1710.08313v2 [cs.GR] 13 Nov 2017

arXiv

Joint Material and Illumination Estimation
from Photo Sets in the Wild

Tuanfeng Y. Wang Tobias Ritschel ~ Niloy J. Mitra

University College London, UK

Material »&

c
o
F-]
©
9 £
: : U“
£ =
5
= Novel
£ both

Applications

Figure 1: We factor a set of images (left) showing objects with different materials (red, yellow, black, white plastic) under different illumination
into per-image illumination and per-object material (top right) that allows for novel-x applications such as changing view, illumination,
material, or mixed illumination/material (red chair in the left-bottom imaged environment) (bottom right).

Abstract

Faithful manipulation of shape, material, and illumination in 2D Internet images would greatly benefit from a reliable factorization
of appearance into material (i.e., diffuse and specular) and illumination (i.e., environment maps). On the one hand, current
methods that produce very high fidelity results, typically require controlled settings, expensive devices, or significant manual
effort. To the other hand, methods that are automatic and work on ‘in the wild’ Internet images, often extract only low-frequency
lighting or diffuse materials. In this work, we propose to make use of a set of photographs in order to jointly estimate the
non-diffuse materials and sharp lighting in an uncontrolled setting. Our key observation is that seeing multiple instances of
the same material under different illumination (i.e., environment), and different materials under the same illumination provide
valuable constraints that can be exploited to yield a high-quality solution (i.e., specular materials and environment illumination)
for all the observed materials and environments. Similar constraints also arise when observing multiple materials in a single
environment, or a single material across multiple environments. Technically, we enable this by a novel scalable formulation
using parametric mixture models that allows for simultaneous estimation of all materials and illumination directly from a set
of (uncontrolled) Internet images. The core of this approach is an optimization procedure that uses two neural networks that
are trained on synthetic images to predict good gradients in parametric space given observation of reflected light. We evaluate
our method on a range of synthetic and real examples to generate high-quality estimates, qualitatively compare our results
against state-of-the-art alternatives via a user study, and demonstrate photo-consistent image manipulation that is otherwise
very challenging to achieve.

1. Introduction object geometry and pose from ‘in the wild’ Internet images, esti-
mation of plausible material and illumination has remained elusive
Estimating realistic material (i.e., reflectance) and illumination along in uncontrolled settings and at a large scale.

with object geometry remains a holy grail of shape analysis. While
significant advances have been made in the recent years in predicting Successful material and illumination estimation, however, will
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Figure 2: Comparison to alternatives (projective texturing, average RGB of intrinsic images [BM15b]). We see that only a proper separation
into specular materials and natural illumination can predict appearance in novel views. Other approaches miss the highlight, even in the
original view (average of intrinsic), or does not move under view changes (projective texturing). Please refer to the accompanying video to

Jjudge the importance of moving highlights under view changes.

enable unprecedented quality of AR and VR applications like al-
lowing realistic ‘transfer’ of objects across multiple photographs,
or inserting high-quality replicas of virtual objects into Internet im-
ages. For example, in Figure 1, imagine transferring the red chair
from one image to another. Currently, this task is challenging as we
neither have access to the (red) chair’s material, nor the illumination
in the target scene.

The naive solution of simply copying and pasting a 2D cutout
is unsatisfactory as it easily leads to low fidelity results (e.g., unre-
alistic highlights), and more importantly, does not allow for pose
adjustments (see Figure 2) or relighting.

In this paper, we investigate the problem of material and illumi-
nation estimation directly from ‘in the wild’ Internet images. The
key challenge is that material and illumination are never observed
independently, but only as the result of the convolving reflection
operation with (estimated) normal direction and view direction (as-
suming access to rough geometry and pose estimates). Thus, in
absence of further assumptions, we cannot uniquely recover mate-
rial or illumination from single observations (i.e., images). Instead
we reply on linked observations. We observe that often Internet
images record the same objects in different environments (i.e., il-
luminations), or multiple objects in the same environments. Such
linked observations among all the materials and illuminations forms
a (sparse) observation matrix providing critical constraints among
the observed materials and illumination parameters. We demonstrate
that such a special structure can be utilized to robustly and accu-
rately estimate all the material and illumination parameters through
a global optimization.

We choose a formulation based on the basic rendering equation in
combination with available per-pixel geometry estimation. However,
there are multiple challenges: (i) access to only approximate proxy
geometry for the scene objects with rough pose estimates leads to
inaccurate normal estimates; (ii) partial observations due to view
bias (e.g., chair backs are photographed less often) and sparsely
observed normal directions (e.g., flat regions in man-made objects);
(iii) working with the rendering equation when updating material and
illumination parameters in an inverse problem setup is inefficient in a
standard physically-based rendering pipeline; and finally, (iv) access
to limited data due to sparsely observed joint material-illumination
pairs.

In order to overcome the above challenges, we propose a novel
formulation using parametric mixture models. We propose to ap-
proximate the reflection operator and its derivative with respect to
material and illumination in terms of Anisotropic Spherical Gaus-

sians (see [XSD*13]) that can be efficiently utilized to jointly opti-
mize for the materials and illumination at a large scale (i.e., involving
multiple materials and illuminations). This optimization is driven by
two neural networks that were trained on a large set of materials and
illuminations to predict the gradient the optimization will follow. For
example, in Figure 1, we observe 4 different colored (i.e., material)
chairs under 8 different illuminations (only 6 images shown in the
teaser figure) with linked observations. Only using these limited
observations, our algorithm extracts high-quality material and illu-
mination estimates, which can then be used for non-trivial image
manipulation.

We extensively evaluate our method on both synthetic and real
data, both quantitatively and qualitatively (using a user study).
We demonstrate that increasing the amount of linked material-
illumination observations improves the quality of both the material
and illumination estimates. This, in turn, enables novel image manip-
ulations previously considered to be very challenging. In summary,
our main contributions are: (i) proposing the problem of coupled
material and illumination estimation from a set of Internet images;
(i) formulating an efficient and scalable algorithm that allows high-
quality material and illumination estimation from a set of images;
(iii) using a neural network to approximate the complicated gra-
dient of reflected light with respect to material and illumination
parameters; and (iv) utilizing the estimations to enable realistic
photo-realistic image manipulations.

2. Related Work

Our goal is to perform an advanced intrinsic image decomposition
(as a factorization into materials and illumination) using an image
collection with application in photo-realistic image manipulation.
In the following, we review the related works.

Materials and illumination estimation from images. The classic
intrinsic image decomposition problem [BT78] is highly ambiguous
as many shapes, illuminations, and reflectances can explain one
observation made. When geometry and material for the objects in
an image are known, finding the illumination is a problem linear in
a set of basis images [MG97]. Reflectance maps [HB89] can also
be used to map surface orientation to appearance, allowing for a
limited range of applications, such as novel views [RNR*16]. In
absence of such information, alternatives regularize the problem
using statistics of each component such as texture [STLOS], or
exploit user annotations on Internet images [BBS14] to develop a
CRF-based decomposition approach, The latter method is widely
considered to be the state-of-the-art for uncontrolled observations.
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Haber et al. [HFB*09] used observations of a single known geom-
etry observed in a small set of images to estimate a linear combina-
tion of basis BRDFs and pixel-basis lighting. Aittala et al. [AWL15]
capture texture-like materials by fitting SVBRDF using texture
statistics to regularize a non-linear optimization on single image
capture. An alternate recent trend is to use machine learning to
solve inverse rendering problems. Deep learning of convolutional
neural networks CNNs (cf., [KSH12]) has been used to decompose
Lambertian shading [TSH12,BM15a], albedo in combination with
other factors [NMY15], intrinsics from rendered data [SDSY16],
decompose images into rendering layers [IRWM17], or multiple
materials under the same illumination [GRR*16].

A complementary but related problem is shape-from-shading,
where again many shapes can explain a given image [HB89]. Alter-
nately, illumination estimation has made use of shadows on diffuse
receivers with known geometry [GHHO1, SSI03,PSP09]. Another
option is to assume access to outdoor illumination following a para-
metric sky model [LENO9]. Approaches to jointly solve for shape,
reflectance and illumination in a single image or multiple materials
under the same illumination using optimization with priors were
suggested [ON15,LN16]. Our method, being applicable to direct
observation of specular materials under uncontrolled illumination,
is more general and works on a large variety of materials in many
illuminations.

Image-based rendering (see monograph [SCKO08]) can be used to
re-create view-dependent appearance when a sufficiently dense set
of images is provided. It then can produce novel views but fails to
transfer to novel shapes or novel illuminations.

Image and shape collections. Visual computing has made in-
creasing use of data, particularly image and/or shape collections
with the aim to exploit cross observations. Starting from illumi-
nation [Deb98] and its statistics [DLAWOI1], measurements of
BRDFs [MPBMO3], we have seen models of shape [OLGM11],
appearance [NNRS15], object pose estimate [AME*14], object tex-
ture [WSH™*16], object attributes [HOM15] made possible by dis-
covering correlation across observations in image and/or 3D model
collections. In the context of shape analysis, mutual constraints
of instances found across images or 3D scenes in the collection
have been used to propose room layouts [YYT*11], material assign-
ments [JTRS12], or scene color and texture assignments [CXY*15].
Instead, we directly estimate materials and illumination, rather than
solving an assignment problem.

Photo-realistic image manipulation. While the rendering equa-
tion [Kaj86] explains image formation to the largest part with ad-
vanced signal processing perspective for the forward theory of light
transport [RHO1], practical solutions are still lacking for the inverse
problem, i.e., estimating object materials and illumination directly
from (uncontrolled) photographs. Instead, specialized user inter-
faces can assist this process [OCDDO01], or multiple images of the
same (static) scene can be used to improve relighting and material
estimation [HFB*09]. Several manipulations of images are possible,
even without knowing the decomposition into shape, illumination
and material due to perceptual effects [KRFBO6].

In terms of state-of-the-art image manipulations, 3-
Sweep [CZS*13] propose a generalized cylinder-based interactive

tool to efficiently generate part-level models of man-made
objects along with inter-part relations, and use them to enable
a diverse variety of non-trivial object-level interactions; Khol-
gade et al. [KSES14] align stock 3D models with input images to
estimate illumination and appearance, and use them for impressive
object-level image manipulations; while Karsch et al. [KSH*14]
estimates a comprehensive 3D scene model from a single, low
dynamic range photograph and uses the information to insert virtual
objects into the scene.

3. Overview

Starting from a set of linked photographs (i.e., multiple objects
observed in different shared environments), our goal is to retrieve
object geometry with pose predictions and estimate per-object mate-
rials and per-environment illuminations. The estimated information
can then be used to faithfully re-synthesize original appearance
and more importantly, obtain plausible view-dependent appearance.
Figure 2 shows baseline comparisons to alternative approaches to
assign materials to photographed objects. We observe that even if the
geometry and light is known (we give all the approaches access to
our estimated environment maps, if required), the highlights would
either be missing (using intrinsic image [BM15b] for estimating av-
erage albedo), or not move faithfully (e.g., with projective texturing)
under view changes.

As input, we require a set of photographs of shared objects with
their respective masks (see Figure 3). In particular, we assume the
materials segmentation to be consistent across images. As output,
our algorithm produces a parametric mixture model (PMM) rep-
resentation of illumination (that can be converted into a common
environment map image) for each photograph and the reflectance
parameters for every segmented material. We proceed in three steps.

First, we estimate object geometry and pose, and convert all the
input images into an unstructured reflectance map for each occur-
rence of one material in one illumination in Section 4.1. Since we
work with very few images collected from the wild, our challenge is
that this information is very sparse, incomplete, and often contradict
each other.

Second, we solve for illumination for each image and reflectance
model parameters for each material in Section 4.4. This requires
combining a very large number of degrees of freedom, as fine di-
rectional lighting details as well as accurate material parameters
to be estimated. The challenge is that a direct optimization can
easily involve many variables non-linearly coupled and lead to a
cost function that is highly expensive even to evaluate as it in-
volves solving the forward rendering equation, e.g., [LN16]. For
example, representing images and illumination in the pixel basis
leads to an order of 10*-10% variables (e.g., 128 x 256 x number-of-
environment-maps). At the same time, evaluating the cost function
for every observation pixel would amount to gathering illumination
by iterating all pixels in the environment map, i.e., an inner loop over
all 128 x 256 environment map pixels inside an outer loop across
all the 640 x 480 x number-of-images-in-the-collection observations.
This quickly becomes computationally intractable.

Instead, we introduce a solution based on parametric mixture-
model (PMM) representation of illumination to inverse render-
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ing, which has been successfully applied to forward render-
ing [GKMDO06,WRG*09,WDR11,XSD* 13,VKS*14]. Our core con-
tribution is to take PMM a step further by introducing the parametric
mixture reflection operator and an approximation of its gradient,
allowing to solve the optimization in a scalable fashion involving
many materials and environments. The gradient approximation uses
a neural network to map from observed reflected light, light and
material parameters to changes of light and material parameters. It
is trained on a set of synthetic images rendered from many illumina-
tions and many materials.

Third, the estimated material and illumination information can
directly be used in standard renderers. The challenge in such appli-
cations is to capture view-dependent effects such as moving high-
lights. In Section 5.3, we show applications to manipulating images,
changing the illumination and/or material and/or view, transferring
materials to objects in other images, or inserting objects into new
illumination (see also supplementary materials).

4. Algorithm

‘We now explain our approach in details.

4.1. Acquiring Geometry and Reflectance Maps

We start from a set of images with the relevant materials segmented
consistently across the image collection. Designer websites (e.g.,
Houzz) and product catalogs (e.g., Ikea) regularly provide such links.
Here we assume that the links are explicitly available as input. First,
we establish a mapping between illumination material-pairs and
observed appearance.

DAS0MD
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Figure 3: RGB, normal, and segmentation of a typical input image.

Per-pixel labels. For the input images, we used per-pixel orienta-
tion (screen-space normals) (Figure 3) obtained using render-for-
CNN [SQLG15] trained on the ShapeNet to retrieve object geometry
and pose estimates. We found this to provide better quality normal
predictions than those obtained via per-pixel depth [EF15] and nor-
mal [WFG15] estimation.

Reflectance maps. The rendering equation [Kaj86] states that

Lo(X,0,00) = Le(x, @) +/ filx, o, @0) Li(x, @) < m,0; > d
N—— O e — e — — —
Emit BRDF Incom. Geometry

(€3]

where x is the position, n the surface normal at location x, ®, the
observer direction, L, is the observed radiance, L. is light emission,
L; is the incoming illumination, and f; the bi-directional reflectance
distribution function (BRDF) [Nic65].

We assume a simplified image formation model that allows for

using a slightly generalized variant of reflectance maps [HB89]:
(i) distant illumination, (ii) convex objects, i.e., no shadows or inter-
reflections, (iii) spatially invariant BRDFs, and (iv) no emission.
Note that we do not assume a distant viewer as typical reflectance
map does. This simplifies Eq. 1 to

Lo(a)o,n) = ./Qﬂ(wi,a)o)L,-(wi) <n, ®; >Jr d(l)i. (2)

A classic reflectance map is parameterized either by normal n or
by the observer direction @,. Instead of making such a split, we
take a less structured approach tailored to our problem: an unstruc-
tured reflectance map (URM) denoted by & that uses a list that
holds in each entry a tuple of (i) normal oy, (ii) half-angle vector
h, (iii) observed radiance oy (cf. Figure 4), and (iv) indices op,
and o; of the material and illumination, respectively. We denote
h as the half-angle vector for front (—z) and observer direction,
h:=(<2n,04p > n—o04h+(0,0,—1))/2. This parametrization will
provide a more convenient way to index information. An exam-
ple visualization of the URM by projecting the n as well as the h
coordinate using latitude-longitude is seen in Figure 4.

Chair 1 Chair 2 Chair 3 Chair 4

Figure 4: Schema and actual Unstructured Reflectance Maps of
the chairs in the first column of Figure 1. Each point is an observed
color for a specific surface orientation n and half-angle vector h.

To acquire the URM from an image with given per-pixel position
and orientation, we apply inverse gamma correction such that oy,
is in physically linear units. Note, that although we do not know
the absolute scale inside each photo, we do not need it for most
applications. Further, we do not differentiate between objects and
consider only their materials (i.e., an object with two material parts
are essentially treated as two materials).

4.2. Representation

INlumination. We use Parametric Mixture Models (PMMs) to rep-
resent illumination. PMMs have been used for pre-computed light
transport [GKMDO06, TS06, WRG*09], BTF compression [WDR11],
interactive rendering [Tok15], importance sampling [VKS*14], or
even in caustic design [PJJ*11]. A PMM encoded as

p
g(00):= Y p(0)®) = L(o) 3
=1
is a sum of np lobe functions p(®|®;) that depend on a parameter
vector ®; to approximate, in our setting, the incoming or outgoing
light function L(®). All parameter vectors ®; of one PMM are
combined in a parameter matrix ©. In our case, the domain of g is
the sphere Q parameterized using latitude-longitude representation
w=(0,9)€c0,2m)x[0,).
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Figure 5: The three main ideas to enable large-scale optimization: (a) approximating illumination as parametric mixture models and the
BRDF as a sum of a diffuse and a specular component; (b, c) expressing reflection as a sum of diffuse and specular reflections of individual
lobes; and (d) approximating derivative of diffuse and specular reflection of ISGs using corresponding neural nets.

As mode functions, we employ Isotropic Spherical Gaus-
sians (ISGs) [GKMDO06, TS06, VKS* 14]. An ISG lobe has the form

p(0|®) :=w-exp(—c(w— z)z)7

where w € R™ is the weight of the lobe, & is its variance and z
the mean direction. Consequently, a lobe is described by parameter
vector ® = (w, 0,z). To work with RGB values all weight compo-
nents w in this paper are vector-valued, but the variance parameter
o is scalar. For each image, we use an ISG PMMs with np = 32
components to represent unknown illuminations.

Material. We assume the material to be of the form

ﬂ(a)h wo‘P) = kdfd(wh (00) +ksfs(wia (1)0|r),

Diffuse

“

Specular

a parametric model that can be split into the weighted sum of a
diffuse and a specular component fy and f; with weights kq and
ks, repectively. We choose Lambertian as the diffuse model and
GGX [WMLTO07] that has a single roughness parameter r as the
specular model. The material parameters are therefore a tuple p =
(ka,ks,7) € R7 of RGB diffuse and specular reflectance and a scalar
roughness parameter. We denote the BRDF parameter vector of
material j as p(j). Note that we do not need to represent f; using a
PMM, which would introduce unnecessary approximation error.

4.3. Reflection

Using standard notation [ATS94] for light transport, we express
reflection as an operator R, mapping the function of incoming light
L; to a function of reflected outgoing light L, :

Lo@n) = R(Llp)(@n) = | Li@) filaulp)dar (5

Illumination BRDF

When using an ISG to represent the illumination, we suggest to use
a parametric reflection operator R(®|p) that maps from a single
illumination ISG lobe ® and a material p to a reflected light. As we
assume the BRDF to be a sum of a diffuse and a specular part, we
can similarly define D and S that are respectively the diffuse and the
specular-only reflection and R = D+ S. So, finally we have

|

Lo(ao) = ). D(O|p)+S(6p).
=1

(6)

4.4. Formulation

Our task is to find a set of illuminations and a set of materials that
explain the acquired observations (see the previous section). Next,
we describe how to represent reflectance and illumination as well
as introduce the parametric reflectance operator, its derivative with
respect to material and illumination, and an approximation method
for efficient joint optimization for material and illumination given
the observations (see Figure 5).

Cost function. Our main objective function quantifies how well a
set of materials and illuminations explain the input observation. It
should be fast to evaluate and allow for an effective computation of
its gradient with respect to illuminations and materials in order to
be useful in an optimization. We formulate the objective as:

2

np !
o= Y R(6/p)) (00)| +2p(®).

=1

c(©,pl0):=Y,

ocl

Data Prior

@)

The gradient of this function with respect to the illumination and
material comprises of evaluating R, which involves convolving an
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Figure 6: Evaluation of the neural network. The first row shows GT renderings with a GT envmap. The second row shows again GT rendering,
but using the GMM fit to the envmap. This is an upper bound on the NN quality, as it works on the GMM representation. The third row shows
the NN result. In the horizontal direction, specular results of increasing roughness are followed by the diffuse result in the rightmost column.
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The plots on the right below show the error distribution as a function of different parameters.

illumination lobe with the BRDF. This is both costly to compute
and we need to find its derivative. To this end, we will employ a
learning-based approach, as described next.

Neural network. The input to this neural network (NN) is the
parameters of a single illumination lobe, the material parameters,
and the observation direction @. We call this approximation R.
The output is an RGB value. We keep the NNs for the diffuse and
specular components to be separate and independently process the
RGB channels. The corresponding approximations using NNs are
denoted as D and S, respectively. The network architecture is shown
in Figure 7. The input to the network is a 12-dimensional vector
and differs between diffuse and specular NNs. Both consume the
parameters of a single illumination lobe (direction and variance).
However, the diffuse net consumes the normal while the specular
net consumes the half-angle. All layers are full convolutional with
288 units in each layer. The networks are trained from 200k samples
from renderings of spheres produced using Blender. An evaluation
of this architecture is found in Figure 6.

Normal 1
A
=z
P
Mlum #é
dir. + var. 5|2
=
—>§
Half angle §
12 12 288 288 288 288 1

Figure 7: Our diffuse (orange) and specular (blue) neural network
architecture, that consumes either normal and a single illumination
lobe, or half-angle (left) and a lobe to produce a color (right).

Prior. As reflectance is typically more chromatic than illumination
is, our prior penalizes the variance of the illumination lobe colors i.e.,
their RGB weights, as in p(©) = V(¢(©)) = E(¢(©)?) —E(¢q(©))?,
where ¢(©) = Yoco L;" Ow,i. In other words by, first computing
the average color of all lobes ¢(©) and second the variance V(¢(©))
of those three channels.

Optimization. Armed with a fast method (see above) to evaluate
the cost function, we employ LBFGS [CBLN97] in combination
with randomization. As the full vector & does not fit into memory,
we use a randomized subset that fits GPU memory in each iteration
and dynamically change the randomization set across iterations. We
stop our optimization when each observation on average has been
sampled 5 times.

4.5. Rendering

For rendering, the result of the optimization is simply converted
into an HDR environment map image by evaluating the estimated
PMM for each pixel. Such an environment map along with estimated
diffuse/specular parameters are then used with standard offline and
online rendering applications as shown in our results.

5. Results

In this section, we evaluate our approach on synthetic and real
image collection data (Section 5.1), compare to alternatives (Sec-
tion 5.2) and give examples of potential applications (Section 5.3).
We use L-BFGS solver for all the experiments. The complexity of
our optimization in terms of the number of variables is (7m + 6n,n)
and hence is linear in terms of the number of input entries in the
material X environment observation matrix. For example, for a five-
photo, five-material matrix dataset, it costs about 30 minutes using a
NVIDIA Titan X GPU. Pre-training the reflection operator R, both
diffuse and specular components, takes about three hours on the
same specification.
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Figure 8: Results on the INTERNET-LAPD dataset of four images of police cars with two materials. The first row shows the input images.
The second row the reflectance maps. The observed ones are marked with black circles. In this example, all are observed. When an RM is
not observed, it is re-synthesized. The third row shows our estimated illumination. Recall, that it is defined in camera space. The fourth row
contains a re-synthesis using our material and illumination. Please note, that such a re-synthesis is not possible using a trivial factorization as
all images have to share a common material that sufficiently explains the images. The last row shows a re-synthesis from a novel view, as well

as a rendering of the materials in a new (Uffizi) illumination.

5.1. Evaluation
5.1.1. Datasets

We evaluated our method using three types of data sets, each hold-
ing multiple image collections acquired in different ways. The full
resolution images and result images/video are included in the sup-
plementary material.

The first comprises of SYNTHETIC images rendered using Mit-
suba [Jak10] and a collection of HDR environment maps. Note
that here we have access to ground-truth per-pixel normals and
material labels. Here, we have rendered 3 objects in 3 different
scenes with both spheres and real-world shapes that allow synthetic
re-combination in an arbitrary fashion. This allows us to evaluate
the proposed approach under different input variants, validating its
scalability.

The second data set consists of real images collected from the IN-
TERNET. We have manually selected the images (using iconic object
name-based Google search) and masked the image content. This
dataset has three sets of photographs: the LAPD car (INTERNET-
LAPD), the Docksta table (INTERNET-DOCKSTA), and the Eames
DSW chair (INTERNET-EAMES). For geometry, we estimated used
coarse quality meshes available from ShapeNet. Images are good

for qualitative evaluation but do not allow to quantify the error,
especially in novel views.

The third dataset contains PHOTOS we have taken from designer
objects we choose under illumination conditions (in our labs and
offices). We have 3D-scanned these objects (using Kinect) to ac-
quire their (rough) geometry. The photos are taken in five different
environments and 7 materials are considered.

5.1.2. Qualitative evaluation

Visual quality. We show results of our approach in Figures 8, 9,
10, and 17. We evaluate the main objective of our approach, i.e.,
estimating illumination and reflectance from a photo collection. In
each figure, we show the input images, rendering of all objects’ ma-
terials from original view (with the background from input images)
and a novel view as well as visualizations of the material and illu-
mination alone. Input images are shown on the top with the outputs
we produce on the bottom (see supplementary for full images). Ob-
served reflectance maps are shown encircled in black. The objects
are rendered from an identical novel view, which is more challeng-
ing than rendering from the original view. The material is shown
by re-rendering it under a new illumination. The exposure between
all images is identical, indicating that the reflectance is directly in
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Figure 10: Results on INTERNET-EAMES dataset of six images of a celebrated Eames chair with four materials in the protocol of Figure 8.
The last row shows a pair of novel views, under input illumination where the first image has unobserved, the second an observed material.

the right order of magnitude and can transfer to new illuminations.
While the illumination alone does not appear natural, shadow and
shading from it produce plausible images, even of unknown materi-
als or new objects. Recall that large parts of the objects are not seen
in any of the input images and hence large parts of the environment
maps are only estimated from indirect observation. Recall that our
method does not use any data-driven prior to regularize the results.

The INTERNET-LAPD in Figure 8 shows a single object made
from multiple materials. Figure 9 shows many chairs in many pho-
tos with one common ‘linking’ object INTERNET-DOCKSTA: the
chair with material M, that is used to calibrate all the other ob-
jects, which are only observed sometimes. Figure 10 shows multiple
Eames chairs from a set of photos INTERNET-EAMES. All show

plausible highlights and colors, albeit only observing a fraction of
the combinations. Please see the supplemental video for an ani-
mation of the highlights under changing view or object rotations.
Figure 17 shows photos taken for this work, with all objects in all
illumination conditions. Note, that both vases are made of multiple
materials. The geometry of all objects in this part (except the chairs)
is very approximate and acquired by a depth sensor. Still a good
result quality is possible.

Prediction. Using the INTERNET-EAMES data sets, we are able to
test the predictive ability of our approach by leaving out one image
form the collection and compare it to the acquired ground truth. This
is seen in Figure 12, where starting from the first image, we predict
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Sphere
Normals

Ground truth

Figure 11: Here, we show the effect of Gauss-sphere coverage:
Even for non-round objects with flat areas that have a bad cover-
age of the Gauss sphere the reconstruction (left) is similar to the
reference (right).

the red chair in the second image and the yellow chair in the third
image.

Figure 12: Estimating materials and illumination using all chairs
except the rendered one. Left: reference image; Middle: the red
chair is rendered; Right: the yellow chair is rendered.

Progressive estimation. A key property of our approach is to con-
solidate information from multiple images to disambiguate material
and illumination. This characteristic implies that adding more im-
ages to the photo set should reduce the error. Figure 13 confirms the
rise in performance as more images are added to the linked set.

Input image

Figure 13: Progression of quality from left to right. Every row
shows, for a selected material what the additional images can add
to the quality in terms of re-rendering, material, and illumination.

5.1.3. Quantitative evaluation

We evaluate the effect of certain aspects of our method on the end-
result (Figure 14). The error is quantified as DSSIM [WBSS04]
structural image distance (smaller distance indicates better match)
between a reference image rendered with known illumination and
material compared to another rendering using our estimated material

and illumination. Images were gamma-corrected and linearly tone-
mapped before comparison.

0.1

Error

o
1x1 2x2 3x3 4x4 5x5 1x5 5x1  Loop Chain Star 1% 2% 3% 7%
Matrix size Structure Alignment

Figure 14: Effect of different input properties (horizontal) on the
quality of our approach in terms of the DSSIM error (vertical, less
is better): matrix size, structure, and alignment error.

Matrix size. In Figure 14a, we show the effect of increasing matrix
size on the error of predicting the entries for the SYNTHETIC data
set. Here, the matrix & is complete, i.e., all material-illumination
pairs are observed. We see, that with increasing size, the estimation
for all entries gets more correct while the task being solved in some
sense is also bigger (more different illuminations). Note that the
total error residue can go up, but the estimation gets more accurate
(compared to the ground truth).

When the matrix is reduced to a single row or column (Fig-
ure 14b) our approach can still estimate illumination and material.
For a 1 x 5 matrix, which estimates a single material form mul-
tiple illuminations, the approach does well; but slightly degrades
for a 5 x 1 setting, where multiple objects are seen under the same
illumination.

Label quality. We assume the input images to have per-pixel nor-
mal and material labels. In Figure 14d, we study the effect of incor-
rect normal estimates by adding a different label of uniform noise to
the normal. We see that good normal fair better with the error in the
order of one percent, while larger errors produce an error that satu-
rates still at a low total value. Also, note that for the INTERNET and
the PHOTOS datasets, the geometry models are coarse and/or noisy.
But in absence of ground truth, we could not measure estimation
error.

5.2. Comparison

‘We compare possible alternatives to our approach as shown in Fig-
ure 2 and supplementary material. A simple approach could be using
image-based rendering based approaches [SCKO08], however, these
approaches require either flat geometry or a high-enough number of
images to reproduce specular appearance, neither of which is avail-
able in our input images that show a single image of one condition
only. Effectively, IBR would amount to projective texturing in our
setting, that is compared to our approach in Figure 2a. An alterna-
tive could be to run a general intrinsic image approach [BM15b] on
the input images and use the average pixel color of the albedo ky
image as the diffuse albedo. The specular could then be the color
that remains. While this would provide a specular value kg, it is not
clear how to get a glossiness value g (see Figure 2b).
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a) Input Edit

Figure 15: Various photo-realistic image manipulations (e.g., object
insertion) made possible using our estimated material and environ-
ment parameters (see Section 5.3 for details).

5.3. Application

A typical application of our approach is photo-realistic manipula-
tion of objects in Internet images as shown in Figure 15. Having
estimated the material and illumination parameters from all the
images, we can insert virtual replica into the image (Figure 15b,
15d), transfer reflectance estimated from other Internet images to
new scenes (Figure 15a and Figure 15¢), or introduce new object
with material under the estimated illumination. Please note that the
estimated environment maps were used to render object shadows on
(manually added) ground planes (Figure 15a, 15¢, and 15d).

5.4. User Study

We have compared our approach to the similar approach (SIRFS)
that extract intrinsic images and lighting in a user study. When ask-
ing N = 250 subjects if one of five animated turn-table re-renderings
using our material information or the model of SIRFS is preferred
when showing both in a space-randomized 2AFC the mean prefer-
ence was 86.5 % in our favor (std. error of the mean is 2.1 %). The
chart of the user response, their mean, the exact sample counts and
standard errors for individual images are presented in Figure 16.

100%

80%

60%

40%

20%

Red Chair Yellow Chair Vase Total

Police Car

Figure 16: User study results. the vertical axis is the preference for
ours, so more is better. Kinks are standard error of the mean, where
small means certainty about the outcome.

5.5. Limitations

Our approach has three main limitations: First, we use a distant
light model, which results in estimation errors in large rooms with
interior lights. Second, although our environment map estimates lead
to photo-realistic back projections and predictions, in absence of any
data-driven regularization the illumination estimates themselves may
look unnatural. This is primarily due to the limited samplings we
have in our input measurements. Further, when objects are in close
proximity, they may ‘show up’ in environment map estimations. For
example, in Figure 10, we see the chair’s present red shading. This
is because the incoming light for the white chair is distorted by the
reflection of the red chair as shown in P4 (please refer to the video
in the supplementary material).

6. Conclusion

We presented a novel optimization formulation for joint material
and illumination estimation from collections of Internet images
when different objects are observed in varying illumination condi-
tions sharing coupled material and/or illumination observations. We
demonstrated that such a linked material-illumination observation
structure can be effectively exploited in a scalable optimization setup
to recover robust estimates of material (both diffuse and specular)
and effective environment maps. The estimations can then be used
for a variety of compelling and photo-realistic image manipulation
and object insertion tasks.

This work opens up several interesting future directions to pursue.
In this work, we manually curated the photo sets to test our approach.
While collecting datasets with star structure for the observation ma-
trix is not so difficult — one can search with single keywords, espe-
cially for iconic designs — gathering more data linked with tighter
connections (e.g., loops, full matrix, etc.) is more challenging. One
option would be to harvest user annotations and existing links (like
in Houzz or Pinterest websites) to collect such data. Such data sets
can open up new material-illumination estimation pipelines — this is
particularly exciting as we can update our estimates in an incremen-
tal way leading to simultaneous improvement of all the associated
estimates. Another interesting direction would be to improve the
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Figure 17: Results on the PHOTOS of five images of furniture and objects with seven materials in the protocol of Figure 8.
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Figure 18: Effect of increasing prior. The top three rows show a 3x3 input. The next row shows illumination. Following the GT left, we
increase the prior weight left to right. We note that illumination chromaticity decreases with increasing weight and that a good trade-off is

likely at 0.1.

environment map estimates — one option would be to additionally
use data priors to project the estimates environment maps to some
data-driven manifold of environment maps measurements. Finally,
an interesting future direction is to use the material and illumination
estimates to improve geometry and pose estimates by refining cor-
respondences by (partially) factoring our shading and illumination
effects.

References

[AME*14] AUBRY M., MATURANA D., EFROS A. A., RUSSELL B. C.,
Stvic J.: Seeing 3d chairs: exemplar part-based 2D-3D alignment using
a large dataset of cad models. In CVPR (2014), pp. 3762-69.

[ATS94] ARvVO J., TORRANCE K., SMITS B.: A framework for the
analysis of error in global illumination algorithms. In Proc. SSIGGRAPH
(1994), pp. 75-84.

[AWL15] AITTALA M., WEYRICH T., LEHTINEN J.: Two-shot SVBRDF
capture for stationary materials. ACM Trans. Graph. (Proc. SIGGRAPH)
34,4 (2015), 110:1-110:13.

[BBS14] BELL S., BALA K., SNAVELY N.: Intrinsic images in the wild.
ACM Trans. Graph. 33,4 (2014), 159.

[BM15a] BARRON J. T., MALIK J.: Intrinsic scene properties from a
single rgb-d image. PAMI (2015).

[BM15b] BARRONJ. T., MALIK J.: Shape, illumination, and reflectance
from shading. PAMI (2015).



12 Wang et al. / Joint Material and Illumination Estimationfrom Photo Sets in the Wild

[BT78] BARROW H. G., TENENBAUM J. M.: Recovering intrinsic scene
characteristics from images. Comp. Vis. Sys. (1978).

[CBLN97] CZHu C., BYRD R. H., LU P., NOCEDAL J.: L-BFGS-B,
FORTRAN routines for large scale bound constrained optimization. ACM
Transactions on Mathematical Software 23, 4 (1997), 550aA$-60.

[CXY*15] CHEN K., XU K., YU Y., WANG T.-Y., HU S.-M.: Magic
decorator: Automatic material suggestion for indoor digital scenes. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 34, 6 (2015).

[CZS*13] CHENT., ZHU Z., SHAMIR A., HU S.-M., COHEN-OR D.:
3sweep: Extracting editable objects from a single photo. ACM Trans.
Graph. 32, 6 (2013).

[Deb98] DEBEVEC P.: Rendering synthetic objects into real scenes: Bridg-
ing traditional and image-based graphics with global illumination and
high dynamic range photography. SIGGRAPH (1998).

[DLAWO1] DROR R. O., LEUNG T. K., ADELSON E. H., WILLSKY
A. S.: Statistics of real-world illumination. In CVPR (2001).

[EF15] EIGEN D., FERGUS R.: Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional architecture. In
ICCV (2015).

[GHHO1] GIBSON S., HOWARD T., HUBBOLD R.: Flexible image-based
photometric reconstruction using virtual light sources. Comp. Graph.
Forum 20, 3 (2001), 203-14.

[GKMDO06] GREEN P., KAUTZ J., MATUSIK W., DURAND F.: View-
dependent precomputed light transport using nonlinear gaussian function
approximations. In Proc. i3D (2006).

[GRR*16] GEORGOULIS S., REMATAS K., RITSCHEL T., FRITZ M.,
TUYTELAARS T., VAN GooL L.: Natural illumination from multiple
materials using deep learning. arXiv:1611.09325 (2016).

[HB89] HORN B. K. P., BROOKS M. J. (Eds.): Shape from Shading. MIT
Press, 1989.

[HFB*09] HABER T., FUCHS C., BEKAER P., SEIDEL H.-P., GOESELE
M., LENSCH H. P., ET AL.: Relighting objects from image collections.
In CVPR (2009).

[HOM15] HUETING M., OVSJANIKOV M., MITRA N.: Crosslink: Joint
understanding of image and 3d model collections through shape and
camera pose variations. ACM Trans. Graph (Proc. SIGGRAPH Asia) 34,
6 (2015).

[IRWM17] INNAMORATI C., RITSCHEL T., WEYRICH T., MITRA N. J.:

Decomposing single images for layered photo retouching. Computer
Graphics Forum (Proc. Eurogr. Symp. on Rendering) 36, 4 (2017), 15-25.

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org.

[JTRS12] JAIN A., THORMAHLEN T., RITSCHEL T., SEIDEL H.-P.:
Material memex: Automatic material suggestions for 3d objects. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 31,5 (2012).

[Kaj86] KAIIYA J. T.: The rendering equation. In ACM SIGGRAPH
(1986).

[KRFB06] KHAN E. A., REINHARD E., FLEMING R. W., BULTHOFF
H. H.: Image-based material editing. ACM Trans. Graph. (2006).

[KSES14] KHOLGADE N., SIMON T., EFROS A., SHEIKH Y.: 3D object
manipulation in a single photograph using stock 3d models. ACM Trans.
Graph. (Proc. SIGGRAPH) 33,4 (2014).

[KSH12] KRIZHEVSKY A., SUTSKEVER I., HINTON G. E.: Imagenet
classification with deep convolutional neural networks. In NIPS (2012).

[KSH*14] KARSCH K., SUNKAVALLI K., HADAP S., CARR N., JIN H.,
FONTE R., SITTIG M., FORSYTH D.: Automatic scene inference for 3d
object compositing. ACM Trans. Graph. 33, 3 (June 2014).

[LENO9] LALONDE J.-F., EFROS A. A., NARASIMHAN S. G.: Estimat-
ing natural illumination from a single outdoor image. In CVPR (2009),
pp. 183-190.

[LN16] LOMBARDI S., NISHINO: Reflectance and illumination recovery
in the wild. PAMI (2016).

[MG97] MARSCHNER S. R., GREENBERG D. P.: Inverse lighting for
photography. In Color and Imaging Conf. (1997), pp. 262-5.

[MPBMO03] MATUSIK W., PFISTER H., BRAND M., MCMILLAN L.: A
data-driven reflectance model. ACM Trans. Graph. (2003).

[Nic65] NIcODEMUS F. E.: Directional reflectance and emissivity of an
opaque surface. Applied optics (1965).

[NMY15] NARIHIRA T., MAIRE M., YU S. X.: Direct intrinsics: Learn-
ing albedo-shading decomposition by convolutional regression. In /CCV
(2015).

[NNRS15] NGUYEN C. H., NALBACH O., RITSCHEL T., SEIDEL H.-P.:
Guiding image manipulations using shape-appearance subspaces from
co-alignment of image collections. Computer Graphics Forum (Proc.
Eurographics 2015) 34,2 (2015).

[OCDDO1] OH B. M., CHEN M., DORSEY J., DURAND F.: Image-based
modeling and photo editing. In Proc. SIGGRAPH (2001).

[OLGMI11] OvVSJANIKOV M., L1 W., GUIBAS L., MITRA N. J.: Explo-
ration of continuous variability in collections of 3d shapes. ACM Trans.
Graph. 30,4 (2011).

[ON15] OXHOLM G., NISHINO K.: Shape and reflectance estimation in
the wild. PAMI (2015).

[PIJ*11] PAPAS M., JAROSZ W., JAKOB W., RUSINKIEWICZ S., MA-
TUSIK W., WEYRICH T.: Goal-based caustics. Comp. Graph Forum
(Proc. Eurographics) 30,2 (2011), 503-511.

[PSPO9] PANAGOPOULOS A., SAMARAS D., PARAGIOS N.: Robust
shadow and illumination estimation using a mixture model. In CVPR
(2009), pp. 651-8.

[RHO1] RAMAMOORTHI R., HANRAHAN P.: A signal-processing frame-
work for inverse rendering. In SIGGRAPH (2001).

[RNR*16] REMATAS K., NGUYEN C., RITSCHEL T., FRITZ M., TUYTE-
LAARS T.: Novel views of objects from a single image. TPAMI (2016).

[SCK08] SHUM H.-Y., CHAN S.-C., KANG S. B.: Image-based render-
ing. Springer Science & Business Media, 2008.

[SDSY16] SHIJ., DONG Y., SUH., YU S. X.: Learning non-lambertian
object intrinsics across shapenet categories. arXiv:1612.08510 (2016).

[SQLG15] Su H., Qi C. R., L1 Y., GUIBAS L. J.: Render for CNN:
Viewpoint estimation in images using cnns trained with rendered 3D
model views. In The IEEE International Conference on Computer Vision
(ICCV) (December 2015).

[SSI03] SATO I., SATO Y., IKEUCHI K.: Illumination from shadows.
PAMI 25, 3 (2003), 290-300.

[STLO8] SHEN L., TAN P., LIN S.: Intrinsic image decomposition with
non-local texture cues. In CVPR (2008).

[Tok15] TOKUYOSHI Y.: Virtual spherical gaussian lights for real-time
glossy indirect illumination. Comp. Graph. Forum 34,7 (2015), 89-98.

[TS06] TsArl Y.-T., SHIH Z.-C.: All-frequency precomputed radiance
transfer using spherical radial basis functions and clustered tensor approx-
imation. ACM Trans. Graph. 25, 3 (2006), 967-76.

[TSH12] TANG Y., SALAKHUTDINOV R., HINTON G.: Deep lambertian
networks. In ICML (2012).

[VKS*14] VORBA J., KARLIK O., SIK M., RITSCHEL T., KRIVANEK
J.: On-line learning of parametric mixture models for light transport
simulation. ACM Trans. Graph. (Proc. SSIGGRAPH) 33, 4 (2014), 101.

[WBSS04] WANG Z., BovIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE TIP 13, 4 (2004), 600-612.

[WDR11] WU H., DORSEY J., RUSHMEIER H.: A sparse parametric
mixture model for BTF compression, editing and rendering. Comp. Graph.
Forum 30, 2 (2011), 465-73.

[WFG15] WANG X., FOUHEY D. F., GUPTA A.: Designing deep net-
works for surface normal estimation. In CVPR (2015).



Wang et al. / Joint Material and Illumination Estimationfrom Photo Sets in the Wild

[WMLTO07] WALTER B., MARSCHNER S. R., L1 H., TORRANCE K. E.:
Microfacet models for refraction through rough surfaces. In Proc. EGSR
(2007), pp. 195-206.

[WRG*09] WANG J., REN P., GONG M., SNYDER J., GUO B.: All-
frequency rendering of dynamic, spatially-varying reflectance. ACM
Trans. Graph. (Proc. SIGGRAPH) 28, 5 (2009), 133.

[WSH*16] WANG T. Y., SU H., HUANG Q., HUANG J., GUIBAS L.,
MITRA N. J.: Unsupervised texture transfer from images to model
collections. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 35, 6 (2016).

[XSD*13] Xu K., SUN W.-L., DONG Z., ZHAO D.-Y., WU R.-D., HU
S.-M.: Anisotropic spherical gaussians. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 32, 6 (2013).

[YYT*11] YU L.-F., YEUNG S. K., TANG C.-K., TERZOPOULOS D.,
CHAN T. F., OSHER S.: Make it home: automatic optimization of
furniture arrangement. ACM Trans. Graph. 30, 4 (2011), 86.

13



