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This paper presents a hybrid method for modeling and solving supply chain optimization problems with soft, hard, and logical
constraints. Ability to implement soft and logical constraints is a very important functionality for supply chain optimizationmodels.
Such constraints are particularly useful for modeling problems resulting from commercial agreements, contracts, competition,
technology, safety, and environmental conditions. Two programming and solving environments, mathematical programming (MP)
and constraint logic programming (CLP), were combined in the hybrid method. This integration, hybridization, and the adequate
multidimensional transformation of the problem (as a presolving method) helped to substantially reduce the search space of
combinatorial models for supply chain optimization problems. The operation research MP and declarative CLP, where constraints
are modeled in different ways and different solving procedures are implemented, were linked together to use the strengths of both.
This approach is particularly important for the decision and combinatorial optimization models with the objective function and
constraints, there are many decision variables, and these are summed (common in manufacturing, supply chain management,
project management, and logistic problems). The ECLiPSe system with Eplex library was proposed to implement a hybrid method.
Additionally, the proposed hybrid transformed model is compared with the MILP-Mixed Integer Linear Programming model on
the same data instances. For illustrative models, its use allowed finding optimal solutions eight to one hundred times faster and
reducing the size of the combinatorial problem to a significant extent.

1. Introduction

A supply chain (SC) is a system of producers, distributors,
suppliers networks, customers, retailers, activities, resources,
and information involved inmoving services and/or products
from producers to customers. All members of the SC are
working together to achieve this goal [1]. Supply chain man-
agement (SCM) covers planning, control, and management
of all activities and resources in production, distribution, and
transportation.

Simultaneous consideration of distribution, produc-
tion, and transport planning and control problems greatly
advances the effectiveness of the processes and operations of
all of these problems. These problems are characterized by
high complexity due to the large number of different activities
of the SC (plants, vehicles, distribution centers, retailers,
etc.) and due to many interactions and different restrictions

among these activities (i.e., capacity,modes of transportation,
relocation of distribution centers, nature of demand, balance,
environmental, etc.). For modeling these restrictions it is
usually sufficient to use linear, integer, or binary constraints.

In contrast, soft and logical constraints are better suited
to modeling issues related to trade agreements, marketing,
contracts, competition, security, finance, and so forth.

Thus, the nature of the SC problems is characterized by
a number of constraints and discrete decision variables, as
confirmed by a variety of optimization models, the review
of which is presented in [2, 3]. The structure of decision
and optimization problems in a SC poses a real challenge
in terms of mathematical programming (MP) application
to both their modeling and their optimization. Very often
discussed problems become overconstrained (the problem
where solution does not exist, i.e., valuation of variables that
satisfies all the constraints).
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For this reason, the main motivation behind this study
was to develop an alternative approach, highly effective in
optimization and far more flexible in problem modeling
than mathematical programming methods, especially when
modeling logical and soft constraints.

A contribution of this paper is to propose a declarative
method for hybrid modeling and solving of the supply chain
optimization problems using multidimensional transforma-
tion as a presolving method. Moreover, a hybrid transformed
combinatorial model with soft, hard, and logical constraints
for supply chain optimization problems has been described.
In addition, a declarative hybrid implementation framework
has been presented, in which mathematical programming
(MP) and constraint logic programming (CLP) are inte-
grated.

A declarative constraint logic programming environment
with MP-library (Eplex) as a declarative hybrid framework
was chosen for the implementation of this method and
model.

The rest of this paper is organized as follows: Section 2
describes material and methods. Section 3 gives the main
assumptions of the declarative method with MP-library
and describes implementation framework. The optimization
models (MILP, hybrid, and hybrid transformed), compu-
tational examples, and efficiency tests of the declarative
implementation framework are shown in Section 4. The
summary and discussion on possible extensions are included
in Section 5.

2. Methods

The use of constraint-based methods for the modeling of
decision and optimization problems that contain constraints
appears to be natural and effective owing to their character
and properties. Constraints reflect the logical relationships
between decision variables. Each variable can take values
within a given domain—constraints restrict the ranges of
those values.The properties of constraints include the follow-
ing:

(i) Declarativity. Define the relationships between vari-
ables; no computation algorithm is needed.

(ii) Additivity. The set of constraints, their context, and
conjunction are important, not their sequence in
adding to each other.

(iii) Dependence. Constraints often share decision vari-
ables, commonly in the problems of supply chain
management, production, transport, and logistics.

(iv) Domain Solution. Constraints rarely specify the values
of decision variables—the domains within which the
variables can take on values are specified more often.

These properties and the character of constraints make them
a natural form of knowledge and information modeling,
particularly adequate in such areas as production, logistics,
transport, or distribution, where they become resource, time,
environment, transport, or finance constraints of linear, non-
linear, logical, or integer type. An optimization problem of

SCM connects the issues of storage, production, distribution,
and transportation taking account of conditions relating to
time, environment, and finance.

Therefore, we claim that constraint-based environments
are a natural way of modeling the problem with con-
straints [4–8].These environments usually use the declarative
programming paradigm which specifies the conditions the
solution has to satisfy (what is to be achieved) and not
the detailed algorithm (how it should be achieved). The
constraint satisfaction problem (CSP) is the fundamental
concept of constraint-based declarative environments [4, 9].

CSP is a mathematical problem described as a set of
objects whose condition must satisfy a set of constraints.

Formally, CSP is described by a set of decision variables𝑉1, 𝑉2, . . . , 𝑉𝑛 and set of constraints Con1,Con2, . . . ,Con𝑚.
Each decision variable 𝑉𝑖 has a domain Dom𝑖 of possible
variables. Each constraint Con𝑖 involves some subset of the
decision variables and determines the combination of values
for this subset. A state of the CSP is described by an assign-
ment of values to decision variables. An assignment that
meets all constraints is named a consistent/legal assignment.

CSPs are usually solved using a different form of search.
The most used methods include constraint propagation [6],
different variants of backtracking [10], and local search.

These techniques allow one to quickly find a domain
solution or conclude that domains are contradictory.

CSPs are the basis for constraint programming (CP)/
constraint logic programming (CLP) environments [4].

Several modifications of the classic model of CSP have
been proposed: flexible CSPs (relaxing assumptions that each
solution must satisfy all constraints, including FuzzyCSP),
dynamic CSPs (a sequence of the static CSPs), and decentral-
ized CSPs [11].

Problem representation as a CSP offers several advan-
tages. First, it is closer to a natural presentation of a problem
(constraints over variables). Second, there is no requirement
for presenting the solving method/algorithm. Finally, its
effectiveness for yes/no decision problems is higher than that
of traditional methods.

The use of a declarative method, for example, CLP,
offers better decision and optimizationmodeling possibilities
compared to the MP-based approach. Advantages and short-
comings of both (MP and CLP) are widely reported in the
literature [12, 13] including our own experience [14, 15].

In MP environments, the number of modeling con-
straint types is modest, including only linear and integer
constraints. CLP environments make use of a wider range
of constraints; in addition to those named above, nonlin-
ear, logical, or predefined symbolic (cumulative, alldifferent,
disjunctive, etc.) constraints are embedded. Different types
of constraints require different computational effort in both
environments. MP-based approaches are effective in solving
linear constraints and optimization but poor at handling
integer (binary) constraints. Logical constraints are hard to
model in the MP-based environments, where a number of
linear and integer constraints (common in SCM problems)
have to be contained. In CLP-based environments, integer
and binary (domain integrity) and logical and nonlinear
constraints are easy to model and solve. However, linear
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Figure 1: Areas used in CLP and MP and hybrid method.

constraints, which add up many decision variables, increase
the computational effort and extend the solving time, espe-
cially when an optimization problem is being solved. Yet, this
constraint type is common in production, distribution, and
transportation problems, thus for SCM optimization.

Therefore, MP-based environments are effective in solv-
ing linear constraints and optimization. In contrast, the CP-
based environments are effective for modeling and solving
integer and logical constrains and finding feasible solutions.

Each issue of problem modeling and solving can be
considered in three areas (dimensions). The first concerns
the proposed method for both modeling and solving. The
second relates to the structure and nature of the problem
(types of constraints, the decision or optimization problem,
etc.). The last area refers to the data instances. Each of the
presented environments uses these areas in a different way
(Figure 1). CLPmainly uses the data instances and slightly less
the structure of the problem. Due to the declarative nature,
external methods or algorithms are not required. The CLP
model is already the method. MP mainly focuses on the
method and then the structure and properties of the problem.
Thedata instances are outside ofMPmodel.Therefore, hybrid
method allows maximum exploration of all these three areas
(Figure 1).

The majority of supply chain optimization problems
are formulated as MP-based models (MIP-Mixed Integer
Programming;MILP,Mixed Integer Linear Programming; IP,
Integer Programming; and MOOP, multiobjective optimiza-
tion programming) [2, 6, 7].

Due to the properties and character of the models of
supply chain optimization and a large number of integer
decision variables, MP-based models and methods can only
be used to solve problems of small size. Another weak
point of these models is that only integer, linear, and binary
constraints can be applied. In fact, issues related to the supply
chain optimization are often nonlinear, logical, and so forth.

For the above reasons, the problems were formulated in a
new way with new hybrid transformed models.

The most important objectives behind this research were
to develop hybrid optimizationmodels andmethods for sup-
ply chain optimization problems using a declarative hybrid
method with multidimensional transformation.

Hybridization results from the fact that what is difficult
to model and solve in CLP can be easily modeled and solved
in MP and vice versa. The best programming framework for
the implementation of the hybrid models and methods is
a declarative CLP environment with MP-library. Moreover,
such declarative hybrid models and methods allow the use
of all areas (dimensions) of the problem (methods, struc-
ture, and data) to solve it (Figure 1). Finally, this method
allows the multidimensional transformation of the problem
(Section 4.3), which reduces its size and significantly affects
the speed of finding a solution. Among other things, the
presented method differs from the integrative approaches
CP/MP known from the literature [12, 13, 16, 17] in the use
of multidimensional transformation as an integral part of the
declarative hybrid method.

3. The Concept and Implementation of
the Declarative Hybrid Method

Based on the characteristics of the CLP and MP environ-
ments, their mutual complementarity, the properties of sup-
ply chain optimization problems, and previous experiences
with hybridization [14, 15] we have proposed the concept of a
declarativemethod formodeling and optimization.Themain
assumptions of the proposed concept are as follows:

(i) The problem is modeled by a set of facts and a set of
constraints (integer, linear, logical, etc.).

(ii) Models can be formulated in the form of MIP/MILP/
IP models or hybrid models.

(iii) Constraints may take two forms: soft and hard.
(iv) The problem is modeled by CLP-based predicates,

a far more flexible technique than the MP-based
procedures and formulas.

(v) Multidimensional transforming of the model as a
presolving method is done by CLP-based predicates
(Section 3.1).

(vi) Optimization is done through MP-based procedures.

The scheme of the implementation framework for declarative
hybrid method is presented in Figure 2.

From a variety of declarative constraint programming
environments for the implementation of the framework,
ECLiPSe software [4, 18] was selected. ECLiPSe is a high-level
modeling, control, and declarative programming language
with interfaces to third-party solvers. ECLiPSe was used to
model the problem, transform it, and search for a domain
solution by constraint propagation (Figure 2, Table 1). This
solution was then the basis for the final MILP model,
developed in the Eplex library [19] of the ECLiPSe environ-
ment. The Eplex library allows MIP/IP/MILP problems to
be modeled in ECLiPSe environment and optimized by an
external mathematical programming solver.
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3.1. The Concept of Multidimensional Transformation of the
Problem. Due to the nature of models in SC/SCM (a large
number of integer decision variables, summation of many
decision variables in the objective function and constraints),
the constraint propagation efficiency decreases significantly.

Constraint propagation [4] is an important component
of constraint logic programming affecting the efficiency and
effectiveness of the search solution. For these reasons, studies
into more effective way of constraint propagation have been
performed [14, 15]. The result of this study was to propose
a new multidimensional transformation of the problem as
a presolving method. Transformation is this element of this
hybrid method which distinguishes it from the MP and CLP
integration methods reported in the literature [13, 20, 21].
This method proposes a multidimensional transformation of
a problem (1M), which involves decision variables (2M) and

Table 1: Symbols used in the multidimensional transformation of
the problem.

Symbol Description of the symbol
PO Original problem
𝑋O Decision variables before transformation
CO Constraints before transformation
PT Transformed problem
𝑋T Decision variables after transformation
CT Constraints after transformation

CAT Additional constraints that limit solution search
space

S Structure and properties of the modeled problem

D Data (specific instances of data values for the
parameters of the problem)

CLP Properties and methods of the CLP (constraint
propagation, local search, domain solving, etc.)

TCLP Multidimensional transformation

constraints (3M). The following dimensions are considered(4M): data (D), properties and the structure of the problem
(S), and the properties of the modeling and solving CLP
environment (CLP). Table 1 describes the symbols used in the
transformation.

PO TCLP󳨀󳨀󳨀→ PT, (1M)
𝑋O TCLP󳨀󳨀󳨀→ 𝑋T, (2M)

CO TCLP󳨀󳨀󳨀→ CT,CAT, (3M)
TCLP [S,D,CLP] . (4M)

The transformation TCLP(4M), performed in the CLP envi-
ronment, results in the following (Section 4.3):

(i) The reduction in the total number of and changing
the nature of decision variables attained through
aggregation and elimination.

(ii) The reduction in the number of constraints resulting
from the problem properties.

(iii) The introduction of additional constraints CAT that
limit the solution search space without affecting the
problem (Table 6).

(iv) The reduction of the solution search time.

4. Illustrative Examples

The proposed method has been verified on two SCM opti-
mization illustrative examples. First example was formulated
as MILP model based on [22] overconstraints (2)–(27). This
model was used to compare the DHIF relative to the classical
MP solver for the same data sets [22, 23]. Then the hybrid
model (HM) (1)–(30) was implemented and solved only
in DHIF because the declarative and logical character of
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Figure 3: The scheme of exemplified structure of the supply chain
network with multimodal transport.

constraints (28)–(30) weakens the structure of the model.
In addition, these constraints are difficult to implement in
the MP-based environment and cause the increase in the
number of decision variables and the number of constraints
and extend the solution search time beyond acceptable limits.

The logical constraints relate to various practical situ-
ations. In the hybrid model, three logical constraints were
introduced: (28) which excludes concurrent transportation
of selected products by different transport means, which
eliminates the necessity of repackaging unacceptable by the
customer, (29) which limits the number of participating
distributors, for example, due to a limited number of available
portable scanning devices for radioactivity, biological, or
chemical contamination, and (30) which allows the simulta-
neous production, distribution, transportation, and storage
of exclusively one of the set of two selected products items.

Table 2 shows indices, decision variables, and parame-
ters used in the models. The exemplified structure of the
SCM network for these models, composed of manufacturers,
distributors, customers, and multimodal transport, is shown
in Figure 3. The MILP and hybrid models for illustrative
examples are the cost models that take into account other
types of parameters, that is, time (duration of supply and
service by distributor, etc.), the transport mode, distributor’s
capacity, capacity of transport unit, and the spatial parameters
(volume/capacity occupied by the product).

The principal assumptions used in the construction of the
models are as follows:

(i) Supply chain network has a structure as in Figure 3.

(ii) Supply chain management process uses information
that relates to production (cost, versatility capac-
ity, etc.), product item (volume), resources (costs,
versatility, capacity, etc.), transportation (cost, time,
mode, and capacity), demand (product item, time),
inventory (costs, capacity, time, and versatility), and
so forth.

Table 2: Indices, parameters, symbols, and decision variables.

Symbol Description
Indices𝑑 Product item (𝑑 = 1 ⋅ ⋅ ⋅ 𝐷)𝑐 Customer/retailer (𝑐 = 1 ⋅ ⋅ ⋅ 𝐶)𝑎 Factory (manufacturer) (𝑎 = 1 ⋅ ⋅ ⋅ 𝐴)𝑏 Distributor (𝑏 = 1 ⋅ ⋅ ⋅ 𝐵)𝑒 Mode of transportation (𝑒 = 1 ⋅ ⋅ ⋅ 𝐸)𝐴 Number of factories𝐶 Number of customers/retailers𝐵 Number of distributors𝐷 Number of product items𝐸 Number of ransportation modes

Input parameters𝐹𝑏 Distributor’s cost (fixed) 𝑏𝑃𝑑 Volume/capacity occupied by product item 𝑑𝑇𝑑 Weight of product item 𝑑𝑉𝑏 Max capacity/volume of distributor 𝑏𝑊𝑎,𝑑 Production capacity of factory 𝑎 for product item 𝑑𝐶𝑎,𝑑 Cost of product item 𝑑 in factory 𝑎
𝑅𝑏,𝑑 If distributor 𝑏 can supply product item 𝑑 then𝑅𝑏,𝑑 = 1; otherwise 𝑅𝑏,𝑑 = 0
𝑇p𝑏,𝑑

Time required to prepare the dispatch of product
item 𝑑 by distributor 𝑏

𝑇c𝑐,𝑑
Cut-off time of supply of product item 𝑑 to

customer/retailer 𝑐
𝑍𝑐,𝑑 Size of the order for product item 𝑑 placed by

customer c

𝑍t𝑒
Number of transportation units using transportation

mode e

𝑃t𝑒 Capacity of transportation unit using transportation
mode e

𝑇t𝑒
Tonnage of transportation unit using transportation

mode e

𝑇f𝑎,𝑏,𝑒
Supply time from factory (manufacturer) a to

distributor b by transportation mode e

𝐾1𝑎,𝑏,𝑑,𝑒
Cost of supplying product item d from factory

(manufacturer) a to distributor b by transportation
mode e (variable)

𝑅1𝑎,𝑏,𝑒
If factory (manufacturer) a can supply distributor b

using transportation mode e, then 𝑅1𝑎,𝑏,𝑒 = 1;
otherwise 𝑅1𝑎,𝑏,𝑒 = 0

𝐴𝑎,𝑏,𝑒 Cost of supply from factory (manufacturer) a to
distributor b by transportation mode e (fixed)

Tba𝑏,𝑐,𝑒
Overall cost of supply from distributor b to customer

c by transportation mode e

𝑇m𝑏,𝑐,𝑒
Time of supply from distributor b to

customer/retailer c by transportation mode e

𝐾2𝑏,𝑐,𝑑,𝑒
Variable cost of supply of product item d from

distributor b to customer/retailer c by transportation
mode e

𝑅2𝑏,𝑐,𝑒
If distributor b can supply customer/retailer c by
transportation mode e, then 𝑅2𝑏,𝑐,𝑒 = 1; otherwise𝑅2𝑏,𝑐,𝑒 = 0

𝐺𝑏,𝑐,𝑒 Fixed cost of supply from distributor b to
customer/retailer c by transportation mode e
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Table 2: Continued.

Tbg𝑏,𝑐,𝑒
Overall cost of supply from distributor b to
customer/retailer c by transportation mode e

Od𝑒 Environmental cost of using transportation mode e
Decision variables

𝑋p𝑎,𝑏,𝑑,𝑒,𝑐

Quantity of a product item d supplied from factory
(manufacturer) a to distributor b by transportation

mode e to customer/retailer c

𝑋o𝑎,𝑏,𝑑,𝑒,𝑐

If supply is from factory (manufacturer) a to
distributor b of product d by transportation mode e
to customer/retailer 𝑐, then𝑋o𝑎,𝑏,𝑑,𝑒,𝑐 = 1, otherwise𝑋o𝑎,𝑏,𝑑,𝑒,𝑐 = 0

𝑋c𝑎,𝑏,𝑒
Number of travels from factory (manufacturer) a to

distributor b by transportation mode e

𝑌p𝑏,𝑐,𝑑,𝑒
Quantity of product item d supplied from distributor

b to customer c by transportation mode e

𝑌o𝑏,𝑐,𝑑,𝑒

If supply is from distributor b to customer/retailer c
for product d by transportation mode e, then𝑌o𝑏,𝑐,𝑑,𝑒 = 1; otherwise 𝑌o𝑏,𝑐,𝑑,𝑒 = 0

𝑌c𝑏,𝑐,𝑒
Number of travels from distributor b to

customer/retailer c by transportation mode e

(iii) Transportation is multimodal (a limited number of
transportation units for each mode, several modes of
transportation).

(iv) The environmental aspects of use of transportation
units in different modes are taken into consideration.

(v) Transport batch contains various types of products.
(vi) It includes fixed and variable costs of supply (which

may take the form of a linear function).
(vii) The models have integer, linear, and logical con-

straints (only in hybrid model).
(viii) The objective function is a linear function of cost

relating to the entire supply chain.

4.1. Objective Function of the Optimization Models. The
objective function (1) determines the total cost of supply
chain management. It consists of five components. The first
component relates to the total environmental costs (using
various means of transport units). The environmental costs
are dependent on the environmental levy, which can depend
on fuel consumption (gasoline, oil, or gas) and carbon-
dioxide emissions [24] and, on the other hand, on the number
of courses by transportation units. The second component
determines the cost of the supply from the factories to the
distributors. Next element is responsible for the costs of
the supply from the distributors to the customer. Another
element specifies the production cost of the product item by
the given factory. The last element of the objective function
(1) specifies the costs (fixed) associated with the activities and
processes of the distributors involved in the supply (loading,
unloading, packaging, ticketing, and so on.).

The formulation of the objective function in this way
allows the comprehensive optimization of the all costs in

various aspects of SCM. The above objective function is the
same for all models in Section 4.

𝐸∑
𝑒=1

𝑂d𝑒(
𝐵∑
𝑏=1

𝐶∑
𝑐=1

𝑌c𝑏,𝑐,𝑒 +
𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝑋c𝑎,𝑏,𝑒)

+ 𝐵∑
𝑏=1

𝐶∑
𝑐=1

𝐸∑
𝑒=1

𝑇bg𝑏,𝑐,𝑒 +
𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝐸∑
𝑒=1

𝑇ba𝑎,𝑏,𝑒

+ 𝐴∑
𝑎=1

𝐷∑
𝑑=1

(𝐶𝑎,𝑑 ⋅ 𝐵∑
𝑏=1

𝐶∑
𝑐=1

𝐸∑
𝑒=1

𝑋p𝑎,𝑏,𝑑,𝑒,𝑐) + 𝐵∑
𝑏=1

𝐹𝑏 ⋅ 𝑇c𝑏 .

(1)

4.2. Constraints. The model has the following constraints
(2)–(27). Constraint (2) specifies that all supplies of product
item d produced by the factory a to all distributors b
using mode of transport e do not exceed the production
capacity at factory a. Constraint (3) ensures the coverage
of all customer/retailer c orders (𝑍𝑐,𝑑) for product d as
a result of supply by distributors b. The balance of the
products d flow through the distributor b is constraint (4).
Possibility of supply by the distributor b depends on its
technical capabilities (5). Delivery time conditions are met by
constraint (6).

The set of constraints from (7) to (11) determines the
necessary means of transport for the supply.

The set of constraints (12), (13), and (14) set values of
decision variables 𝑋p𝑎,𝑏,𝑑,𝑒,𝑐 , 𝑌p𝑏,𝑐,𝑑,𝑒 , based on binary decision
variables 𝑇c𝑏 , 𝑋o𝑎,𝑏 . The remaining set of constraints (17)–
(27) results from the nature of the mathematical program-
ming model.

Constraint (28) excludes transportation of selected prod-
uct d by different transport means 𝑒1, 𝑒2, . . . , 𝑒𝑖.

Constraint (29) ensures that a group of products𝑑1, 𝑑2, . . . , 𝑑𝑖 cannot be stored in more than 𝐵𝑛 centers simul-
taneously. Constraint (30) excludes concurrent production,
distribution, and transport of selected products 𝑑1 and 𝑑2.

The constraints above result from the practical reasons,
including sales, security, marketing, contracting, or technol-
ogy. Logical constraints occur especially often in a situation
of strong competition.

Constraints (28)–(30) can be repeatedly reused for dif-
ferent pairs of product d and for some of or all of factories
a and distributors b. Such a logical constraint is extremely
difficult to implement in mathematical programming model.
It demands that each logical constraint be replaced by many
linear constraints. This sometimes leads to the explosion of
the number of constraints.

Only declarativemethods based onCSPmake easy imple-
mentation of constraints such as (28), (29), (30) possible.The
introduction to model (1)–(27) logical constraints such as
(28), (29), and (30) changes its nature as well as converting it
into a hybridmodel (HM).Thismodel can only be considered
in the DHIF.
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𝐵∑
𝑏=1

𝐸∑
𝑒=1

𝐶∑
𝑐=1

𝑅𝑏,𝑑 ⋅ 𝑋p𝑎,𝑏,𝑑,𝑒,𝑐 ≤ 𝑊𝑎,𝑑 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷,
(2)

𝐵∑
𝑏=1

𝐸∑
𝑒=1

(𝑌p𝑏,𝑐,𝑑,𝑒 ⋅ 𝑅𝑏,𝑑) = 𝑍𝑐,𝑑 ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, (3)

𝐸∑
𝑒=1

𝑌p𝑏,𝑐,𝑑,𝑒 =
𝐴∑
𝑎=1

𝐸∑
𝑒=1

𝑋p𝑎,𝑏,𝑑,𝑒,𝑐 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, (4)

𝐷∑
𝑑=1

(𝑃𝑑 ⋅ 𝐴∑
𝑎=1

𝐸∑
𝑒=1

𝐶∑
𝑐=1

𝑋p𝑎,𝑏,𝑑,𝑒,𝑐) ≤ 𝑇c𝑏 ⋅ 𝑉𝑏 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, (5)

𝑋o𝑎,𝑏,𝑑,𝑒1,𝑐
⋅ 𝑇f𝑎,𝑏,𝑒 + 𝑌o𝑏,𝑐,𝑑,𝑒2 ⋅ 𝑇p𝑏,𝑑 + 𝑌o𝑏,𝑐,𝑑,𝑒2 ⋅ 𝑇m𝑏,𝑐,𝑒 ≤ 𝑇c𝑐,𝑒

∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑒1, 𝑒2 = 1 ⋅ ⋅ ⋅ 𝐸, (6)

𝑅1𝑎,𝑏,𝑒 ⋅ 𝑋c𝑎,𝑏,𝑒 ⋅ 𝑃t𝑒 ≥
𝐶∑
𝑐=1

𝑋p𝑎,𝑏,𝑑,𝑒,𝑐 ⋅ 𝑃𝑑 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (7)

𝑅2𝑏,𝑐,𝑒 ⋅ 𝑌c𝑏,𝑐,𝑒 ⋅ 𝑃t𝑒 ≥ 𝑌p𝑏,𝑐,𝑑,𝑒 ⋅ 𝑃𝑑 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (8)

𝑅𝑎𝑎,𝑏,𝑒 ⋅ 𝑋c𝑎,𝑏,𝑒 ⋅ 𝑇t𝑒 ≥
𝐶∑
𝑐=1

𝑋p𝑎,𝑏,𝑑,𝑒,𝑐 ⋅ 𝑇𝑑 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (9)

𝑅𝑏𝑏,𝑐,𝑒 ⋅ 𝑌c𝑏,𝑐,𝑒 ⋅ 𝑇t𝑒 ≥ 𝑌p𝑏,𝑐,𝑑,𝑒 ⋅ 𝑇𝑑 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (10)

𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝑋c𝑎,𝑏,𝑒 +
𝐶∑
𝑐=1

𝐵∑
𝑏=1

𝑌𝑐,𝑏,𝑒 ≤ 𝑍t𝑒 ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (11)

𝐴∑
𝑎=1

𝐸∑
𝑒=1

𝑋c𝑎,𝑏,𝑒 ≤ 𝐶𝑊 ⋅ 𝑇c𝑏 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, (12)

𝑋p𝑎,𝑏,𝑑,𝑒,𝑐 ≤ 𝐶𝑊 ⋅ 𝑋o𝑎,𝑏,𝑑,𝑒,𝑐 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, (13)

𝑌p𝑏,𝑐,𝑑,𝑒 ≤ 𝐶𝑊 ⋅ 𝑌o𝑏,𝑐,𝑑,𝑒 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝑏, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (14)

𝑇ba𝑎,𝑏,𝑒 = 𝐴𝑎,𝑏,𝑒 ⋅ 𝑋c𝑎,𝑏,𝑒 +
𝐷∑
𝑑=1

𝐾1𝑎,𝑏,𝑑,𝑒 ⋅
𝐶∑
𝑐=1

𝑋p𝑎,𝑏,𝑑,𝑒,𝑐 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (15)

𝑇bg𝑏,𝑐,𝑒 =
𝐷∑
𝑑=1

𝐾2𝑏,𝑐,𝑑,𝑒 ⋅ 𝑌p𝑏,𝑐,𝑑,𝑒 + 𝐺𝑏,𝑐,𝑒 ⋅ 𝑌c𝑏,𝑐,𝑒 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (16)

𝑋p𝑎,𝑏,𝑐,𝑒,𝑑 ≥ 0 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, (17)

𝑋p𝑎,𝑏,𝑐,𝑒,𝑑 ∈ 𝐶 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, (18)

𝑋o𝑎,𝑏,𝑐,𝑒,𝑑 ∈ {0, 1} ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, (19)

𝑋c𝑎,𝑏,𝑒 ≥ 0 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (20)

𝑋c𝑎,𝑏,𝑒 ∈ 𝐶 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (21)

𝑌p𝑏,𝑐,𝑑,𝑒 ≥ 0 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (22)

𝑌p𝑏,𝑐,𝑑,𝑒 ∈ 𝐶 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝑏, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (23)

𝑌o𝑏,𝑐,𝑑,𝑒 ∈ {0, 1} ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (24)
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𝑌c𝑏,𝑐,𝑒 ≥ 0 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (25)

𝑌c𝑏,𝑐,𝑒 ∈ 𝐶 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (26)

𝑇c𝑏 ∈ {0, 1} ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, (27)

LogicS (𝑑, 𝑏1, 𝑏2) ∀𝑑 ∈ 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏1, 𝑏2 ∈ 1 ⋅ ⋅ ⋅ 𝐵, 𝑏1 ̸= 𝑏2, (28)

LogicS𝑛 (𝑑1, . . . , 𝑑𝑖, 𝑏, 𝐵𝑛) ∀𝑑1, 𝑑2, . . . , 𝑑𝑖 ∈ 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏 ∈ 1 ⋅ ⋅ ⋅ 𝐵, 𝑑𝑖 ̸= 𝑑𝑗, (29)

LogicExl (𝑑1, 𝑑2, 𝑏, 𝑎, 𝑒) ∀𝑑1, 𝑑2 ∈ 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏 ∈ 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑎 ∈ 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑒 ∈ 1 ⋅ ⋅ ⋅ 𝐸, 𝑑1 ̸= 𝑑2. (30)

4.3.The Transformation of IllustrativeModels. Thepossibility
of transformation of the problem is an important feature
of the proposed method. Multidimensional transformation
TCLP (Section 3.1) was used in the illustrative examples as a
presolving method. The representation of the problem was
altered using S-structure of the problem and D-data. Our
goal was the transformation of the problem to make a sig-
nificant reduction in its size without changing the problem.
It consisted in changing the representation of the problem.
Any acceptable routes connecting factories, distributors, and
customers were generated based on the set of facts relating to
orders and supply chain structure.

Then, the specific values of parameters likemanufacturers
a, distributors b, products d, mode of transport form factory
to distributor 𝑒1, mode of transport form distributor to
customer 𝑒2, and customers c (Table 2) were assigned to each
of the acceptable routes. Thus, only one parameter, 𝑋p (the
volume of supplies), needs to be determined.

This means that six sets of parameters more were to be
determined before the transformation. In this step the sets
of decision variables 𝑋T and constraints CT were subject to
change.Thereby, the obtainedmodel after the transformation
MILP T (1T)–(17T) has different decision variables and
different constraints than those in the MILP (1)–(27). Some
of the decision variables are redundant; other variables are
subject to aggregation. This results in a dramatic reduction

in their number. Decision variables before and after the
transformation are shown in Table 3(a). The transformation
also reduces or eliminates some of the constraints of the
model. Thus, constraints (4), (6), (12), (13), and (14), present
in theMILP (1)–(27) and shown in Section 4.2, are redundant
in theMILP T. Balance constraint (4) is unnecessary because
the route defines the specific distribution center. Only those
routes that meet the time constraints are generated; therefore
constraint (6) does not make sense. Binarity ensures whether
or not the route occurs; thus constraint (12) is redundant.
Reduction of certain variables also affects the reduction of
constraints, hence the lack of constraints (13) and (14), in the
model. Constraints before and after the transformation are
shown in Table 3(b).

In the following step of the transformation, the properties
of the CLP including constraint propagation were used to
find, based on the domains (Tables 4 and 5), certain quantities
and create a new set of additional constraints CAT (Table 6).
Therefore, transformed model (MILP T) was extended to
additional constraints (1AC)–(6AC). These constraints affect
the efficiency of the search for a solution by narrowing down
the search area. It is obvious that the transformed model
(MILP T) can be extended from logical constraints (28)–(30)
to a hybrid model (HM).

The proposed transformation improves the efficiency and
effectiveness of the constraint propagation by reduction of
the number of backtracks. It will be explicitly shown in the
numerical experiments in Section 4.6.

𝐸∑
𝑒=1

𝑂d𝑒 ⋅ (
𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝑋c𝑎,𝑏,𝑒 +
𝑏∑
𝑏=1

𝑐∑
𝑐=1

𝑌c𝑏,𝑐,𝑒) + 𝐴∑
𝑎=1

𝐷∑
𝑑=1

𝐵∑
𝑏=1

𝐶∑
𝑐=1

𝐸∑
𝑒1=1

𝐸∑
𝑒2=1

(𝑋T
p𝑎,𝑑,𝑏,𝑐,𝑒1,𝑒2

⋅ 𝐾z𝑎,𝑑,𝑏,𝑐,𝑒1 ,𝑒2
) + 𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝑂∑
𝑒=1

(𝑋c𝑎,𝑏,𝑒 ⋅ 𝐾sc𝑎,𝑏,𝑒)

+ 𝐵∑
𝑏=1

𝐶∑
𝑐=1

𝐸∑
𝑒=1

(𝑌c𝑏,𝑐,𝑒 ⋅ 𝐾sm𝑏,𝑐,𝑒) + 𝐵∑
𝑏=1

𝑇c𝑏 ⋅ 𝐹𝑏,
(1T)

𝑏∑
𝑏=1

𝐶∑
𝑐=1

𝐸∑
𝑒1=1

𝐸∑
𝑒2=1

𝑋T
p𝑎,𝑑,𝑏,𝑐,𝑒1,𝑒2

≤ 𝑊𝑎,𝑑 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, (2T)
𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝐸∑
𝑒1=1

𝐸∑
𝑒2=1

𝑋T
p𝑎,𝑑,𝑏,𝑐,𝑒1,𝑒2

= 𝑍𝑐,𝑑 ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, (3T)
𝐴∑
𝑎=1

𝐷∑
𝑑=1

𝐶∑
𝑐=1

𝐸∑
𝑒1=1

𝐸∑
𝑒2=1

𝑋T
p𝑎,𝑑,𝑏,𝑐,𝑒1 ,𝑒2

≤ 𝑉𝑏 ⋅ 𝑇c𝑏 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, (4T)



Mathematical Problems in Engineering 9

𝐷∑
𝑑=1

𝐶∑
𝑐=1

𝐸∑
𝑒2=1

(𝑃𝑑 ⋅ 𝑋T
p𝑎,𝑑,𝑏,𝑐,𝑒1 ,𝑒2

) ≤ 𝑃t𝑒1 ⋅ 𝑋c𝑎,𝑏,𝑒1
∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑒1 = 1 ⋅ ⋅ ⋅ 𝐸, (5T)

𝐴∑
𝑎=1

𝐷∑
𝑑=1

𝐸∑
𝑒1=1

(𝑃𝑑 ⋅ 𝑋T
p𝑎,𝑑,𝑏,𝑐,𝑒1,𝑒2

) ≤ 𝑃t𝑒2 ⋅ 𝑌c𝑏,𝑐,𝑒2 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒2 = 1 ⋅ ⋅ ⋅ 𝐸, (6T)
𝐷∑
𝑑=1

𝐶∑
𝑐=1

𝐸∑
𝑒2=1

(𝑇𝑑 ⋅ 𝑋T
p𝑎,𝑑,𝑏,𝑐,𝑒1 ,𝑒2

) ≤ 𝑇t𝑒1
⋅ 𝑋c𝑎,𝑏,𝑒1

∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑒1 = 1 ⋅ ⋅ ⋅ 𝐸, (7T)
𝐴∑
𝑎=1

𝐷∑
𝑑=1

𝐸∑
𝑒2=1

(𝑇𝑑 ⋅ 𝑋T
p𝑎,𝑑,𝑏,𝑐,𝑒1 ,𝑒2

) ≤ 𝑇t𝑒1
⋅ 𝑌c𝑏,𝑐,𝑒1 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒1 = 1 ⋅ ⋅ ⋅ 𝐸, (8T)

𝐴∑
𝑎=1

𝑏∑
𝑏=1

𝑋c𝑖,𝑠,𝑑 +
𝐵∑
𝑏=1

𝐶∑
𝑐=1

𝑌c𝑏,𝑐,𝑒 ≤ 𝑍t𝑒 ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (9T)
𝑋T

p𝑎,𝑑,𝑏,𝑐,𝑒1,𝑒2
= 0 ∀𝑋d𝑎,𝑑,𝑏,𝑐,𝑒1 ,𝑒2

= 0, ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒1, 𝑒2 = 1 ⋅ ⋅ ⋅ 𝐸, (10T)
𝑋T
𝑎,𝑑,𝑏,𝑐,𝑒1 ,𝑒2

≥ 0 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒1, 𝑒2 = 1 ⋅ ⋅ ⋅ 𝐸, (11T)
𝑋c𝑎,𝑏,𝑒 ≥ 0 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (12T)
𝑌c𝑏,𝑐,𝑒 ≥ 0 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (13T)
𝑋T

p𝑎,𝑑,𝑏,𝑐,𝑒1,𝑒2
∈ 𝐶 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑑 = 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒1, 𝑒2 = 1 ⋅ ⋅ ⋅ 𝐸, (14T)

𝑋c𝑎,𝑏,𝑒 ∈ 𝐶 ∀𝑎 = 1 ⋅ ⋅ ⋅ 𝐴, ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (15T)
𝑌c𝑏,𝑐,𝑒 ∈ 𝐶 ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑐 = 1 ⋅ ⋅ ⋅ 𝐶, ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (16T)
𝑇c𝑏 ∈ {0, 1} ∀𝑏 = 1 ⋅ ⋅ ⋅ 𝐵, (17T)
LogicST (𝑑, 𝑏1, 𝑏2) ∀𝑑 ∈ 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏1, 𝑏2 ∈ 1 ⋅ ⋅ ⋅ 𝐵, 𝑠1 ̸= 𝑠2, (18T)
LogicS𝑛

T (𝑑1, . . . , 𝑑𝑖, 𝑏, 𝐵𝑛) ∀𝑑1, 𝑑2, . . . , 𝑘𝑖 ∈ 1 ⋅ ⋅ ⋅ 𝑂, ∀𝑏 ∈ 1 ⋅ ⋅ ⋅ 𝐵, 𝑑𝑖 ̸= 𝑑𝑗, (19T)
LogicExlT (𝑑1, 𝑑2, 𝑏, 𝑎, 𝑒) ∀𝑑1, 𝑑2 ∈ 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏 ∈ 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑒 ∈ 1 ⋅ ⋅ ⋅ 𝐸, ∀𝑎 ∈ 1 ⋅ ⋅ ⋅ 𝐴, 𝑑1 ̸= 𝑑2, (20T)
𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝑋c𝑎,𝑏,𝑒 +
𝐵∑
𝑏=1

𝐶∑
𝑐=1

𝑌c𝑏,𝑐,𝑒 ≥ 𝑅min𝑒 ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (1AC)
𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝑋c𝑎,𝑏,𝑒 +
𝐵∑
𝑏=1

𝐶∑
𝑐=1

𝑌c𝑏,𝑐,𝑒 ≤ 𝑅max𝑒 ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (2AC)
𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝐸∑
𝑒=1

𝑋c𝑎,𝑏,𝑒 ≥ F C, (3AC)
𝐵∑
𝑏=1

𝐶∑
𝑐=1

𝐸∑
𝐸=1

𝑌c𝑏,𝑐,𝑒 ≥ C C, (4AC)
𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝐸∑
𝑒=1

𝑋c𝑎,𝑏,𝑒 +
𝑏∑
𝑏=1

𝐶∑
𝑐=1

𝐸∑
𝑒=1

𝑌c𝑏,𝑐,𝑒 ≥ min TU, (5AC)
𝐵∑
𝑏=1

𝑇c𝑏 ≥ Cn. (6AC)
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4.4. Soft Constraints. Constraints of the transformed model
can be satisfied in the hard or soft form. This is due to
practical circumstances. For some of the constraints, it is
difficult to satisfy in full (hard), due to limited resources,
time, technology, and so forth or their fulfillment requires
unacceptable computational effort.

In the highly competitive environment we need to know
howmuch “costs” exceed a given constraint or fulfill it in part.

Such constraints can be satisfied in an approximate way,
that is, in the soft form. In this case, how this affects the value
of the objective function should be determined.

The softening of constraints in this approach is a process
which contains the following: (a) changing their form and (b)
introducing a modification to the objective function.

For instance, four constraints of the transformedmodel of
illustrative example (9T), (18T), (19T), and (20T) have been
converted into soft form, (2S), (3S), (4S), and (5S).

Constraint (2S) allows exceeding the limit of available
number of transportation units using transportation mode e.

Constraints (3S), (4S), and (5S) allow the possibility of
not fulfilling exclusions imposed by logical constraints (18T),(19T), and (20T).

For this purpose, the three additional components to the
objective function have been introduced as a penalty for
violation of constraint (1S). Table 7 shows parameters and
decision variables necessary to modify the model with soft
constraints.

𝐴∑
𝑎=1

𝐾ri𝑎 ⋅ 𝑋ri𝑎 +
𝐸∑
𝑒=1

𝐾rd𝑒 ⋅ 𝑋rd𝑒 +
𝐵∑
𝑏=1

𝐾rs𝑏 ⋅ 𝑋rs𝑏 , (1S)
𝐴∑
𝑎=1

𝐵∑
𝑏=1

𝑋c𝑎,𝑏,𝑒 +
𝐵∑
𝑏=1

𝐶∑
𝑐=1

𝑌c𝑏,𝑐,𝑒 ≤ 𝑍t𝑒 + 𝑋rd𝑒 ∀𝑒 = 1 ⋅ ⋅ ⋅ 𝐸, (2S)
SoftLogicST (𝑑, 𝑏1, 𝑏2) ∀𝑑 ∈ 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏1, 𝑏2 ∈ 1 ⋅ ⋅ ⋅ 𝐵, 𝑏1 ̸= 𝑏2, (3S)

SoftLogicS𝑛
T (𝑑1, . . . , 𝑑𝑖, 𝑏, 𝐵𝑛) ∀𝑑1, 𝑑2, . . . , 𝑑𝑖 ∈ 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏 ∈ 1 ⋅ ⋅ ⋅ 𝐵, 𝑑𝑖 ̸= 𝑑𝑗, (4S)

SoftLogicExlT (𝑑1, 𝑑2, 𝑏, 𝑎, 𝑒) ∀𝑑1, 𝑑2 ∈ 1 ⋅ ⋅ ⋅ 𝐷, ∀𝑏 ∈ 1 ⋅ ⋅ ⋅ 𝐵, ∀𝑒 ∈ 1 ⋅ ⋅ ⋅ 𝐸, ∀𝑎 ∈ 1 ⋅ ⋅ ⋅ 𝐴, 𝑑1 ̸= 𝑑2. (5S)

4.5. Decision Support. The implementation of the presented
models by DHIF allows the decision support in the following
areas of the supply chain management (including but not
limited to):

(i) The cost optimization of the supply chain manage-
ment (Table 8).

(ii) The volume/capacity of distributor depots/storehous-
es and the investigation of their influence on the
overall costs (Figure 4(a), Table 9).

(iii) The selection of the capacity of transportation units
and modes, the transport fleet number for specific
entire costs (Table 10, Figure 4(b)).

(iv) The selection of a set of routes for cost optimization
(Figure 5(a)).

(v) Implementation of logical constraints in deliveries
that result from technology, security,marketing, com-
petition, and sales reasons (Table 8, Q1, Q2, Q3, and
Figure 5(b)).

(vi) Costs exceeding the available means of transport (soft
constraints), Table 11.

Supporting this type of decision is extremely important in
a highly competitive environment. Making optimal choices
under existing constraints within an acceptable time gives
you a competitive advantage.

4.6. Computational Experiments and Analysis. A number
of numerical experiments were conducted to verify and
evaluate the proposed method, models, and framework. All
the numerical examples refer to the supply chain with twenty
customers (𝑐 = 1 ⋅ ⋅ ⋅ 20), four distributors (𝑏 = 1 ⋅ ⋅ ⋅ 4), five
manufacturers (𝑎 = 1 ⋅ ⋅ ⋅ 5), and four modes of transport(𝑒 = 1 ⋅ ⋅ ⋅ 4). In the first phase of the experiments, the
optimization was performed for ten examples, Pn1–Pn10,
for the MILP model (1)–(27). The computational examples
vary in the number of orders (N). The capacity available
to the distributors 𝑏 (𝑉1 = 𝑉2 = 𝑉3 = 𝑉4 = 2000)
and the number of transport units (𝑍t1 = 40, 𝑍t2 =60, 𝑍t1 = 60, 𝑍t1 = 70) using the mode of transport e
were the same for all the examples. The experiments were
conducted to show the effectiveness and efficiency of the
declarative hybrid method and implementation framework
and their advantage over other methods. In order to prove
this, model (1)–(27) was implemented in both the declar-
ative hybrid implementation framework (DHIF) (MILP T)
and the mathematical programming environment (MILP).
The experiments that follow were conducted to optimize
examples Pn11–Pn20, which are the implementations of the
hybrid model (HM) (1)–(30) in the DHIF. Examples Pn11–
Pn20 were obtained from Pn1–Pn10 by the addition of logical
constraints: (28) for Q3 series, (29) for Q2 series, and (30)
for Q1 series. For example, Pn1–Pn3 the optimal solution for
the MILP T implementation in the DHIF was found faster
than that for the MILP implementation in mathematical
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Table 3: (a) Decision variables used in the MILP and MILP T models. (b) Constraints used in the MILP and MILP T models.

(a)

MILP MILP T Description of the decision variables after the multidimensional transformation
(𝑋O) (𝑋T)
𝑋p𝑎,𝑏,𝑐,𝑒1 ,𝑑 𝑋T

p𝑎,𝑑,𝑏,𝑐,𝑒1,𝑒2
Decision variable𝑋T

p , unlike the initial decision variables𝑋p, 𝑌p, is generated only for technologically
possible indices combinations; it defines the allocation size of product 𝑑 to the route of deliveries𝑌p𝑏,𝑐,𝑑,𝑒2𝑋o𝑎,𝑏,𝑑,𝑒,𝑐 Unnecessary After transformation replaced by the appropriate factor for the route, generated by the CLP

𝑋c𝑎,𝑏,𝑒 𝑋c𝑎,𝑏,𝑒 Without change, the same sense
𝑌a𝑠,𝑗,𝑘,𝑑 Unnecessary After transformation replaced by the appropriate factor for the route, generated by the CLP
𝑌o𝑏,𝑐,𝑒 𝑌o𝑏,𝑐,𝑒 Without change, the same sense
𝑇c𝑏 𝑇c𝑏 Without change, the same sense

(b)

MILP MILP T Description of the constraints after the multidimensional
transformation

(CO) (CT)
(1) (1T) Objective function (the same meaning)
(2) (2T) Themanufacturer’s production capacity (the same meaning)
(3) (3T) The customer’s demands (the same meaning)

(4) Unnecessary Redundant after transformation (results from the decision variable𝑋T)
(5) (4T) The distributor’s capacity/volume (the same meaning)

(6) Unnecessary
Redundant after transformation

During the transformation generates routes that meet the time
constraint

(7), (8), (9), (10) (5T), (6T), (7T), (8T) The appropriate number of means of transport (the same sense)

(11) (9T) The sum of the number of means of transport used does not exceed
the limit of their number (the same meaning)

(12) Unnecessary Redundant after transformation (ensures constraint (4))

(13), (14) Unnecessary Redundant after transformation
After transformation replaced by the appropriate factor for the route

(15), (16) Unnecessary
Redundant after transformation

Calculate the auxiliary parameters, performed by CLP in
transformation

(17)–(27) (11)–(17) Integrity and binarity
(28)–(30) (18T)–(20T) Logic constraints (the same meaning)
— (10) Resetting the nonexisting routes after transformation

(CAT)
— (1AC)–(6AC) Additional constraints increase the range of propagation

programming environment (Table 7). For illustrative models,
the use of this method allows obtaining optimal solutions
eight to one hundred times faster, with a significant reduction
in the size of the combinatorial problem. For example, Pn4–
Pn10 the optimal solution was found only for the MILP T
implementation within an acceptable time. Owing to the
DHIF platform with the multidimensional transformation,
the number of decision variables for the above examples
was reduced even hundredfold and the number of con-
strains decreased at least 30-fold (Table 8). It is clear that
optimization of the hybrid model (HM) was, due to its
logical constraints, only possible using the declarative hybrid
implementation framework. Also, the presented declarative

hybridmethod brought the expected results for thismodel. In
further experiments, parameters such as number of transport
units, distributor capacity were changed to observe the effect
of this change on the optimal value of the objective function.
Thus, Figure 4(a) shows the effect of capacity 𝑉 (distributor)
on the objective function Fcopt. Actual use of the distributor
capacity (𝑉𝑥1 , 𝑉𝑥2 , 𝑉𝑥3) for particular distributors is shown in
Table 9. In contrast, Table 10 and Figure 4(b) show the effect
of the parameter 𝑍t𝑒 on the objective function Fcopt.

Table 11 shows the results of the optimization model
MILP T with the constraint on the number of means of
transport in hard version (9T) and soft version (2S). Compu-
tation times for the model with a soft constraint are slightly
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Table 4: Input parameters determined by CLP for MILP T.

Symbol Description

𝐾z𝑎,𝑑,𝑏,𝑐,𝑒1 ,𝑒2

The variable cost of supply of product item d from
factory a to customer c via distributor b using
modes of transportation 𝑒1 and 𝑒2 (CLP, based on
fixed data)

𝑋d𝑎,𝑑,𝑏,𝑐,𝑒1 ,𝑒2

The binary parameter which is equal to 1 if there is
a route for specific 𝑎, 𝑑, 𝑏, 𝑐, 𝑒1, 𝑒2 and zero
otherwise

𝐾sc𝑎𝑎,𝑏,𝑒

The cost of the course/route from the factory a to
distributor b using mode of transportation e (CLP,
based on fixed data)

𝐾sm𝑏,𝑐,𝑒

The cost of the course/route from the distributor b
to customer c using mode of transportation e
(CLP, based on fixed data)

Table 5: Figures determined by CLP for MILP T.

Symbol Description

𝑅min𝑒
Minimum number of transport units 𝑒
(CLP-constraint propagation)

𝑅max𝑒
Maximum number of transport units 𝑒
(CLP-constraint propagation)

F C
Minimum number of transportation units in the
route Factories – Distributors (CLP-constraint
propagation)

C C
Minimum number of transportation units in the
route, distributors – customers (CLP-constraint
propagation)

Min TU Minimum number of transportation units
(CLP-constraint propagation)

Cn Minimum number of active distributors
(CLP-constraint propagation)

Table 6: Additional constraints for MILP T.

Constraints Description

(1AC) Narrowing the size of the transport unit domain
from the bottom

(2AC) Narrowing the size of the transport unit domain
from the top

(3AC) Theminimum number of all transport unit types
necessary for the shipment from the factory to the
distributors/distribution centers

(4AC) Theminimum number of all transport unit types
necessary for the shipment from the
distributors/distribution centers to customers

(5AC) Theminimum number of transportation units in
routes

(6AC) The number of working distributors/distribution
centers

worse than the version with limited hard constraint. The
differences are fully acceptable. You can also see the impact of
the application of constraint (2S) on the objective function.
And, most importantly, we managed to find the optimum
solution, for example, P3 (30) in the model MILP T with
constraint (2S).

Table 7

Input parameters

𝐾rs𝑏
Penalty coefficient if two selected type of products are

stored together, despite the ban

𝐾rd𝑒
Penalty coefficient for the use of means of transport

over the limit

𝐾ri𝑎
Penalty coefficient if two selected types of products are

produced together, despite the ban
Decision variables

𝑋rs𝑏
How many pairs of type of products are stored together

in the distribution center 𝑏 despite the ban?𝑋rd𝑒 Howmany modes of transport 𝑒 are used over the limit?

𝑋ri𝑎
How many pairs of type of products are produced

together in the factory 𝑖 despite the ban?

Table 8: The results of numerical examples for both methods.

(a)

Pn (𝑁) DHIP
MILP T

Fcopt 𝑇 𝑉 (𝑉int) 𝐶
Pn1(10) 165180 10 818 (788) 1367
Pn2 (20) 570715 35 987 (948) 1376
Pn3 (30) 897015 71 1264 (1220) 1381
Pn4 (40) 1564990 145 1536 (1492) 1381
Pn5 (50) 2619310 201 1696 (1652) 1381
Pn6 (60) 2963030 254 2080 (2036) 1381
Pn7 (70) 3860300 290 2240 (2196) 1381
Pn8 (80) 4786960 320 2512 (2468) 1381
Pn9 (90) 5964200 321 2779 (2736) 1380
Pn10 (100) 7397970 367 2939 (2896) 1380

(b)

Pn (𝑁) Mathematical programming
MILP

Fcopt 𝑇 𝑉 (𝑉int) 𝐶
Pn1 (10) 165180 84 80117 (79204) 47426
Pn2 (20) 570715 752 80117 (79204) 50626
Pn3 (30) 897015 7248 80117 (79204) 53826
Pn4 (40) 1613453∗ 600∗∗ 80117 (79204) 57026
Pn5 (50) 2699720∗ 600∗∗ 80117 (79204) 60226
Pn6 (60) 3003310∗ 600∗∗ 80117 (79204) 63426
Pn7 (70) 4062950∗ 600∗∗ 80117 (79204) 66626
Pn8 (80) 5092400∗ 600∗∗ 80117 (79204) 69826
Pn9 (90) 6543450∗ 600∗∗ 80117 (79204) 73026
Pn10 (100) 8213450∗ 600∗∗ 80117 (79204) 76226

(c)

Pn (𝑁)
Q1

DHIP
HM

Fcopt 𝑇 𝑉 (𝑉int) 𝐶
Pn11 (10) 193590 17 829 (800) 1384
Pn12 (20) 641315 45 999 (960) 1394
Pn13 (30) 1000770 82 1276 (1232) 1399
Pn14 (40) 1677290 198 1548 (1504) 1399
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(c) Continued.

Pn (𝑁)
Q1

DHIP
HM

Fcopt 𝑇 𝑉 (𝑉int) 𝐶
Pn15 (50) 2638270 234 1708 (1664) 1399
Pn16 (60) 3046250 298 2092 (2045) 1399
Pn17 (70) 3970820 311 2252 (2208) 1399
Pn18 (80) 4854680 345 2524 (2480) 1399
Pn19 (90) 6034960 401 2791 (2748) 1398
Pn20 (100) 7475980 453 2951 (2908) 1398

(d)

Pn (𝑁)
Q2

DHIP
HM

Fcopt 𝑇 𝑉 (𝑉int) 𝐶
Pn11 (10) 165180 11 821 (792) 1371
Pn12 (20) 570715 38 991 (952) 1381
Pn13 (30) 897015 74 1268 (1224) 1386
Pn14 (40) 1564990 151 1540 (1496) 1386
Pn15 (50) 2631090 204 1700 (1656) 1386
Pn16 (60) 2998950 260 2084 (2040) 1386
Pn17 (70) 3945430 296 2244 (2200) 1386
Pn18 (80) 4796250 321 2516 (2472) 1386
Pn19 (90) 6004750 378 2783 (2740) 1385
Pn20 (100) 7652490 421 2943 (2900) 1385

(e)

Pn (𝑁)
Q3

DHIP
HM

Fcopt 𝑇 𝑉 (𝑉int) 𝐶
Pn11 (10) 165180 9 801 (772) 1266
Pn12 (20) 570715 31 971 (922) 1276
Pn13 (30) 897015 67 1240 (1196) 1381
Pn14 (40) 1571600 134 1504 (1460) 1381
Pn15 (50) 2634620 198 1664 (1620) 1381
Pn16 (60) 3000310 234 2032 (1988) 1381
Pn17 (70) 4027740 287 2192 (2148) 1381
Pn18 (80) 4916740 311 2456 (2412) 1381
Pn19 (90) 5978220 318 2715 (2672) 1380
Pn20 (100) 7475980 332 2875 (2832) 1380

Fcopt: the optimal value of Fc (objective function).
𝑇: time for finding solution (in seconds).
∗The feasible value of the objective function after the time 𝑇.
∗∗Calculation was stopped after 600 s.
𝑉 (𝑉int): the number of decision variables (integer decision variables).
𝐶: the number of constraints.
MILP: the implementation in the MP-based environment - MILPmodel.
MILP T: the implementation in the declarative hybrid implementation
framework (DHIF) MILP model after transformation.
HM: implementation in the declarative hybrid implementation frame-
work (DHIF) model after transformation.

5. Conclusions

In the highly competitive environment we are often forced to
make quick and optimal decisions while assessing their costs.

Table 9: Analysis of the impact parameter𝑉𝑠 (distributormaximum
capacity) for Fcopt.

𝑉 = 𝑉1 = 𝑉2 = 𝑉3 = 𝑉4 Fcopt
Distributor capacity

utilization
𝑉𝑥1 𝑉𝑥2 𝑉𝑥3 𝑉𝑥4

500 NFSF — — — —
600 1543390 550 598 600 297
700 1165630 664 700 681 0
800 1103310 510 760 775 0
1000 991305 200 860 985 0
1100 915015 0 975 1070 0
1500 897015 0 925 1120 0
2000 897015 0 925 1120 0
2200 897015 0 925 1120 0
2600 897015 0 925 1120 0
3000 897015 0 925 1120 0
NFSF: no feasible solution found.

Table 10: Analysis of the impact parameter 𝑍t𝑒 (the number of
transport units using mode of transport e) for Fcopt.

𝑍t1 = 𝑍t2 = 𝑍t3 = 𝑍t4 Fcopt
Number of transport

units used
𝑍𝑥1 𝑍𝑥2 𝑍𝑥3 𝑍𝑥4

10 NFSF — — — —
15 1010170 5 3 14 15
20 963165 5 3 12 20
25 927915 5 3 9 25
30 897015 5 3 7 29
35 897015 5 3 7 29

As it has been shown to support such decisions use of the
presented approach and model is very effective.

The effectiveness of the proposed declarative hybrid
method with multidimensional transformation is based on
the reduction of a combinatorial optimization problem.

Thus, the application of this method practically to all the
SCM optimization models ensures that the same or better
solutions are found eight to more than one hundred times
faster (very often optimal instead of feasible solutions). It
needs to be highlighted that the proposed method not only
enables faster solving of optimization problems but also
enables faster solving of problems larger than those in [22, 25]
(Table 8).

The proposed models and methods are highly recom-
mended for all types of optimization problems in SCM
or for similar problems where constraints include many
discrete decision variables and their summation. Moreover,
the proposedmethod allows successful modeling and solving
of problems with logical constraints and therefore the DHIF
implementations can be applied to area of logistics, transport,
production, and scheduling or project management.
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Figure 4: (a) Diagram visualizing the impact of parameter 𝑉𝑠 (distributor maximum capacity) for Fcopt. (b) Diagram visualizing the impact
of parameter 𝑍t𝑒 (number of transportation units using transportation mode e) for Fcopt. (c) The number of used transport units (mode 𝑒𝑖,
the limit 𝑍t𝑒 ).
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Figure 5: (a) The structure of the supply chain network with multimodal transport for Pn4 (40) and Fcopt. (b) The structure of the supply
chain network with multimodal transport for Pn14 (40) with Q1 and Fcopt.
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Table 11: The results of numerical examples for MILP T with hard(9T) and soft (2S) constraints.
P𝑖 (𝑁) 𝑒 𝑍t𝑒 𝑉 𝐶 𝑇 Fcopt 𝑍𝑥𝑒

Hard

P1 (10)
1 2

846 (818) 1385 7 619

1
2 2 1
3 3 3
4 4 4

P2 (20)
1 2

1015 (978) 1395 121 1584

2
2 5 5
3 10 7
4 15 15

P3 (30)
1 3

1292 (1250) 1400 — NFFS

—
2 4 —
3 10 —
4 15 —

P4 (40)
1 3

1564 (1522) 1400 159 3675

3
2 10 10
3 15 14
4 30 30

Soft 𝐾rd1 = 𝐾rd2 = 𝐾rd3 = 𝐾rd4 = 1
P1 (10)

1 2

851 (822) 1386 6 603

1
2 2 1
3 3 1
4 4 8

P2 (20)
1 2

1020 (982) 1396 146 1568

3
2 5 3
3 10 16
4 15 17

P3 (30)
1 3

1297 (1254) 1401 510 2461

4
2 4 5
3 10 7
4 15 29

P4 (40)
1 3

1569 (1526) 1401 89 3599

6
2 10 4
3 15 9
4 30 40

Soft 𝐾rd1 = 𝐾rd2 = 𝐾rd3 = 𝐾rd4 = 5
P1 (10)

1 2

851 (822) 1386 5 619

1
2 2 1
3 3 1
4 4 8

P2 (20)
1 2

1020 (982) 1396 227 1580

3
2 5 3
3 10 16
4 15 17

P3 (30)
1 3

1297 (1254) 1401 203 2560

4
2 4 4
3 10 10
4 15 23

P4 (40)
1 3

1569 (1526) 1401 263 3651

6
2 10 4
3 15 9
4 30 40

Table 11: Continued.

P𝑖 (𝑁) 𝑒 𝑍t𝑒 𝑉 𝐶 𝑇 Fcopt 𝑍𝑥𝑒
Soft 𝐾rd1 = 𝐾rd2 = 𝐾rd3 = 𝐾rd4 = 10

P1 (10)
1 2

851 (822) 1386 8 619

1
2 2 1
3 3 3
4 4 4

P2 (20)
1 2

1020 (982) 1396 185 1584

2
2 5 5
3 10 7
4 15 15

P3 (30)
1 3

1297 (1254) 1401 383 2616

4
2 4 4
3 10 11
4 15 21

P4 (40)
1 3

1569 (1526) 1401 318 3668

6
2 10 4
3 15 14
4 30 30

𝑒: mode of transport (𝑒 = 1 ⋅ ⋅ ⋅ 𝐸).
𝑍t𝑒: number of transportation units using transportation mode e.
𝑍𝑥𝑒: number of used transportation units using transportation mode e.
𝐾rd𝑖: penalty coefficient.
NFFS: Not found feasible solution.

In addition to nonquestionable effectiveness and effi-
ciency of the proposed method, it offers unlimited possibil-
ities of optimization problem modeling. This method is also
applicable to problems with soft constraints (Table 11).

The possibility of optimization models, which also have
soft and logical constraints, is very important for practical
applications in the highly competitive environment (in case
of violation certain constraints and assessing the impact on
the objective function).

Future studies of the proposed method and framework
will focus on the following: (a) modeling problems with
other logical and nonlinear constraints and so forth, (b)
multiobjective optimization, and (c) introduction of fuzzy
logic [26] and uncertainty to the models.
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matical programming models for supply chain production and
transport planning,” European Journal of Operational Research,
vol. 204, no. 3, pp. 377–390, 2010.



16 Mathematical Problems in Engineering

[4] K. Apt and M. Wallace, Constraint Logic Programming Using
Eclipse, Cambridge University Press, New York, NY, USA, 2006.

[5] P. Sitek and J. Wikarek, “A hybrid programming framework for
modeling and solving constraint satisfaction and optimization
problems,” Scientific Programming, vol. 2016, Article ID 5102616,
13 pages, 2016.

[6] F. Rossi, P. Van Beek, and T. Walsh, Handbook of Constraint
Programming (Foundations of Artificial Intelligence), Elsevier
Science, New York, NY, USA, 2006.

[7] G. Bocewicz andZ.A. Banaszak, “Declarative approach to cyclic
steady state space refinement: periodic process scheduling,”
International Journal of Advanced Manufacturing Technology,
vol. 67, no. 1–4, pp. 137–155, 2013.

[8] K. Bzdyra, G. Bocewicz, and Z. Banaszak, “Mass cus-
tomized projects portfolio scheduling-imprecise operations
time approach,” Applied Mechanics and Materials, vol. 791, pp.
70–80, 2015.

[9] M. G. Buscemi andU.Montanari, “A survey of constraint-based
programming paradigms,” Computer Science Review, vol. 2, no.
3, pp. 137–141, 2008.

[10] G. Kondrak and P. van Beek, “A theoretical evaluation of
selected backtracking algorithms,” Artificial Intelligence, vol. 89,
no. 1-2, pp. 365–387, 1997.

[11] S. Bistarelli, U. Montanari, and F. Rossi, “Semiring-based
constraint satisfaction and optimization,” Journal of the ACM,
vol. 44, no. 2, pp. 201–236, 1997.

[12] M. Milano and M. Wallace, “Integrating operations research in
constraint programming,” Annals of Operations Research, vol.
175, pp. 37–76, 2010.

[13] T. Achterberg, T. Berthold, T. Koch, and K. Wolter, “Constraint
integer programming. A new approach to integrate CP and
MIP,” in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, vol.
5015 of Lecture Notes in Computer Science, pp. 6–20, Springer,
2008.

[14] P. Sitek and J. Wikarek, “A hybrid method for modeling and
solving constrained search problems,” in Proceedings of the
Federated Conference on Computer Science and Information
Systems (FedCSIS ’13), pp. 385–392, IEEE, Kraków, Poland,
September 2013.

[15] P. Sitek and J. Wikarek, “Hybrid solution framework for supply
chain problems,” inDistributed Computing and Artificial Intelli-
gence, 11th International Conference, S. Omatu, H. Bersini, J. M.
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