631 research outputs found

    Investigation of neural activity in Schizophrenia during resting-state MEG : using non-linear dynamics and machine-learning to shed light on information disruption in the brain

    Full text link
    Environ 25% de la population mondiale est atteinte de troubles psychiatriques qui sont typiquement associés à des problèmes comportementaux, fonctionnels et/ou cognitifs et dont les corrélats neurophysiologiques sont encore très mal compris. Non seulement ces dysfonctionnements réduisent la qualité de vie des individus touchés, mais ils peuvent aussi devenir un fardeau pour les proches et peser lourd dans l’économie d’une société. Cibler les mécanismes responsables du fonctionnement atypique du cerveau en identifiant des biomarqueurs plus robustes permettrait le développement de traitements plus efficaces. Ainsi, le premier objectif de cette thèse est de contribuer à une meilleure caractérisation des changements dynamiques cérébraux impliqués dans les troubles mentaux, plus précisément dans la schizophrénie et les troubles d’humeur. Pour ce faire, les premiers chapitres de cette thèse présentent, en intégral, deux revues de littératures systématiques que nous avons menées sur les altérations de connectivité cérébrale, au repos, chez les patients schizophrènes, dépressifs et bipolaires. Ces revues révèlent que, malgré des avancées scientifiques considérables dans l’étude de l’altération de la connectivité cérébrale fonctionnelle, la dimension temporelle des mécanismes cérébraux à l’origine de l’atteinte de l’intégration de l’information dans ces maladies, particulièrement de la schizophrénie, est encore mal comprise. Par conséquent, le deuxième objectif de cette thèse est de caractériser les changements cérébraux associés à la schizophrénie dans le domaine temporel. Nous présentons deux études dans lesquelles nous testons l’hypothèse que la « disconnectivité temporelle » serait un biomarqueur important en schizophrénie. Ces études explorent les déficits d’intégration temporelle en schizophrénie, en quantifiant les changements de la dynamique neuronale dite invariante d’échelle à partir des données magnétoencéphalographiques (MEG) enregistrés au repos chez des patients et des sujets contrôles. En particulier, nous utilisons (1) la LRTCs (long-range temporal correlation, ou corrélation temporelle à longue-distance) calculée à partir des oscillations neuronales et (2) des analyses multifractales pour caractériser des modifications de l’activité cérébrale arythmique. Par ailleurs, nous développons des modèles de classification (en apprentissage-machine supervisé) pour mieux cerner les attributs corticaux et sous-corticaux permettant une distinction robuste entre les patients et les sujets sains. Vu que ces études se basent sur des données MEG spontanées enregistrées au repos soit avec les yeux ouvert, ou les yeux fermées, nous nous sommes par la suite intéressés à la possibilité de trouver un marqueur qui combinerait ces enregistrements. La troisième étude originale explore donc l’utilité des modulations de l’amplitude spectrale entre yeux ouverts et fermées comme prédicteur de schizophrénie. Les résultats de ces études démontrent des changements cérébraux importants chez les patients schizophrènes au niveau de la dynamique d’invariance d’échelle. Elles suggèrent une dégradation du traitement temporel de l’information chez les patients, qui pourrait être liée à leurs symptômes cognitifs et comportementaux. L’approche multimodale de cette thèse, combinant la magétoencéphalographie, analyses non-linéaires et apprentissage machine, permet de mieux caractériser l’organisation spatio-temporelle du signal cérébrale au repos chez les patients atteints de schizophrénie et chez des individus sains. Les résultats fournissent de nouvelles preuves supportant l’hypothèse d’une « disconnectivité temporelle » en schizophrénie, et étendent les recherches antérieures, en explorant la contribution des structures cérébrales profondes et en employant des mesures non-linéaires avancées encore sous-exploitées dans ce domaine. L’ensemble des résultats de cette thèse apporte une contribution significative à la quête de nouveaux biomarqueurs de la schizophrénie et démontre l’importance d’élucider les altérations des propriétés temporelles de l’activité cérébrales intrinsèque en psychiatrie. Les études présentées offrent également un cadre méthodologique pouvant être étendu à d’autres psychopathologie, telles que la dépression.Psychiatric disorders affect nearly a quarter of the world’s population. These typically bring about debilitating behavioural, functional and/or cognitive problems, for which the underlying neural mechanisms are poorly understood. These symptoms can significantly reduce the quality of life of affected individuals, impact those close to them, and bring on an economic burden on society. Hence, targeting the baseline neurophysiology associated with psychopathologies, by identifying more robust biomarkers, would improve the development of effective treatments. The first goal of this thesis is thus to contribute to a better characterization of neural dynamic alterations in mental health illnesses, specifically in schizophrenia and mood disorders. Accordingly, the first chapter of this thesis presents two systematic literature reviews, which investigate the resting-state changes in brain connectivity in schizophrenia, depression and bipolar disorder patients. Great strides have been made in neuroimaging research in identifying alterations in functional connectivity. However, these two reviews reveal a gap in the knowledge about the temporal basis of the neural mechanisms involved in the disruption of information integration in these pathologies, particularly in schizophrenia. Therefore, the second goal of this thesis is to characterize the baseline temporal neural alterations of schizophrenia. We present two studies for which we hypothesize that the resting temporal dysconnectivity could serve as a key biomarker in schizophrenia. These studies explore temporal integration deficits in schizophrenia by quantifying neural alterations of scale-free dynamics using resting-state magnetoencephalography (MEG) data. Specifically, we use (1) long-range temporal correlation (LRTC) analysis on oscillatory activity and (2) multifractal analysis on arrhythmic brain activity. In addition, we develop classification models (based on supervised machine-learning) to detect the cortical and sub-cortical features that allow for a robust division of patients and healthy controls. Given that these studies are based on MEG spontaneous brain activity, recorded at rest with either eyes-open or eyes-closed, we then explored the possibility of finding a distinctive feature that would combine both types of resting-state recordings. Thus, the third study investigates whether alterations in spectral amplitude between eyes-open and eyes-closed conditions can be used as a possible marker for schizophrenia. Overall, the three studies show changes in the scale-free dynamics of schizophrenia patients at rest that suggest a deterioration of the temporal processing of information in patients, which might relate to their cognitive and behavioural symptoms. The multimodal approach of this thesis, combining MEG, non-linear analyses and machine-learning, improves the characterization of the resting spatiotemporal neural organization of schizophrenia patients and healthy controls. Our findings provide new evidence for the temporal dysconnectivity hypothesis in schizophrenia. The results extend on previous studies by characterizing scale-free properties of deep brain structures and applying advanced non-linear metrics that are underused in the field of psychiatry. The results of this thesis contribute significantly to the identification of novel biomarkers in schizophrenia and show the importance of clarifying the temporal properties of altered intrinsic neural dynamics. Moreover, the presented studies offer a methodological framework that can be extended to other psychopathologies, such as depression

    Decoding motor expertise from fine-tuned oscillatory network organization

    Get PDF
    First published: 11 March 2022Can motor expertise be robustly predicted by the organization of frequency-specific oscillatory brain networks? To answer this question, we recorded high-density electroencephalography (EEG) in expert Tango dancers and naïves while viewing and judging the correctness of Tango-specific movements and during resting. We calculated task-related and resting-state connectivity at different frequency-bands capturing task performance (delta [δ], 1.5–4 Hz), error monitoring (theta [θ], 4–8 Hz), and sensorimotor experience (mu [μ], 8–13 Hz), and derived topographical features using graph analysis. These features, together with canonical expertise measures (i.e., performance in action discrimination, time spent dancing Tango), were fed into a data-driven computational learning analysis to test whether behavioral and brain signatures robustly classified individuals depending on their expertise level. Unsurprisingly, behavioral measures showed optimal classification (100%) between dancers and naïves. When considering brain models, the task-based classification performed well (~73%), with maximal discrimination afforded by theta-band connectivity, a hallmark signature of error processing. Interestingly, mu connectivity during rest outperformed (100%) the task-based approach, matching the optimal classification of behavioral measures and thus emerging as a potential trait-like marker of sensorimotor network tuning by intense training. Overall, our findings underscore the power of fine-tuned oscillatory network signatures for capturing expertise-related differences and their potential value in the neuroprognosis of learning outcomes.Basque Government; Consejo Nacional de Investigaciones Científicas y Técnicas; (CONICET) Ikerbasque, Basque Foundation for Science; Spanish State Research Agency, Grant/Award Number: SEV-2015-0490; Programa Interdisciplinario de Investigaci on Experimental en Comunicaci on y Cognici on (PIIECC), Facultad de Humanidades, USACH; ANID; FONDECYT Regular, Grant/Award Numbers: 1210195, 1210176; Global Brain Health Institute (GBHI

    Rapid processing of observed touch through social perceptual brain regions: an EEG-fMRI fusion study.

    Get PDF
    Seeing social touch triggers a strong social-affective response that involves multiple brain networks, including visual, social perceptual, and somatosensory systems. Previous studies have identified the specific functional role of each system, but little is known about the speed and directionality of the information flow. Is this information extracted via the social perceptual system or from simulation from somatosensory cortex? To address this, we examined the spatiotemporal neural processing of observed touch. Twenty-one human participants (7 males) watched 500 ms video clips showing social and non-social touch during EEG recording. Visual and social-affective features were rapidly extracted in the brain, beginning at 90 and 150 ms after video onset, respectively. Combining the EEG data with fMRI data from our prior study with the same stimuli reveals that neural information first arises in early visual cortex (EVC), then in the temporoparietal junction and posterior superior temporal sulcus (TPJ/pSTS), and finally in the somatosensory cortex. EVC and TPJ/pSTS uniquely explain EEG neural patterns, while somatosensory cortex does not contribute to EEG patterns alone, suggesting that social-affective information may flow from TPJ/pSTS to somatosensory cortex. Together, these findings show that social touch is processed quickly, within the timeframe of feedforward visual processes, and that the social-affective meaning of touch is first extracted by a social perceptual pathway. Such rapid processing of social touch may be vital to its effective use during social interaction. Seeing physical contact between people evokes a strong social-emotional response. Previous research has identified the brain systems responsible for this response, but little is known about how quickly and in what direction the information flows. We demonstrated that the brain processes the social-emotional meaning of observed touch quickly, starting as early as 150 milliseconds after the stimulus onset. By combining EEG data with fMRI data, we show for the first time that the social-affective meaning of touch is first extracted by a social perceptual pathway and followed by the later involvement of somatosensory simulation. This rapid processing of touch through the social perceptual route may play a pivotal role in effective usage of touch in social communication and interaction. [Abstract copyright: Copyright © 2023 Lee Masson and Isik.

    Decoding the consumer’s brain: Neural representations of consumer experience

    Get PDF
    Understanding consumer experience – what consumers think about brands, how they feel about services, whether they like certain products – is crucial to marketing practitioners. ‘Neuromarketing’, as the application of neuroscience in marketing research is called, has generated excitement with the promise of understanding consumers’ minds by probing their brains directly. Recent advances in neuroimaging analysis leverage machine learning and pattern classification techniques to uncover patterns from neuroimaging data that can be associated with thoughts and feelings. In this dissertation, I measure brain responses of consumers by functional magnetic resonance imaging (fMRI) in order to ‘decode’ their mind. In three different studies, I have demonstrated how different aspects of consumer experience can be studied with fMRI recordings. First, I study how consumers think about brand image by comparing their brain responses during passive viewing of visual templates (photos depicting various social scenarios) to those during active visualizing of a brand’s image. Second, I use brain responses during viewing of affective pictures to decode emotional responses during watching of movie-trailers. Lastly, I examine whether marketing videos that evoke s

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Language experience impacts brain activation for spoken and signed language in infancy: Insights from unimodal and bimodal bilinguals

    Get PDF
    Recent neuroimaging studies suggest that monolingual infants activate a left lateralised fronto-temporal brain network in response to spoken language, which is similar to the network involved in processing spoken and signed language in adulthood. However, it is unclear how brain activation to language is influenced by early experience in infancy. To address this question, we present functional near infrared spectroscopy (fNIRS) data from 60 hearing infants (4-to-8 months): 19 monolingual infants exposed to English, 20 unimodal bilingual infants exposed to two spoken languages, and 21 bimodal bilingual infants exposed to English and British Sign Language (BSL). Across all infants, spoken language elicited activation in a bilateral brain network including the inferior frontal and posterior temporal areas, while sign language elicited activation in the right temporo-parietal area. A significant difference in brain lateralisation was observed between groups. Activation in the posterior temporal region was not lateralised in monolinguals and bimodal bilinguals, but right lateralised in response to both language modalities in unimodal bilinguals. This suggests that experience of two spoken languages influences brain activation for sign language when experienced for the first time. Multivariate pattern analyses (MVPA) could classify distributed patterns of activation within the left hemisphere for spoken and signed language in monolinguals (proportion correct = 0.68; p = 0.039) but not in unimodal or bimodal bilinguals. These results suggest that bilingual experience in infancy influences brain activation for language, and that unimodal bilingual experience has greater impact on early brain lateralisation than bimodal bilingual experience
    • …
    corecore