438 research outputs found

    RS + LDPC-Staircase Codes for the Erasure Channel: Standards, Usage and Performance

    Get PDF
    Application-Level Forward Erasure Correction (AL-FEC) codes are a key element of telecommunication systems. They are used to recover from packet losses when retransmission are not feasible and to optimize the large scale distribution of contents. In this paper we introduce Reed-Solomon/LDPCStaircase codes, two complementary AL-FEC codes that have recently been recognized as superior to Raptor codes in the context of the 3GPP-eMBMS call for technology [1]. After a brief introduction to the codes, we explain how to design high performance codecs which is a key aspect when targeting embedded systems with limited CPU/battery capacity. Finally we present the performances of these codes in terms of erasure correction capabilities and encoding/decoding speed, taking advantage of the 3GPP-eMBMS results where they have been ranked first

    LT Code Design for Inactivation Decoding

    Get PDF
    We present a simple model of inactivation decoding for LT codes which can be used to estimate the decoding complexity as a function of the LT code degree distribution. The model is shown to be accurate in variety of settings of practical importance. The proposed method allows to perform a numerical optimization on the degree distribution of a LT code aiming at minimizing the number of inactivations required for decoding.Comment: 6 pages, 7 figure

    Band Codes for Energy-Efficient Network Coding with Application to P2P Mobile Streaming

    Get PDF
    A key problem in random network coding (NC) lies in the complexity and energy consumption associated with the packet decoding processes, which hinder its application in mobile environments. Controlling and hence limiting such factors has always been an important but elusive research goal, since the packet degree distribution, which is the main factor driving the complexity, is altered in a non-deterministic way by the random recombinations at the network nodes. In this paper we tackle this problem proposing Band Codes (BC), a novel class of network codes specifically designed to preserve the packet degree distribution during packet encoding, ecombination and decoding. BC are random codes over GF(2) that exhibit low decoding complexity, feature limited and controlled degree distribution by construction, and hence allow to effectively apply NC even in energy-constrained scenarios. In particular, in this paper we motivate and describe our new design and provide a thorough analysis of its performance. We provide numerical simulations of the performance of BC in order to validate the analysis and assess the overhead of BC with respect to a onventional NC scheme. Moreover, peer-to-peer media streaming experiments with a random-push protocol show that BC reduce the decoding complexity by a factor of two, to a point where NC-based mobile streaming to mobile devices becomes practically feasible.Comment: To be published in IEEE Transacions on Multimedi

    Cyclone Codes

    Full text link
    We introduce Cyclone codes which are rateless erasure resilient codes. They combine Pair codes with Luby Transform (LT) codes by computing a code symbol from a random set of data symbols using bitwise XOR and cyclic shift operations. The number of data symbols is chosen according to the Robust Soliton distribution. XOR and cyclic shift operations establish a unitary commutative ring if data symbols have a length of p1p-1 bits, for some prime number pp. We consider the graph given by code symbols combining two data symbols. If n/2n/2 such random pairs are given for nn data symbols, then a giant component appears, which can be resolved in linear time. We can extend Cyclone codes to data symbols of arbitrary even length, provided the Goldbach conjecture holds. Applying results for this giant component, it follows that Cyclone codes have the same encoding and decoding time complexity as LT codes, while the overhead is upper-bounded by those of LT codes. Simulations indicate that Cyclone codes significantly decreases the overhead of extra coding symbols

    Reliable and Energy-Efficient Hybrid Screen Mirroring Multicast System

    Get PDF
    This paper presents a reliable and energy-efficient hybrid screen mirroring multicast system for sharing high-quality real-time multimedia service with adjacent mobile devices over WiFi network. The proposed system employs overhearing-based multicast transmission scheme with Raptor codes and NACK-based retransmission to overcome well-known WiFi multicast problems such as low transmission rate and high packet loss rate. Furthermore, to save energy on mobile devices, the proposed system not only shapes the screen mirroring traffic, but also determines the target sink device and Raptor encoding parameters such as the number of source symbols, symbol size, and code rate while considering the energy consumption and processing delay of the Raptor encoding and decoding processes. The proposed system is fully implemented in Linux-based single board computers and examined in real WiFi network. Compared to existing systems, the proposed system can achieve good energy efficiency while providing a high-quality screen mirroring service.11Nsciescopu

    Annotated Raptor Codes

    Full text link
    In this paper, an extension of raptor codes is introduced which keeps all the desirable properties of raptor codes, including the linear complexity of encoding and decoding per information bit, unchanged. The new design, however, improves the performance in terms of the reception rate. Our simulations show a 10% reduction in the needed overhead at the benchmark block length of 64,520 bits and with the same complexity per information bit.Comment: This paper has been Accepted for presentation in IEEE Information Theory Workshop (ITW) 2011, Paraty, Brazi
    corecore