65 research outputs found

    Decomposing Single Images for Layered Photo Retouching

    Get PDF
    Photographers routinely compose multiple manipulated photos of the same scene into a single image, producing a fidelity difficult to achieve using any individual photo. Alternately, 3D artists set up rendering systems to produce layered images to isolate individual aspects of the light transport, which are composed into the final result in post-production. Regrettably, these approaches either take considerable time and effort to capture, or remain limited to synthetic scenes. In this paper, we suggest a method to decompose a single image into multiple layers that approximates effects such as shadow, diffuse illumination, albedo, and specular shading. To this end, we extend the idea of intrinsic images along two axes: first, by complementing shading and reflectance with specularity and occlusion, and second, by introducing directional dependence. We do so by training a convolutional neural network (CNN) with synthetic data. Such decompositions can then be manipulated in any off-the-shelf image manipulation software and composited back. We demonstrate the effectiveness of our decomposition on synthetic (i. e., rendered) and real data (i. e., photographs), and use them for photo manipulations, which are otherwise impossible to perform based on single images. We provide comparisons with state-of-the-art methods and also evaluate the quality of our decompositions via a user study measuring the effectiveness of the resultant photo retouching setup. Supplementary material and code are available for research use at geometry.cs.ucl.ac.uk/projects/2017/layered-retouching

    Self-Supervised Intrinsic Image Decomposition

    Full text link
    Intrinsic decomposition from a single image is a highly challenging task, due to its inherent ambiguity and the scarcity of training data. In contrast to traditional fully supervised learning approaches, in this paper we propose learning intrinsic image decomposition by explaining the input image. Our model, the Rendered Intrinsics Network (RIN), joins together an image decomposition pipeline, which predicts reflectance, shape, and lighting conditions given a single image, with a recombination function, a learned shading model used to recompose the original input based off of intrinsic image predictions. Our network can then use unsupervised reconstruction error as an additional signal to improve its intermediate representations. This allows large-scale unlabeled data to be useful during training, and also enables transferring learned knowledge to images of unseen object categories, lighting conditions, and shapes. Extensive experiments demonstrate that our method performs well on both intrinsic image decomposition and knowledge transfer.Comment: NIPS 2017 camera-ready version, project page: http://rin.csail.mit.edu

    Joint Material and Illumination Estimation from Photo Sets in the Wild

    Get PDF
    Faithful manipulation of shape, material, and illumination in 2D Internet images would greatly benefit from a reliable factorization of appearance into material (i.e., diffuse and specular) and illumination (i.e., environment maps). On the one hand, current methods that produce very high fidelity results, typically require controlled settings, expensive devices, or significant manual effort. To the other hand, methods that are automatic and work on 'in the wild' Internet images, often extract only low-frequency lighting or diffuse materials. In this work, we propose to make use of a set of photographs in order to jointly estimate the non-diffuse materials and sharp lighting in an uncontrolled setting. Our key observation is that seeing multiple instances of the same material under different illumination (i.e., environment), and different materials under the same illumination provide valuable constraints that can be exploited to yield a high-quality solution (i.e., specular materials and environment illumination) for all the observed materials and environments. Similar constraints also arise when observing multiple materials in a single environment, or a single material across multiple environments. The core of this approach is an optimization procedure that uses two neural networks that are trained on synthetic images to predict good gradients in parametric space given observation of reflected light. We evaluate our method on a range of synthetic and real examples to generate high-quality estimates, qualitatively compare our results against state-of-the-art alternatives via a user study, and demonstrate photo-consistent image manipulation that is otherwise very challenging to achieve

    ALL-E: Aesthetics-guided Low-light Image Enhancement

    Full text link
    Evaluating the performance of low-light image enhancement (LLE) is highly subjective, thus making integrating human preferences into image enhancement a necessity. Existing methods fail to consider this and present a series of potentially valid heuristic criteria for training enhancement models. In this paper, we propose a new paradigm, i.e., aesthetics-guided low-light image enhancement (ALL-E), which introduces aesthetic preferences to LLE and motivates training in a reinforcement learning framework with an aesthetic reward. Each pixel, functioning as an agent, refines itself by recursive actions, i.e., its corresponding adjustment curve is estimated sequentially. Extensive experiments show that integrating aesthetic assessment improves both subjective experience and objective evaluation. Our results on various benchmarks demonstrate the superiority of ALL-E over state-of-the-art methods. Source code and models are in the project page

    A Dataset of Multi-Illumination Images in the Wild

    Full text link
    Collections of images under a single, uncontrolled illumination have enabled the rapid advancement of core computer vision tasks like classification, detection, and segmentation. But even with modern learning techniques, many inverse problems involving lighting and material understanding remain too severely ill-posed to be solved with single-illumination datasets. To fill this gap, we introduce a new multi-illumination dataset of more than 1000 real scenes, each captured under 25 lighting conditions. We demonstrate the richness of this dataset by training state-of-the-art models for three challenging applications: single-image illumination estimation, image relighting, and mixed-illuminant white balance.Comment: ICCV 201

    Real-time Global Illumination Decomposition of Videos

    Get PDF
    We propose the first approach for the decomposition of a monocular color video into direct and indirect illumination components in real time. We retrieve, in separate layers, the contribution made to the scene appearance by the scene reflectance, the light sources and the reflections from various coherent scene regions to one another. Existing techniques that invert global light transport require image capture under multiplexed controlled lighting, or only enable the decomposition of a single image at slow off-line frame rates. In contrast, our approach works for regular videos and produces temporally coherent decomposition layers at real-time frame rates. At the core of our approach are several sparsity priors that enable the estimation of the per-pixel direct and indirect illumination layers based on a small set of jointly estimated base reflectance colors. The resulting variational decomposition problem uses a new formulation based on sparse and dense sets of non-linear equations that we solve efficiently using a novel alternating data-parallel optimization strategy. We evaluate our approach qualitatively and quantitatively, and show improvements over the state of the art in this field, in both quality and runtime. In addition, we demonstrate various real-time appearance editing applications for videos with consistent illumination

    6th International Meeting on Retouching of Cultural Heritage, RECH6

    Full text link
    RECH Biennial Meeting is one of the largest educational and scientific events in Retouching field, an ideal venue for conservators and scientists to present their research results about retouching. The main focus will be to promote the exchange of ideas, concepts, terminology, methods, techniques and materials applied during the retouching process in different areas of conservation: mural painting, easel painting, sculpture, graphic documentation, architecture, plasterwork, photography, contemporary art, among others. This Meeting aims to address retouching by encouraging papers that contribute to a deeper understanding of this final task of the conservation and restoration intervention. The main theme embraces the concepts of retouching, the criteria and limits in the retouching process, the bad retouching impact on heritage and their technical and scientific developments.This Meeting will discuss real-life approaches on retouching, focusing on practical solutions and on sharing experiencesColomina Subiela, A.; Doménech García, B.; Bailão, A. (2023). 6th International Meeting on Retouching of Cultural Heritage, RECH6. Editorial Universitat Politècnica de València. https://doi.org/10.4995/RECH6.2021.1601
    corecore