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ABSTRACT. A multipath in a directed graph is a disjoint union of paths. The multipath complex of a directed graph G is
the simplicial complex whose faces are the multipaths of G. We compute Euler characteristics, and associated generating
functions, of the multipath complexes of directed graphs from certain families, including transitive tournaments and complete
bipartite graphs. We show that if G is a linear graph, polygon, small grid or transitive tournament, then the homotopy type
of the multipath complex of G is always contractible or a wedge of spheres. We introduce a new technique for decomposing
directed graphs into dynamical regions, which allows us to simplify the homotopy computations.

1. INTRODUCTION

Simplicial complexes associated to monotone properties of (directed) graphs are central objects in both combi-
natorics and topology (cf. [Jon08]), with interesting and deep connections with other areas of mathematics – see,
e.g. [Vas93, Wac03, PS18]. Particularly relevant examples of simplicial complexes arising from monotone properties
are the well-known matching complex and its relatives, the independence complex and the flag complex (also known
as clique complex). In this work, we focus on multipath complexes, which are also related (albeit differently from in-
dependence and flag complexes) to matching complexes [CCC22, Section 4]. The simplices of the multipath complex
are called multipaths [TW12], and are disjoint unions of directed paths. Multipath complexes appeared in [VŽ09] –
denoted therein by Ω(G) – and were studied for G = Kn, the complete directed graph, in virtue of their relation to sym-
metric homology of algebras [AF07, Aul10]. A first step in a systematic investigation of topological and combinatorial
properties of multipath complexes was taken in [CCDT23], and was motivated by homological questions [CCDT]. In
this paper, we continue the study of the combinatorial and topological properties of multipath complexes of directed
graphs. More precisely, we provide both qualitative and quantitative information about their homotopy type.

One of the main results in [CCDT23] asserts that the homology of multipath complexes can be fairly rich; namely,
it can be supported in arbitrarily high degree, and can be of arbitrarily high rank. A rough measure of this complexity
is the (reduced) Euler characteristic. We compute Euler characteristics, and generating functions, of the multipath
complexes of directed graphs from certain infinite families, such as transitive tournaments and complete bipartite
graphs – this is developed in Section 3. It is worth noting that, the Euler characteristic of the multipath complex of
a transitive tournament can be expressed in terms of the Stirling numbers of the second kind, and that the associated
generating function is doubly exponential. This is qualitatively different from the generating function of the Euler
characteristics of matching complexes of complete graphs – cf. [Jon08, Table 10.2] – which is exponential. Instead,
the Euler characteristic of the multipath complex of a complete bipartite graph with alternating orientation is the Euler
characteristic of the chessboard complex – previously investigated in [BLVv94].

In the second part of this work we focus on the explicit description of the homotopy type of multipath complexes.
The general question about what kind of simplicial complexes can be realised as multipath complexes remains open.
Here we employ topological tools and use combinatorial techniques to identify the homotopy type of the multipath
complex of a directed graph G, when G is a linear graph, polygon, small grid, or transitive tournament. We prove that if
a directed graph is from one these families, then the multipath complex of said graph is either contractible or a wedge
of spheres. To simplify the computation of the homotopy type of a multipath complex we introduce a decomposition
of a directed graph into dynamical regions (cf. Definition 4.2). Intuitively, dynamical regions are determined by the
behaviour of flows in the directed graph; when moving from a vertex of this region, while following the orientation, one
either stays in the region or goes out without coming back. Minimal dynamical regions are called dynamical modules.
We prove the following;

Theorem 1.1. Let G be a directed graph. Then, there is a unique (up to re-ordering) decomposition of G into dynamical
modules M1, ..., Mk, and we have a homotopy equivalence

X(G) ≃ X(M1) ∗ · · · ∗X(Mk) ,

where X(−) denotes the multipath complex. Furthermore, the above decomposition can be found algorithmically.
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The decomposition into dynamical modules, for certain families of directed graphs, might be trivial, such as for
transitive tournaments. In such cases the computation of the homotopy type of the associated multipath complex
needs different methods. Borrowing techniques from combinatorial topology, we show that the multipath complex of a
transitive tournament on n ≥ 3 vertices is homotopy equivalent to a wedge of spheres (Theorem 5.1). This result is in
sharp contrast to what happens with the homotopy type of the matching complex for complete graphs; the latter is not
known in general, but it is known that its homology has torsion in specific degrees – see, e.g. [SW04, Jon09, Jon10].
For stable dynamical regions (cf. Definition 4.2), multipath complexes and matching complexes are isomorphic (see
Lemma 4.8), hence also the multipath complex can have torsion – see [CCC22, Proposition 4.5]. We conjecture that,
for a dynamical module M, if the multipath complex X(M) has torsion, then M is stable.

The computations of the Euler characteristics presented in this work use the custom package PATH_POSET, publicly
available at [Smi22]. To compute homology this package was combined with SageMath [Sag22].
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2. BASIC NOTIONS

In this section we recall some basic notions needed throughout. A (finite) undirected graph G is a pair of (finite)
sets (V,E) consisting of a set V of vertices, and a set E of edges given by unordered pairs of distinct vertices of G.
All graphs are assumed to be simple, that is, do not contain loops or multiedges. We also consider directed graphs, or
digraphs, a (finite) digraph G is a pair of (finite) sets (V (G), E(G)), such that E(G) is a set of ordered pairs of distinct
vertices. Given an edge e = (v, w) of E(G) we call the vertex v the source of e, denoted s(e), while the vertex w is the
target of e, denoted t(e). An orientation on an undirected graph is the choice of a source and of a target for each edge.
An undirected graph G can be turned into a directed graph by orienting each edge of G in both directions; vice versa,
given a directed graph, we can consider the underlying simple undirected graph obtained by forgetting the directions
of the edges, and merging any multiedges.

A subgraph H of a (directed) graph G is a (directed) graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G); if H is a
subgraph of G, we write H ≤ G. If H ≤ G and H ̸= G we say that H is a proper subgraph of G, and we write H < G.
We say that H is an induced subgraph of a (directed) graph G if for any pair of vertices v, w in H, if e is an edge in G

between v and w, then e is also an edge of H. Furthermore, if H ≤ G and V (H) = V (G) we say that H is a spanning
subgraph of G. Two edges in an undirected graph G are called adjacent if they share a common vertex.

A simple path in a digraph G is a sequence of edges e1, ..., en of G such that s(ei+1) = t(ei) for i = 1, . . . , n−1, and
no vertex is encountered twice, i.e. if s(ei) = s(ej) or t(ei) = t(ej), then i = j, and is not a cycle, i.e. s(e1) ̸= t(en)
– cf. Figure 1.

We are interested in disjoint sets of simple paths; following [TW12], we call them multipaths:

Definition 2.1. A multipath of a digraph G is a spanning subgraph such that each connected component is either a
vertex or a simple path. The length of a multipath is the number of its edges.

The set of multipaths of G has a natural partially ordered structure: the path poset of G is the poset (P (G), <), that is,
the set of multipaths of G (including the multipath with no edges) ordered by the relation of “being a subgraph”. Note
that the underlying set of P (G) is given by all disjoint unions of simple paths – as opposed to all connected paths, as
in [FH22, Section 3.1]. To the path poset we can associate a simplicial complex, which we call the multipath complex
– cf. [CCDT23, Definition 6.4]:

Definition 2.2. For a digraph G, the multipath complex X(G) is the simplicial complex whose face poset (augmented
to include the empty simplex ∅) is the path poset P (G).

Since being a multipath is a monotone property of digraphs (for a description of monotone properties, see [BW99],
and the references therein), it follows that X(G) is a well-defined simplicial complex. The following is straightforward:

Example 2.3 ([CCDT23, Example 6.12]). Consider the coherently oriented linear graph In – see Figure 1 for an
example of I3. The path poset (P (In), <) is isomorphic to the Boolean lattice B(n). Thence, the associated multipath
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FIGURE 1. The coherently oriented linear graph I3 (top left), the multipath complex X(I3) (top
right), and the path poset P (I3) (bottom).

complex is an (n − 1)-dimensional simplex. Consider the coherently oriented polygonal graph Pn with n edges,
obtained from In by identifying the vertices v0 and vn. Then, the path poset (P (Pn), <) is isomorphic to the Boolean
lattice B(n) minus its maximum, and the corresponding multipath complex is a (n− 2)-dimensional sphere.

Another class of directed graphs which is important to us is the dandelion graphs:

Definition 2.4. Let Dn,m be the digraph on (n+m+ 1) vertices and (m+ n) edges defined as follows:
(1) V (Dn,m) = {v0, w1, . . . , wn, x1, . . . , xm};
(2) E(Dn,m) = {(wi, v0), (v0, xj) | i = 1, . . . , n; j = 1, . . . ,m}.

The digraph Dn,m is called a dandelion graph – cf. Figure 2. A dandelion graph of the form Dn,0 (resp. D0,m) is called
a sink graph (resp. source graph).

v0

w1

w2

w3

x1

x2

(w1, v0)

(v0, x1)

(w2, v0) (w3, v0)

(v0, x2)

FIGURE 2. The dandelion graph D3,2 (top left), its multipath complex X(D3,2) (top right), and its
path poset P (D3,2) (bottom).
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Example 2.5. The multipath complex X(Dn,m) of the dandelion graph Dn,m is homotopy equivalent to the wedge
of (n − 1)(m − 1) copies of the 1-dimensional sphere if n,m > 1 – see Figure 2 and [CCDT23, Example 6.13]. If
either n or m is 1, then X(Dn,m) is contractible – cf. [CCDT23, Proposition 4.18]. Finally, if either n or m is zero, and
m + n > 1 (i.e. if we have a source graph or a sink graph), then it is not difficult to check that X(Dn,m) is homotopy
equivalent to the wedge of n+m− 1 copies of the 0-dimensional sphere.

The order complex ∆(P ) of a poset P is the simplicial complex whose faces are the chains of the poset. It is known
that the order complex of the face poset of a complex S is the barycentric subdivision of S. So the order complex of
the path poset P̄ (G) = P (G) \ {K̄n} (where K̄n is the graph with n vertices and no edges) is the barycentric subdivision
of the multipath complex X(G), as such, the order complex of P̄ (G) and the multipath complex X(G) are homotopy
equivalent. The reduced Euler characteristic χ̃ of the order complex of a poset is equal to the Möbius function of the
poset, which is recursively defined as µP (u, u) = 1 and

µP (u, v) = −
∑

u≤w<v

µ(u,w) .

More precisely, χ̃(∆(P )) = µ(P ) := µL(P )(0̂, 1̂), where L(P ) is obtained from P by attaching a minimal element 0̂
and a maximal element 1̂. Therefore, if we consider 0̂ = K̄n, then

(1) χ̃(X(G)) = χ̃(∆(P̄ (G))) = µ̄(P (G)) := −
∑

p∈P (G)

µ(K̄n, p).

So, we can compute the reduced Euler characteristic of the multipath complex directly from the path poset. Note that
throughout we refer to the reduced Euler characteristic simply as the Euler characteristic, and see [Wac07] for further
background on order complexes and the Möbius function.

Remark 2.6. Denote by ∗ the join operation of simplicial complexes. Then, for directed graphs G and H, we have a
homotopy equivalence

X(G ⊔ H) ≃ X(G) ∗X(H) ,

where ⊔ denotes the disjoint union of digraphs.

We conclude this section with a relation between multipath complexes and matching complexes for certain families
of digraphs. The latter is the simplicial complex whose simplices are collections of disjoint edges in an unoriented
graph. We first need the notion of alternating orientations. Given an orientation o on an undirected graph G, we denote
by Go the corresponding digraph.

Definition 2.7. An orientation o on G is called alternating if there exists a partition V ⊔ W of V (Go) such that all
elements of V have indegree 0 and all elements of W have outdegree 0.

Note that the existence of an alternating orientation implies that G is a bipartite graph (that is there exists a function
f : V (G) → {0, 1} that assumes distinct values on vertices which share an edge in G).

As mentioned above, alternating orientations can be used to create a bridge between multipath complexes of di-
graphs and the matching complexes of the underlying undirected graphs. We recall that a matching on a graph G is a
collection of edges without common vertices. The matching complex M(G) is the simplical complex whose simplices
are matchings on G – see also [SW04].

Proposition 2.8 ([CCC22, Theorem 4.1]). Let G be a graph and o an orientation on G. Then, we have an isomorphism
of simplicial complexes

M(G) ∼= X(Go)

if and only if o is alternating.

A consequence of the proposition is that multipath complexes may have torsion – cf. [CCC22, Proposition 4.5].

3. EULER CHARACTERISTICS OF MULTIPATH COMPLEXES, AND GENERATING FUNCTIONS

The purpose of this section is to provide some examples and explicit computations of the Euler characteristics of
the multipath complexes of digraphs from certain families. We provide both explicit closed formulae and expressions
for exponential generating functions.
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3.1. Euler Characteristics of Complete Graphs and Transitive Tournaments. We begin by considering different
orientations of the complete graph, and show that the Euler characteristics of the multipath complexes of these graphs is
closely linked to the number of set partitions, and their variations. First we introduce a lemma that is useful throughout.

Recall that the Möbius function µ̄(P (G)) is equal to the Euler characteristic χ̃(X(G)) – cf. Equation 1. For notational
ease let µ(p) := µP (G)(K̄n, p) when G is clear.

Lemma 3.1. Let G be a digraph on n vertices. For every g ∈ P (G) we have µ(g) = (−1)n−k(g), where k(g) is the
number of components of the multipath g.

Proof. Let m be the number of edges in g, then m = n− k(g). This can be seen by induction since if k(g) = n then
the graph has no edges, and adding an edge is equivalent to connecting two components in a multipath.

The interval [K̄n, g] in P (G) is isomorphic to the Boolean lattice B(m) since every multipath contained in g is
equivalent to a subset of the edges of g. It is known that µB(m)(min,max) = (−1)m (e.g. [Wac07, Example 1.1.1]),
so we have:

µ(g) = µB(m)(min,max) = (−1)m = (−1)n−k(g).

□

We start by computing the Euler characteristic of X(Kn). These complexes were studied before, and are known to
be highly connected, with a bound on connectivity which depends on n – cf. [VŽ09, Theorem 10].

Theorem 3.2. Let Kn be the complete digraph on n vertices, that is, with a bidirectional edge between every pair of
vertices. Then

(2) χ̃(X(Kn)) =

n∑
k=1

(−1)n−k−1

(
n− 1

k − 1

)
n!

k!
,

which has the exponential generating function e
x

x−1 .

Proof. Let Πo
n,k be the set of all partitions of [n] = {1, . . . , n} into k nonempty ordered sets, and let Πo

n be all partitions
of [n] into any number of nonempty ordered sets. Define a function f : P (Kn) → Πo

n, where f(g) is the partition in
which each part is the set of vertices of a connected component of g, and the order on each part is the transitive closure
of the relation x < y if (x, y) ∈ E(g). It is clear that f is a bijection; its inverse is given by converting every part of a
partition into a simple path, which makes a valid multipath as all simple paths are possible in Kn.

By Lemma 3.1 we know that µ(g) = (−1)n−k for all f(g) ∈ Πo
n,k and it is known that |Πo

n,k| =
(
n−1
k−1

)
n!
k! – these

are the Lah numbers, see [PP07] or OEIS sequence A105278 [OEI22]. So we get

χ̃(X(Kn)) = µ̄(P (Kn)) = −
n∑

k=1

(−1)n−k|Πo
n,k| =

n∑
k=1

(−1)n−k−1

(
n− 1

k − 1

)
n!

k!
.

If we replace (−1)n−k−1 with (−1)k−1 in Equation 2 we get OEIS Sequence A066668, which has exponential
generating function e

x
x+1 . Since this corresponds to the sequence (−1)nχ̃(Kn), we obtain the desired exponential

generating function. □

We believe that the multipath complex of the complete graph Kn has the largest Euler characteristic of any graph
with n vertices. As such we make the following conjecture, which has been verified computationally for n < 8
using [Smi22].

Conjecture 3.3. Let G be any digraph on n vertices, then |χ̃(X(Kn))| ≥ |χ̃(X(G))|.
The transitive tournament on n vertices is the unique (up to isomorphism) orientation of the complete undirected

graph with no directed cycles. This is equivalent to taking the complete undirected graph and orientating all edges
from smaller vertex index to larger. We now show that the Euler characteristic of the multipath complex of a transitive
tournament is given by a variation of the complementary Bell numbers, that is, the alternating sum of the Stirling
numbers.

Theorem 3.4. Let Tn be the transitive tournament on n vertices. Then

(3) χ̃(X(Tn)) =

n∑
k=1

(−1)n−k−1S(n, k) ,

where S(n, k) are the Stirling numbers of the second kind and sequence given by Equation (3) has the exponential
generating function −e1−e−x

.
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Proof. Let Πn,k be all partitions of [n] into k parts and let Πn be all partitions of [n]. Proceeding as in the previous
proof, define a function f : P (Tn) → Πn, where f(g) is the partition where each part of f(g) is the vertices in a simple
path of g. It is clear that f is a bijection as the inverse is given by converting every part of a partition into a simple path,
and in a transitive tournament there is a unique way to make a simple path from a set of vertices.

By Lemma 3.1 we know that µ(g) = (−1)n−k for all f(g) ∈ Πn,k. Therefore,

χ̃(X(Tn)) = µ̄(P (Kn)) = −
n∑

k=1

(−1)n−k|Πn,k| =
n∑

k=1

(−1)n−k−1S(n, k)

since the number of partitions is exactly the Stirling numbers of the second kind.
The complementary Bell numbers, sequence A000587 in the OEIS [OEI22], are defined as the alternating sum (in k)

of the Stirling numbers S(n, k). The exponential generating function of the complementary Bell numbers is known to
be e1−ex . However, we have (−1)n−k−1 instead of (−1)k so we must negate the even terms in the sequence obtaining
the exponential generating function −e1−e−x

. □

Next we consider what happens if we reverse a single edge of the transitive tournament, in particular the edge (1, n).

Theorem 3.5. Let Rn be the graph obtained from the transitive tournament Tn by reversing the orientation of the
edge (1, n). For n ≥ 3 we get:

(4) χ̃(X(Rn)) =

n−2∑
k=1

(−1)n−k−1kS(n− 2, k) ,

where S(n, k) are the Stirling numbers of the second kind, and (1−e−x)e1−e−x

is the exponential generating function
for the sequence an = χ̃(X(Rn+2)).

Proof. Partition the elements of P (Rn) into three parts A, B and C, where

(1) A is the set of all multipaths which contain the edge (n, 1);
(2) B is the set of multipaths which do not contain the edge (n, 1), but (n, 1) can be added to make a multipath;
(3) C is the set of multipaths which do not contain the edge (n, 1), and (n, 1) cannot be added to make a multipath.

Define a function ϕ : A → B where ϕ(x) is the multipath obtained by removing the edge (n, 1) from x, for all x ∈ A.
Then ϕ has a clear inverse, which is to add in the edge (n, 1), so this is a bijection. Moreover, by Lemma 3.1 we get
that µ(ϕ(x)) = −µ(x). Therefore

∑
x∈A µ(x) +

∑
x∈B µ(x) = 0 so

µ̄(P (Rn)) = −
∑

x∈P (Rn)

µ(x) = −

(∑
x∈A

µ(x) +
∑
x∈B

µ(x) +
∑
x∈C

µ(x)

)
= −

∑
x∈C

µ(x) .

Now consider the elements of C. If adding the edge (n, 1) is forbidden it must either make a cycle or cause a vertex
to have in or out degree greater than 1. It is not possible for n to have out-degree greater than 1, since in Rn there is
only one outgoing edge from n, which is (n, 1), similarly 1 cannot have in-degree greater than 1. So every element of
c ∈ C must forbid (n, 1) because adding it would make a cycle, which means c must contain a path from 1 to n.

Therefore, every multipath of C can be constructed by taking a multipath g on [2, n−1] := {2, . . . , n−1}, selecting
one of the simple paths of g, connecting 1 to the start of the simple path, and connecting the end of the simple path to n.
Note that graph induced on Rn by vertices [2, n− 1] is a transitive tournament, and by the proof of Theorem 3.4 there
are S(n− 2, k) multipaths on [2, n− 1] with k components. From each of these we can construct k elements of C, so
we get kS(n−2, k) multipaths in C with k components, and by Lemma 3.1 each such element x has µ(c) = (−1)n−k,
so we get

χ̃(X(Rn)) = µ̄(P (Rn)) = −
∑
x∈C

µ(x) = −
n−2∑
k=1

(−1)n−kkS(n− 2, k).

The OEIS sequence A101851 [OEI22] is given by an =
∑n

k=1(−1)n−kkS(n, k) and has exponential generating
function (e−x − 1)e1−e−x

. Considering the sequence −an, instead of an, gives the required function. □
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3.2. Generating function of bipartite digraphs. Consider the complete bipartite digraph Kn,m, that is the digraph
with vertices v1, . . . , vn, w1, . . . , wm, and edges {(vi, wj)}i,j . We concisely write χ̃n,m for χ̃(X(Kn,m)). Let F(x, y)
be the mixed generating function for χ̃n,m defined by the formula

F(x, y) =
∑

n,m≥0

χ̃n,m
yn xm

m!
;

we show that F(x, y) admits a simple expression in terms of elementary functions. The techniques employed here, as
well as more general approaches, are extensively described in [Wil06]. We will need the following:

Remark 3.6. Let ai and bi be two sequences of integers, and consider their generating functions A(t) =
∑

i≥0 ait
i

and B(z) =
∑

i≥0 bi
zi

i! . Then, the term of degree m in the series A(t)B(z) is
∑m

i=0
ai bm−i

(m−i)! t
izm−i.

Now we are ready to prove the following theorem. Note that Equation (5) already appeared in [BLVv94, Section 2].

Theorem 3.7. The Euler characteristic of X(Kn,m) is given by the closed formula

(5) χ̃n,m =
∑
k=0

(−1)k+1

(
m

k

)(
n

k

)
k! , ∀n,m > 0 ,

satisfies the recurrence relation

(6) χ̃n,m = χ̃n−1,m −mχ̃n−1,m−1 ,

and the mixed generating function for χ̃n,m is

F(x, y) =
ex

1− y + xy
.

Proof. We begin with the closed formula. Every multipath of length k in P (Kn,m) is a matching of some elements of
v1, . . . , vn to some elements of w1, . . . , wm. So every multipath m of length k can be constructed by first choosing
which elements of w1, . . . , wm are matched to something, giving

(
m
k

)
choices, and then choosing which elements of

v1, . . . , vn they are matched to, giving n!
(n−k)! choices. And by Lemma 3.1 we know that µ(m) = (−1)k. Combining

the above, summing over k and negating gives the closed formula for the Möbius function µ̄(P (Kn,m)), and thus χ̃n,m.
Next we give a recurrence relation for χ̃n,m. Partition P (Kn,m) into parts P0, . . . , Pm, where P0 contains all

multipaths that do not have an edge with source v1, and Pj contains all multipaths which contain the edge (v1, wj), for
all j > 0. By the definition of the Möbius function, and since we have a partition, we know that

(7) µ̄(P (Kn,m)) = −
∑

i=0,...,m

∑
p∈Pi

µ(p) .

Since v0 is an isolated vertex in all multipaths of P0, we get that P0 is isomorphic to the poset P (Kn−1,m). Moreover,
each of the Pj’s is isomorphic to P (Kn−1,m−1), where the isomorphism fj is the map which removes the vertices v1
and wj , and the edge (v1, wj). So

(8) −
∑
p∈P0

µ(p) = µ̄(P (Kn−1,m)) and −
∑
p∈Pj

µ(p) = −µ̄(P (Kn−1,m−1)) ,

where the negation of µ̄(P (Kn−1,m−1)) is caused by fj removing an edge hence µ(p) = −µ(fj(p)). Combining (7)
and (8), and replacing µ̄ with the Euler characteristic gives the recurrence relation (6).

Finally, we compute the generating function. Consider the generating function for the Euler characteristic for a fixed
m, that is the function

Fm(y) :=
∑
j≥0

χ̃j,myj .

It follows from the definitions that χ̃0,m = χ̃n,0 = 1, and thus F0(y) =
1

1−y . By multiplying the recurrence relation
in Equation (6) by yn−1, summing up over n > 0, and rearranging the terms, one obtains that (1 − y)Fm(y) =
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−my Fm−1(y) + 1. Consequently, it follows:

Fm(y) =
−my

(1− y)
Fm−1(y) +

1

1− y
=

= (−1)m
m! ym

(1− y)m
F0(y) +

m−1∑
i=0

m!

(m− i)!

(−1)i yi

(1− y)i+1
=

=

m∑
i=0

m!

(m− i)!

(−1)i yi

(1− y)i+1
.

We can now find an explicit formula for the exponential generating function of the Fm(y), which means:

F(x, y) =
∑
m≥0

Fm(y)
xm

m!
=

1

(1− y)

∑
m≥0

[
m∑
i=0

1

(m− i)!

(−1)i yi

(1− y)i

]
xm .

By virtue of Remark 3.6, taking bi = ai = 1, and setting t = −xy
(1−y) , and z = x, one obtains

ex

1− −xy
(1−y)

= A(t)t= −xy
(1−y)

B(z)z=x =
∑
m≥0

[
m∑
i=0

1

(m− i)!

(−1)i yi

(1− y)i

]
xm ;

consequently, we get

F(x, y) =
1

(1− y)

∑
m≥0

[
m∑
i=0

1

(m− i)!

(−1)i yi

(1− y)i

]
xm =

ex

1− y + xy
,

which provides the desired formula. □

Note that the generating function F(x, y) is a mixed generating function for the Euler characteristic, ordinary with
respect to n and exponential with respect to m. This implies that the symmetric role of n and m is not reflected
on F(x, y). We remark that reversing the orientation of all edges does not change the path poset, hence we have the
equality χ̃n,m = χ̃m,n. As a consequence, the generating function Fm(y) coincides with the generating function

Gn(x) =
∑
i≥0

χ̃n,ix
i ,

obtained by considering bipartite complete graphs with a fixed number of sources. The generating function F(x, y) is
in fact a (mixed) generating function of the Euler characteristic of the chessboard complex, i.e. the matching complex
of (the underlying unoriented graph of) Kn,m.

Remark 3.8. The number of multipaths of Kn,m is given by OEIS sequence A088699 [OEI22], and has generating
function

F ′(x, y) =
ex

1− y − xy
.

Note the difference in sign for xy with respect to the statement of Theorem 3.7.

4. DYNAMICAL REGIONS AND COMPUTATIONS

In this section we introduce a decomposition of directed graphs into subgraphs called dynamical regions. We use
minimal decompositions into dynamical regions to simplify the digraph complexity, and thus compute the homotopy
type of the multipath complex. We provide the full computations for the families of linear graphs, polygons and small
grids.

4.1. Dynamical regions and modules. Let G be a digraph, and let G′ ≤ G be a subgraph. We will use the following
terminology. The complement CG(G

′) of G′ in G is the subgraph of G spanned by the edges in E(G) \ E(G′). The
boundary ∂GG

′ of G′ in G, or simply ∂G′ when clear from the context, is defined as ∂GG
′ = V (G′) ∩ V (CG(G

′)),
see Figure 4 for an example.

Definition 4.1. Let G be a connected digraph with at least one edge. A vertex v ∈ V (G) is called stable if either the
indegree or the outdegree of v is zero, and unstable otherwise.

A digraph G is connected if the CW-complex obtained by forgetting the directions of the edges is connected. The
following is the main definition of the section:
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Definition 4.2. Let G be a digraph. A dynamical region in G is a connected subgraph R ≤ G, with at least one edge,
such that:

(a) all vertices in the boundary of R are unstable in G, but stable in both R and CG(R);
(b) no edge of R belongs to any oriented cycle in G which is not contained in R.

A dynamical region is called stable if all its non-boundary vertices are stable. Similarly, A dynamical region is called
unstable if all its non-boundary vertices are unstable, and at least one vertex is unstable.

Remark 4.3. The non-empty intersection of two dynamical regions, say R and S, still satisfies (a) and (b). In particular,
each connected component of R ∩ S is still a dynamical region.

Observe that item (a) is equivalent to asking that, for each vertex v ∈ ∂R, all edges incident to v belonging E(G) \
E(R) have opposite orientation with respect to the edges in R incident to v. We will also say that the vertices in the
boundary are coherent dandelions.

Definition 4.4. A dynamical module, shortly a module, M of a digraph G is a minimal dynamical region.

For a digraph G, its associated cone is the digraph Cone(G) with vertices V (G) ∪ {v0} and edges E(G) ∪ {(v, v0) |
v ∈ V (G)}. Coning is a good way to produce modules which are not stable dynamical regions – cf. Example 4.6 –
e.g. transitive tournaments.

Example 4.5. A dynamical region which is a dandelion subgraph is never a module, unless it is of type Dn,0 (or D0,n).
In general Dm,n splits as the union of two dynamical modules: one copy of Dm,0 and a copy of D0,n.

v0 v1 v2 v3 v4 v5 vn−1. . .
vn

FIGURE 3. The alternating graph An on n + 1 vertices. The edge between vn−1 and vn can be
oriented either way depending on the parity of n.

Example 4.6. An alternating graph An – cf. Figure 3 – is a module. More generally, a stable dynamical region is a
module (since each vertex has either outdegree or indegree 0).

Example 4.7. Consider the digraph G in Figure 4. The subgraph in blue is not a dynamical region of G, as it is not
connected; its leftmost connected component is a module, as it is connected, no edges are contained in any oriented
cycles of G and the 1-neighbourhoods of vertices in its boundaries are coherent dandelions. The rightmost connected
component instead is not a module, because its only edge is contained in a directed cycle of G.

FIGURE 4. A graph G, a subgraph H (in blue) and its complement (in red). The boundary of H in G is
represented in green.

The following is straightforward from the definitions:

Lemma 4.8. The multipath complex of a stable dynamical region R in G is the matching complex of the underlying
unoriented graph of R.

For a digraph G, a decomposition into dynamical regions allows us to decompose the multipath complex into smaller
complexes. In fact, we have the following result:

Proposition 4.9. If R ≤ G is a dynamical region, and we set S := CG(R), then we have the homotopy equivalence

X(G) ≃ X(R) ∗X(S)

between the associated multipath complexes.
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Proof. Observe that, if R ≤ G is a dynamical region, then the vertices in the boundary of R are coherent dandelions.
Let H be a multipath of G; then H ∩ R and H ∩ S are multipaths in R and S, respectively. Vice versa, if H and H′ are
multipaths of R and S, respectively, then H ∪ H′ is a multipath of G as no edges of R are contained in any oriented cycle
of G and the edges in the boundary compose. As a consequence, the path poset of G is isomorphic to the path poset of
the disjoint union of R and S.

The multipath complex of G can now be identified with the multipath complex of the disjoint union R ⊔ S. To
conclude, observe that the multipath complex of the disjoint union of two directed graphs is homotopic to the join of
the multipath complexes – compare [Koz08, Definition 2.16] and [CCDT23, Remark 3.2]. □

Lemma 4.10. For each edge e ∈ E(G) there exists a unique dynamical module of G containing e.

Proof. The statement follows from Remark 4.3; taking the intersection of all the dynamical regions in G containing
the edge e. This satisfies (a) and (b) in Definition 4.2, and it is connected. It is also unique by construction, which
concludes the proof. □

Observe that the construction of the (unique) dynamical module containing a subset S of edges of G can be per-
formed iteratively. In fact, this is achieved by repeatedly applying the following steps:

(1) for each edge e in S, add to S all the edges e′ of G with target t(e′) = t(e) or source s(e′) = s(e);
(2) for each edge e in S contained in a coherent cycle Γ of G, add to S all the edges e′′ with e′′ ∈ Γ.

As a corollary, we get:

Theorem 4.11. We have a unique (up to re-ordering) decomposition of G into dynamical modules M1, . . . , Mk, and

X(G) ≃ X(M1) ∗ · · · ∗X(Mk) .

Furthermore, this decomposition can be found algorithmically.

Proof. Fix an edge e of G. This is contained in a unique module Me, and X(G) ≃ X(Me)∗X(CG(Me)) by Proposition 4.9.
Now, we can proceed iteratively, by considering CG(Me) en lieu of G. This provides the desired decomposition, and
since this decomposition is given by the unique modules containing each edge in G, uniqueness follows. □

In particular, we have that if one of the modules in the decomposition of G has a contractible multipath complex,
then X(G) is contractible (and hence has trivial reduced cohomology).

4.2. Multipath complexes of polygonal graphs. In this section we apply Theorem 4.11 to compute the homotopy
type of multipath complexes of linear and polygonal graphs; here, by polygonal graph, we mean any oriented (i.e. no
bi-directional edges) graph whose underlying undirected graph is a cycle. We first need a definition.

Definition 4.12. The size of a dynamical region is the number of its non-boundary vertices.

Lemma 4.13. Let P be a polygonal graph with at least one stable vertex. If P has an unstable region of size at least
two, then X(P) is contractible.

Proof. The presence of an unstable region S with at least two non-boundary vertices implies, since P is not coherently
oriented, that we can take as a module any edge between two non-boundary vertices in S. This implies that X(P) is
homotopy equivalent to a cone, hence contractible. □

Proposition 4.14. Let P be a polygonal graph with n vertices. If P has no unstable vertices, then n is even and

X(P) ≃


Sk−1 ∨ Sk−1 if n = 3k ,

Sk−1 if n = 3k + 1 ,

Sk if n = 3k + 2 .

In particular, the associated multipath complex is always homotopy equivalent to a wedge of spheres.

Proof. If there are no unstable vertices, then the orientation on P is alternating, which implies that the number of
vertices is even. Therefore, the multipath complex coincides with the matching complex, see Lemma 4.8. The result
then follows from [Koz99, Proposition 5.2] which shows that the matching complex of the cycle with n vertices is
either a sphere or the wedge of two spheres, whose dimension depends only on the number of vertices modulo 3. □

By the previous results, we might assume that the considered polygonal graph P has unstable regions of size at most
one, and at least one unstable region. The unstable vertices can be used to split P into modules which are alternating
linear graphs – cf. Figure 5. More precisely, we have the following result:
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v0

v1

v2

v3

v4

v5

v6

vn
ene0

e1

e2

e3 e4

e5

··
·

FIGURE 5. A polygonal graph on n edges with (at least) two vertices that are neither sources nor
sinks (in blue). The dashed line shows the separation between the two modules.

Proposition 4.15. Let P be a polygonal graph with at least one stable vertex, and no unstable regions of size greater
than one. Denote by ℓ1, ..., ℓk the size of the stable regions, then

X(P) ≃ X(Aℓ1+2) ∗ · · · ∗X(Aℓk+2) ,

where An is the alternating linear graph illustrated in Figure 3. In particular, X(P) is contractible if ℓi = 3s− 1, for
some i and some integer s, and otherwise

X(P) ≃ S⌈
ℓ1−1

3 ⌉ ∗ · · · ∗ S
⌈

ℓk−1

3

⌉
.

Proof. The unstable vertices are the boundary of certain modules. These modules, which correspond to stable regions,
are alternating linear graphs with as many vertices as the size of the corresponding stable region, plus two (given by
the unstable vertices bounding the region). By Lemma 4.8 and [Koz99, Proposition 4.6], the multipath complex of an
alternating graph Ar with r + 1 vertices is contractible if and only if r = 3s + 1, while it is homotopy equivalent to
S⌈(r−1)/3⌉ otherwise. The statement follows. □

We conclude by observing that the same reasoning used to determine X(P) works almost verbatim for linear graphs.
In particular, one can obtain a precise description of the homotopy type of X(L) for each linear graph L, which can be
used to recover [CCDT23, Theorem 1.1].

4.3. Multipath complexes of small grids. The aim of this subsection is to compute the homotopy type of multipath
complexes of small grids of type L × Im, where L is a linear graph and Im a coherent linear graph. By [CCDT,
Example 4.20], the multipath cohomology groups of coherent linear graphs are trivial. We compute here the homotopy
type of X(In × Im).

Proposition 4.16. Let n,m be non-negative integers, then

X(In × Im) ≃


∗ if n,m ̸= 1

Sn if m = 1

Sm if n = 1

.

Proof. The case n or m equal to 0 is covered in [CCDT, Example 4.20]. Assume that m = 1, the case n = 1 being
analogous. The decomposition into dynamical modules of In × I1 is shown in Figure 6.

. . .

. . .

FIGURE 6. Decomposition into dynamical modules of In × I1.

The simplicial complex X(In × I1) is then homotopy equivalent, by virtue of Theorem 4.11, to an iterated join:

X(In × I1) ∼= X(A2 ⊔ A3 ⊔ · · · ⊔ A3 ⊔ A2) ≃ X(A2)
∗2 ∗X(A3)

∗(n−1) .
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. . .

. . .

. . .

. . .

FIGURE 7. Part of the decomposition of In × Im into modules; in blue an A2 component, in red an
A4 component.

As X(A2) ≃ X(A3), and their geometric realisation is the 0-dimensional sphere, we get X(In × I1) ≃ Sn.
Assume now both n,m ≥ 2. Then, up to reversing all the orientations, we get the graph illustrated in Figure 7.

In particular, in the decomposition into dynamical modules, there is a module which is isomorphic to A4; hence,
X(In × Im) is homotopy equivalent to X(A4) ∗ Y , where Y = X(C(A4)) – see Proposition 4.9. As the multipath
complex X(A4) is contractible, we get that also X(In × Im) is contractible, concluding the proof. □

Remark 4.17. By Proposition 4.16, although the homotopy type of In is trivial, products of type In × I1 yield topo-
logical spheres. This implies that we cannot expect a Künneth-type formula for multipath cohomology.

Now, we consider another simple, yet interesting case: An × Im. First we recall that a tree is an undirected graph in
which every two vertices are connected by exactly one path. A caterpillar graph Gn(m1, . . . ,mn) is a tree consisting
of a path on n vertices v1, . . . , vn, such that every vertex vi is connected to exactly mi vertices not on the path.
Furthermore, all vertices not on the paths are leaves. An example of caterpillar graphs is given in Figure 8. Note that
the homotopy type of matching complexes of caterpillar graphs have been determined in [MJMV22, Theorem 5.13].

v2 v3 vn−2 vn−1 vnv1

. . .

m3

. . .

mn−2

. . .

FIGURE 8. A caterpillar graph Gn(0, 1,m3, . . . ,mn−2, 1, 0) = Gn−2(2,m3, . . . ,mn−2, 2).

We need the homotopy types of matching complexes of some specific types of caterpillar graphs; namely, caterpillar
graphs of type G2n+1(0, 1, 0 . . . ) with a single leg at each vertex in even position, and Gn(1, 0, 1, . . . ). For k ≥ 1, let
Lk(a1, . . . , ak) denote the sum

Lk(a1, . . . , ak) =

k∑
i=1

ai +
∑

l=2,...,k,
1≤i1<i2<···<il≤k

(i2 − i1)(i3 − i2) · · · (il − il−1)ai1ai2 · · · ail .

The homotopy types of matching complexes of caterpillar graphs is then given as follows:

Theorem 4.18 ([MJMV22, Theorem 5.16]). Consider the caterpillar graph G2k−1(m1, 0,m2, 0, . . . ,mk−1, 0,mk)
for k ∈ N, mi > 0. Then, the homotopy type of the associated matching complex is given by

M(G2k−1(m1, 0,m2, 0, . . . ,mk−1, 0,mk)) ≃
∨

Lk(a1,...,ak)

Sk−1 ,

where ai = mi − 1 for i = 1, . . . , k.

A straightforward application of Theorem 4.18 is the following computation:

Lemma 4.19. Consider the caterpillar graph Gs(1, 0, 1, . . . ) on s ≥ 2 central vertices, endowed with the alternating
orientation as illustrated in Figure 9 (blue part). Then, the homotopy type of the multipath complex is given by

X(Gs(1, 0, 1, . . . )) ≃

{
S

s
2−1 s even,

∗ otherwise
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and it is either contractible or a sphere.

Proof. When s is even, the caterpillar graph Gs(1, 0, 1, . . . ) can be seen as the caterpillar graph Gs−1(1, 0, 1, . . . , 1, 0, 2)
on s− 1 central vertices. The m1, . . . ,mk appearing in the statement of Theorem 4.18 are, in this case, all equal to 1.
When s is odd, the sequence (a1, . . . , as) is just the sequence (0, . . . , 0). When s is even we have that (a1, . . . , as−1)
is the sequence (0, . . . , 0, 1). Therefore, for s odd L(0, . . . , 0) = 0, whereas for s even L(0, . . . , 0, 1) = 1. The
statement now follows from Theorem 4.18. □

The computation of the homotopy types of matching complexes of caterpillar graphs is usually complicated; when
the strings have a predictable pattern of zeros, computations might be carried out by looking at the Lk polynomials. For
example, we have the following computation, needed later, whose proof cannot be directly derived from Theorem 4.18;

Lemma 4.20. Assume t1 = 1, ti = 0 for each i such that k > i > 1, and tk ∈ {0, 1}. Then,

Lk(t1, ..., tk) =

{
k + 1 tk = 1

1 tk = 0
,

for all k > 3.

Proof. The statement follows, using the relation [MJMV22, Equation (1)], by induction. □

Set S1 := G2(2, 0) = G1(3) and let Sn := G2n−1(2, 0, 1, 0, . . . , 0, 1, 0, 2) be the caterpillar graph with a single leg
at each internal vertex in odd position, endowed with an alternating orientation (i.e. all vertices are either sources or
sinks). Let Cn be the caterpillar graph Gn+1(2, 0, 1, 0, 1, ...) where 0 and 1 alternate along the sequence, endowed with
an alternating orientation; note that we have Sn = C2n−1.

Lemma 4.21. We have the following homotopy equivalence

X(Cn) ≃ M(Gn+1(2, 0, 1, 0, 1, ...)) ≃

{
Sk−1 n = 2k − 2∨k+1

Sk−1 n = 2k − 1
,

where M(G) denotes the matching complex. In particular, X(Cn) is a wedge of spheres.

Proof. The alternating orientation on Cn implies that Cn is a stable dynamical region; hence, by Lemma 4.8, we
have the homotopy equivalence X(Cn) ≃ M(Gn+1(2, 0, 1, 0, 1, ...)) with the matching complex. Then, the statement
follows directly from Theorem 4.18 and Lemma 4.20. □

We can now compute the homotopy type of the multipath complex of grids An × Im.

Proposition 4.22. Let n,m be positive integers, then

X(An × Im) ≃ M(Gn+1(1, ..., 1))
∗(m−1) ∗X(An × I1) .

In particular, X(An × Im) is contractible if n is even, and a sphere of dimension (m− 1)n+1
2 + n when n is odd.

Proof. The product An×Im has a decomposition into dynamical modules featuring m−1 copies of caterpillar graphs of
type Gn+1(1, · · · , 1), and two copies of caterpillar graphs of type Gn+1(1, 0, 1, . . . ), all with alternating orientations –
see also Figure 9. By Lemma 4.8 and Theorem 4.11, X(An×Im) decomposes as M(Gn+1(1, ..., 1))

m−1∗X(An×I1).
By [MJMV22, Corollary 5.12], M(Gn+1(1, ..., 1)) is contractible when n is even, and a sphere otherwise, hence
M(Gn+1(1, ..., 1))

∗(m−1) is contractible when n is even, and a sphere otherwise.
Observe that X(An × I1) is homotopic to M(Gn(1, 0, 1, . . . , 2)) ∗M(Gn(1, 0, 1, . . . , 2)) when n is odd, and homo-

topic to M(Gn+1(1, 0, 1, . . . , 1)) ∗M(Sn
2
) when n is even. By Lemma 4.19, M(Gn+1(1, 0, 1, . . . , 1)) is contractible,

and M(Gn(1, 0, 1, . . . , 2)) ∗ M(Gn(1, 0, 1, . . . , 2)) is a sphere of dimension 2n−1
2 + 1 = n, hence X(An × I1) is

contractible when n is even, and a sphere when n is odd. □

We proceed with the computation of the (homotopy type of the) multipath complexes of general small grids of
type L × I1, for a linear digraph L. We may assume L ̸= In, An, since we already analysed these cases. Assume first
that L decomposes into an unstable dynamical region of positive size, followed by another linear graph L′. In other
words, we have a coherent linear graph In (n − 1 being the size of the unstable dynamical region) followed by an
alternating linear graph Am, and so on – see also Figure 10.
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. . .

. . .

. . .

FIGURE 9. Part of the decomposition of An × I2 into dynamical modules.

FIGURE 10. Linear graph consisting of a graph I3 followed by A2.

Proposition 4.23. Consider the graph L on n + m − 1 vertices given by a coherent linear graph In followed by an
alternating graph Am. Then, the homotopy type of X(L× I1) depends on the parity of m as follows:

X(L× I1) ≃

{∨q(m)
Sn+m+3 m even,∨m+3

2 q(m+1)
Sn+m+3 m odd,

where q(m) = 2
m+2

2 .

Proof. By Theorem 4.11, we can decompose L × I1 into modules: one copy of A2, (n − 2) copies of A3, and two
caterpillar graphs C1 and C2, oriented as illustrated in Figure 10. Hence, the homotopy type of X(L× I1) is given by:

X(L× I1) ≃ X(A2) ∗X(A3)
∗(n−2) ∗X(C1) ∗X(C2) ,

where C1 = Gm+3(1, 0, 0, 1, 0, ...), while C2 = Gm+1(2, 0, 1, 0, 1, ...). (Note that for m = 0, X(C1) = X(A3) and
X(C2) = X(A2), which is coherent with our computations for In × I1.) While the precise homotopy type of the
matching complexes of the caterpillar graphs Gm+3(1, 0, 0, 1, 0, ...) and Gm+1(2, 0, 1, 0, 1, ...) depend on the parity
of m, in any case they are wedges of spheres. By [MJMV22, Theorem 5.13], we have

X(C1) ≃ M(Gm+3(1, 0, 0, 1, 0, ...)) ≃
s(m)∨

S

⌈
m+3
2

⌉
,

where s(m) = 2

⌊
m+3
2

⌋
. Directly from Lemma 4.21 we have

X(C2) ≃ M(Gm+1(2, 0, 1, 0, 1, ...)) ≃

{
Sk−1 m = 2k − 2,∨k+1

Sk−1 m = 2k − 1.

The statement now follows from the properties of joins and wedges of spheres. □

More generally, given any oriented linear graph L, one can decompose it into joins of multipath complexes of
caterpillar graphs endowed with alternating orientations. The next proposition follows;

Proposition 4.24. If L is a linear graph, then L× I1 decomposes into dynamical modules that are caterpillar graphs
(with alternating orientations).

Proof. We proceed by induction on the number of edges n. If Ln is a linear graph on n edges, the statement holds
true for L0, and it is easy to prove for L1 = I1. We now analyse what happens to the grid Ln × I1 when adding an
(oriented) edge, obtaining Ln+1 × I1. Up to reversing the orientation of all edges in our grid, we can restrict to two
different cases, as illustrated in Figures 11 and 12.

. . .

. . .

FIGURE 11. First Case: An edge is glued to Ln in a coherent way.
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The blue edges and the green edges in both figures belong to different dynamical modules of Ln × I1; these are
both, by the inductive hypothesis, caterpillar graphs with an alternating orientation. In the case illustrated in Figure 11,
the module decomposition of Ln+1 × I1 is obtained as follows; one module is obtained by adding the red edge to
the module of Ln × I1 featuring the blue edges (yielding a caterpillar graph with an alternating orientation), all the
other modules of Ln × I1 remain unaffected, and, in addition to those, there is a further caterpillar graph of type A2 (in
brown) appearing in the decomposition.

. . .

. . .

FIGURE 12. Second Case: An edge is glued to Ln in a non-coherent way.

Similarly, in the second case (see Figure 12), the dark green edges are added to the module of Ln×I1 in light green,
and the isolated red edge is added to the blue module of Ln × I1; the other modules of Ln × I1 remain unaffected,
concluding the proof. □

Corollary 4.25. If L is a linear graph, then X(L× I1) is either contractible or a wedge of spheres.

Proof. Since the homotopy type of the multipath complex of a caterpillar graph with an alternating orientation is a
wedge of spheres, the result follows from Proposition 4.24. □

We remark that, reasoning as in the proof of Proposition 4.24, it is possible to compute iteratively the number and
dimension of spheres appearing in X(L× I1).

5. MULTIPATH COMPLEXES OF TRANSITIVE TOURNAMENTS

The techniques developed in the previous section are ineffective in the case of alternating digraphs or transitive
tournaments. Transitive tournaments, in fact, are dynamical modules themselves, and do not admit a smaller decom-
position. Nonetheless, using techniques borrowed from combinatorial topology, we can yet compute their homotopy
types. In this section we show that if T is a transitive tournament then X(T) has the homotopy type of a wedge of
spheres or is contractible.

Recall that Tn denotes the transitive tournament on n + 1 vertices, i.e. the directed graph on vertices 0, . . . , n with
directed edges (i, j) for all i<j; denote by X(Tn) its associated multipath complex. The main result of the section is
the following:

Theorem 5.1. The multipath complex X(Tn) of the transitive tournament Tn is either contractible, or homotopy
equivalent to a wedge of spheres.

Remark 5.2. The matching complex of the complete graph on 7 vertices has 3-torsion [Bou92] (compare with [SW04,
Theorem 1.3 and Remark 1.4]). By Theorem 5.1, the multipath complex of a transitive tournament is contractible or
a wedge of spheres. On the other hand, the matching complex can be seen as a subcomplex of the multipath complex
– see also [CCC22, Section 4]. This means that, in the case of transitive tournaments, the cells added to the matching
complex to obtain the multipath complex kill the torsion.

The proof of Theorem 5.1 will heavily rely on the following lemma:

Lemma 5.3 ([Bjo95, Lemma 10.4(ii)]). Suppose that X is a simplicial complex which can be written as the union of
subcomplexes X0, . . . , Xn such that:

(a) Xi is contractible for each i = 0, . . . , n, and
(b) Xi ∩Xj ⊆ X0 for all i, j ∈ {1, .., n}.

Then, we have a homotopy equivalence

X ≃
n∨

i=1

Σ(X0 ∩Xi) ,

where Σ(X0 ∩Xi) denotes the topological suspension of (X0 ∩Xi).



16 LUIGI CAPUTI, CARLO COLLARI, SABINO DI TRANI, AND JASON P. SMITH

We remark that, by convention, Σ∅ = S0, hence the suspension on the empty set is the 0-dimensional sphere.
For a digraph G, the digraph suspension Σ(G) is defined as the digraph with vertices V (G)∪{p, q}, with p, q /∈ V (G),

and edge set the edges of G along with edges (v, p) and (v, q), for all v in V (G). A straightforward application of
Lemma 5.3 allows us to compute the homotopy type of the digraph suspension in some cases.

Proposition 5.4. Let G be a connected digraph with at least one vertex v of outdegree 0 and non-zero indegree. Then,
there is a homotopy equivalence

X(ΣG) ≃ ΣX(G)

between the multipath complex of the digraph suspension and the topological suspension of the multipath complex of G.

Proof. Let p, q be the added vertices of V (ΣG) \ V (G). Consider the decomposition of the simplicial complex X(ΣG)
given as follows; X0 is the subcomplex of X(G) spanned by all multipaths containing the edge (v, p), and X1 the
subcomplex of X(G) spanned by all multipaths containing the edge (v, q). Since the outdegree of v in G is zero, it is
clear that X0 ∪X1 = X(ΣG). Moreover, both X0 and X1 are contractible. The intersection X0 ∩X1 is the multipath
complex of G, hence X(ΣG) ≃ ΣX(G). □

Before proceeding with the proof of Theorem 5.1, we need to introduce some more notation.

Definition 5.5. Consider the transitive tournament Tn on vertices 0, . . . , n. For indices 0 ≤ i1 < · · · < ik ≤ n, denote
by T

(i1,...,ik)
n the subgraph of Tn obtained by removing all edges of type (ij , h) for j = 1, . . . , k and h ≥ ij . We call

such subgraphs incomplete tournaments.

Note that T(n)n = Tn. Further examples of incomplete tournaments can be found in Figures 13, 14 and 15. Figure 14
illustrates a decomposition of X(T

(3)
5 ) into subcomplexes.

0

3

2

1

4

5

FIGURE 13. The incomplete tournament T(3)5 .

Lemma 5.6. The multipath complex of each incomplete tournament of a transitive tournament on 2, 3, or 4 vertices is
empty, contractible or a wedge of spheres.
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0
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2

1

4

5

G3

FIGURE 14. Decomposition of G = T
(3)
5 .
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FIGURE 15. Small transitive tournaments and the corresponding incomplete tournaments

Proof. The assertion follows by direct computation; see Figure 15. The only nontrivial case is T
(2)
3 , which is the

digraph ΣT1. Now, by Proposition 5.4, it follows that X(T
(2)
3 ) is contractible, concluding the computation. □

The proof of Theorem 5.1 is now a straightforward application of the following lemma:

Lemma 5.7. If G is an incomplete tournament, then the multipath complex X(G) is empty, contractible, or a wedge
of spheres.

Proof. We proceed by induction, the cases n = 1, 2, 3 provided in Lemma 5.6.
Assume by induction that all incomplete tournaments in Th, for h ≤ n, are contractible or wedges of spheres.

Let G be an incomplete tournament in Tn+1, say G = T
i1,...,is
n+1 . Without loss of generality, we can assume that i1 <

· · · < is−1 < n+ 1; otherwise, G is an incomplete tournament in Tn ⊆ Tn+1, in which case covered by the inductive
assumption. Observe that we can also assume that i1, . . . , is−1 are not the full set 1, . . . , n; otherwise G would be a
sink graph, hence its associated multipath complex would be a wedge of 0-dimensional spheres.

The strategy is to decompose G into smaller pieces as by Lemma 5.3. Let {j0, . . . , jn−s} be the set {0, 1, . . . , n} \
{i1, . . . , is}, with j0 < · · · < jn−s. Set Xt to be the multipath complex associated to the subgraph Gt spanned
by all edges which appear in a multipath featuring (jn−s−t, n + 1) in G – see also Figure 14. Observe that the
simplicial complexes X0, ..., Xn−s cover X(G). Furthermore, all the simplicial complexes Xi are contractible; in fact,
the edge (jn−s−t, n + 1) is a module in Gi (hence, Xi is a cone). The intersection Xi ∩ Xj is contained in X0: all
multipaths which are both in Gi and Gj are multipaths in G which do not feature the vertex n + 1, and the vertex jn−s

has outdegree 0 in G (and there are no oriented cycles in Tn+1). Therefore, by Lemma 5.3, the homotopy type of X(G)
is given by wedges of suspensions of X0 ∩Xi. To conclude, we want to show that X0 ∩Xi is the multipath complex
of an incomplete transitive tournament in Tn. This would conclude the proof by an inductive argument.

The complex X0 ∩Xi is given by all multipaths in G not featuring edges of type (jn−s, p) and (jn−s−i, q), for all p
and q, nor edges with target n+ 1. Hence, all such multipaths can be seen as multipaths in TIn where I is a re-ordering
of the set {i1, ..., is, jn−s−i, jn−s}. Vice versa all multipaths in TIn appear as multipaths in X0 ∩ Xi. Therefore, the
complex X0 ∩Xi can be identified with the multipath complex of TIn, concluding the proof. □

Remark 5.8. Multipath complexes of transitive tournaments are generally not of the same dimension. In fact, compu-
tations show that T6 has non-trivial cohomology in degree 2 and 3, where H2(X(T6)) ≃ Z6 and H3(X(T6)) ≃ Z15.

Remark 5.9. It can be shown that X(Tn) is shellable, and thus a wedge of spheres. Using a recursive coatom ordering,
see [Wac07, Section 4.2], where the coatoms of the top element (i.e. the maximal elements) are ordered lexicographi-
cally by their edges, and all other orderings follow canonically, since for every other element the downset is a Boolean
lattice. It may be possible to use this approach to derive a formula for the homology classes of X(Tn). However, we
were unable to do so, and leave this as an open problem.
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If we consider the complete digraph Kn, where all edges are bidirectional, we no longer get wedges of spheres. In
fact for n = 3 the multipath complex X(Kn) is 2 disconnected 1-spheres.
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