complexity of the following two problems: 1) Given a 2-regular digraph DD, decide if it contains two arc-disjoint branchings B^+_u, B^-_v. 2) Given a 2-regular digraph D, decide if it contains an out-branching B^+_u such that D remains connected after removing the arcs of B^+_u. Both problems are NP-complete for general digraphs. We prove that the first problem remains NP-complete for 2-regular digraphs, whereas the second problem turns out to be polynomial when we do not prescribe the root in advance. We also prove that, for 2-regular digraphs, the latter problem is in fact equivalent to deciding if DD contains two arc-disjoint out-branchings. We generalize this result to k-regular digraphs where we want to find a number of pairwise arc-disjoint spanning trees and out-branchings such that there are k in total, again without prescribing any roots.Comment: 9 pages, 7 figure
    • …
    corecore