261 research outputs found

    Analysis of Quasi-Cyclic LDPC codes under ML decoding over the erasure channel

    Get PDF
    In this paper, we show that Quasi-Cyclic LDPC codes can efficiently accommodate the hybrid iterative/ML decoding over the binary erasure channel. We demonstrate that the quasi-cyclic structure of the parity-check matrix can be advantageously used in order to significantly reduce the complexity of the ML decoding. This is achieved by a simple row/column permutation that transforms a QC matrix into a pseudo-band form. Based on this approach, we propose a class of QC-LDPC codes with almost ideal error correction performance under the ML decoding, while the required number of row/symbol operations scales as kkk\sqrt{k}, where kk is the number of source symbols.Comment: 6 pages, ISITA1

    Terminated LDPC Convolutional Codes with Thresholds Close to Capacity

    Full text link
    An ensemble of LDPC convolutional codes with parity-check matrices composed of permutation matrices is considered. The convergence of the iterative belief propagation based decoder for terminated convolutional codes in the ensemble is analyzed for binary-input output-symmetric memoryless channels using density evolution techniques. We observe that the structured irregularity in the Tanner graph of the codes leads to significantly better thresholds when compared to corresponding LDPC block codes.Comment: To appear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Construction of Near-Optimum Burst Erasure Correcting Low-Density Parity-Check Codes

    Full text link
    In this paper, a simple, general-purpose and effective tool for the design of low-density parity-check (LDPC) codes for iterative correction of bursts of erasures is presented. The design method consists in starting from the parity-check matrix of an LDPC code and developing an optimized parity-check matrix, with the same performance on the memory-less erasure channel, and suitable also for the iterative correction of single bursts of erasures. The parity-check matrix optimization is performed by an algorithm called pivot searching and swapping (PSS) algorithm, which executes permutations of carefully chosen columns of the parity-check matrix, after a local analysis of particular variable nodes called stopping set pivots. This algorithm can be in principle applied to any LDPC code. If the input parity-check matrix is designed for achieving good performance on the memory-less erasure channel, then the code obtained after the application of the PSS algorithm provides good joint correction of independent erasures and single erasure bursts. Numerical results are provided in order to show the effectiveness of the PSS algorithm when applied to different categories of LDPC codes.Comment: 15 pages, 4 figures. IEEE Trans. on Communications, accepted (submitted in Feb. 2007

    Windowed Decoding of Protograph-based LDPC Convolutional Codes over Erasure Channels

    Full text link
    We consider a windowed decoding scheme for LDPC convolutional codes that is based on the belief-propagation (BP) algorithm. We discuss the advantages of this decoding scheme and identify certain characteristics of LDPC convolutional code ensembles that exhibit good performance with the windowed decoder. We will consider the performance of these ensembles and codes over erasure channels with and without memory. We show that the structure of LDPC convolutional code ensembles is suitable to obtain performance close to the theoretical limits over the memoryless erasure channel, both for the BP decoder and windowed decoding. However, the same structure imposes limitations on the performance over erasure channels with memory.Comment: 18 pages, 9 figures, accepted for publication in the IEEE Transactions on Information Theor

    Spatially Coupled LDPC Codes for Decode-and-Forward in Erasure Relay Channel

    Full text link
    We consider spatially-coupled protograph-based LDPC codes for the three terminal erasure relay channel. It is observed that BP threshold value, the maximal erasure probability of the channel for which decoding error probability converges to zero, of spatially-coupled codes, in particular spatially-coupled MacKay-Neal code, is close to the theoretical limit for the relay channel. Empirical results suggest that spatially-coupled protograph-based LDPC codes have great potential to achieve theoretical limit of a general relay channel.Comment: 7 pages, extended version of ISIT201

    Lowering the Error Floor of LDPC Codes Using Cyclic Liftings

    Full text link
    Cyclic liftings are proposed to lower the error floor of low-density parity-check (LDPC) codes. The liftings are designed to eliminate dominant trapping sets of the base code by removing the short cycles which form the trapping sets. We derive a necessary and sufficient condition for the cyclic permutations assigned to the edges of a cycle cc of length â„“(c)\ell(c) in the base graph such that the inverse image of cc in the lifted graph consists of only cycles of length strictly larger than â„“(c)\ell(c). The proposed method is universal in the sense that it can be applied to any LDPC code over any channel and for any iterative decoding algorithm. It also preserves important properties of the base code such as degree distributions, encoder and decoder structure, and in some cases, the code rate. The proposed method is applied to both structured and random codes over the binary symmetric channel (BSC). The error floor improves consistently by increasing the lifting degree, and the results show significant improvements in the error floor compared to the base code, a random code of the same degree distribution and block length, and a random lifting of the same degree. Similar improvements are also observed when the codes designed for the BSC are applied to the additive white Gaussian noise (AWGN) channel

    Link-Layer Coding for GNSS Navigation Messages

    Get PDF
    In this paper, we face the problem of ensuring reliability of Global Navigation Satellite Systems (GNSSs) in harsh channel conditions, where obstacles and scatter cause long outage events that cannot be counteracted with channel coding only. Our novel approach, stemming from information-theoretic considerations, is based on link-layer coding (LLC). LLC allows us to significantly improve the efficiency in terms of time-to-first-fix with respect to current operational GNSSs, which adopt carousel transmission. First, we investigate the maximum theoretical LLC gain under different Land Mobile Satellite channel conditions. Then, some practical LLC coding schemes, namely, fountain codes and a novel low-density parity-check plus low-rate repetition coding, are proposed and tested in realistic single-satellite and multi-satellite Land Mobile Satellite scenarios, considering the Galileo I/NAV message as study case. Simulation results show that our designed schemes largely improve on carousel transmission and achieve near-optimal performance with limited increase in complexity. Also, back-compatibility of LLC is assessed with respect to present-time GNSS specifications. © 2018 Institute of Navigation
    • …
    corecore