853 research outputs found

    Delivery-flow routing and scheduling subject to constraints imposed by vehicle flows in fractal-like networks

    Get PDF
    The problems of designing supply networks and traffic flow routing and scheduling are the subject of intensive research. The problems encompass the management of the supply of a variety of goods using multi-modal transportation. This research also takes into account the various constraints related to route topology, the parameters of the available fleet of vehicles, order values, delivery due dates, etc. Assuming that the structure of a supply network, constrained by a transport network topology that determines its behavior, we develop a declarative model which would enable the analysis of the relationships between the structure of a supply network and its potential behavior resulting in a set of desired delivery-flows. The problem in question can be reduced to determining sufficient conditions that ensure smooth flow in a transport network with a fractal structure. The proposed approach, which assumes a recursive, fractal network structure, enables the assessment of alternative delivery routes and associated schedules in polynomial time. An illustrative example showing the quantitative and qualitative relationships between the morphological characteristics of the investigated supply networks and the functional parameters of the assumed delivery-flows is provided

    Traffic flow routing and scheduling in a food supply network

    Get PDF
    Purpose – The purpose of this paper is to focus on the reference model of a grid-like supply network that enables formulation of delivery routing and scheduling problems in the context of the periodic vehicle routing problem. Design/methodology/approach – The conditions for seamless (collision-free) synchronization of periodically executed local transport processes presented in this paper guarantee cyclic execution of supply processes, thereby preventing traffic flow congestion. Findings – Systems that satisfy this characteristic, cyclic deliveries executed along supply chains are given and what is sought is the number of vehicles needed to operate the local transport processes in order to ensure delivery from and to specific loading/unloading points on given dates. Determination of sufficient conditions guaranteeing the existence of feasible solutions that satisfy these constraints makes it possible to solve the considered class of problems online. Practical implications – The computer experiments reported in this paper show the possibilities of practical application of the proposed approach in the construction of decision support systems for food supply chain management. Originality/value – The aim of the present work is to develop a methodology for the synthesis of regularly structured supply networks that would ensure fixed cyclic execution of local transport processes. The proposed methodology, which implements sufficient conditions for the synchronization of local cyclic processes, allows one to develop a method for rapid prototyping of supply processes that satisfies the time windows constraints given

    Re-scheduling of AGVs Steady State Flow

    Get PDF

    A cyclic scheduling approach to maintaining production flow robustness

    Get PDF
    The organization of flow production, which is typical found in assembly processes, involves a repetitive, fixed-takt time flow of same-size production batches. The cyclic nature of the production flow, which ensures a steady production rhythm, enables just-in-time planning and organization of the associated supply chains. Disruptions in the operation of machinery and equipment, which occur in practice, lead to deviations from nominal operation times. These types of local disturbances lead to changes in production takt time, making it necessary to adjust previously created schedules for delivery/reception of materials and products. Assuming that a control action can be taken to adjust transport operation times within a specified time range, the problem of cyclic scheduling of production flows boils down to seeking conditions the satisfaction of which will guarantee robustness to this kind of disruptions. Satisfaction of robustness conditions allows a return to the nominal production takt time and appropriate adjustment of the production flow trajectory (which makes it possible for the system to return to the previously scheduled delivery times). Numerous examples are included to illustrate the principles of the proposed research methodology aimed at finding solutions for robust scheduling of fixed-takt time production flow. </jats:p

    A Hybrid Method for Modeling and Solving Supply Chain Optimization Problems with Soft and Logical Constraints

    Get PDF
    This paper presents a hybrid method for modeling and solving supply chain optimization problems with soft, hard, and logical constraints. Ability to implement soft and logical constraints is a very important functionality for supply chain optimization models. Such constraints are particularly useful for modeling problems resulting from commercial agreements, contracts, competition, technology, safety, and environmental conditions. Two programming and solving environments, mathematical programming (MP) and constraint logic programming (CLP), were combined in the hybrid method. This integration, hybridization, and the adequate multidimensional transformation of the problem (as a presolving method) helped to substantially reduce the search space of combinatorial models for supply chain optimization problems. The operation research MP and declarative CLP, where constraints are modeled in different ways and different solving procedures are implemented, were linked together to use the strengths of both. This approach is particularly important for the decision and combinatorial optimization models with the objective function and constraints, there are many decision variables, and these are summed (common in manufacturing, supply chain management, project management, and logistic problems). The ECLiPSe system with Eplex library was proposed to implement a hybrid method. Additionally, the proposed hybrid transformed model is compared with the MILP-Mixed Integer Linear Programming model on the same data instances. For illustrative models, its use allowed finding optimal solutions eight to one hundred times faster and reducing the size of the combinatorial problem to a significant extent

    DFKI publications : the first four years ; 1990 - 1993

    Get PDF
    • …
    corecore