22,777 research outputs found

    The measurement postulates of quantum mechanics are operationally redundant

    Get PDF
    Understanding the core content of quantum mechanics requires us to disentangle the hidden logical relationships between the postulates of this theory. Here we show that the mathematical structure of quantum measurements, the formula for assigning outcome probabilities (Born's rule) and the post-measurement state-update rule, can be deduced from the other quantum postulates, often referred to as "unitary quantum mechanics", and the assumption that ensembles on finite-dimensional Hilbert spaces are characterised by finitely many parameters. This is achieved by taking an operational approach to physical theories, and using the fact that the manner in which a physical system is partitioned into subsystems is a subjective choice of the observer, and hence should not affect the predictions of the theory. In contrast to other approaches, our result does not assume that measurements are related to operators or bases, it does not rely on the universality of quantum mechanics, and it is independent of the interpretation of probability.Comment: This is a post-peer-review, pre-copyedit version of an article published in Nature Communications. The final authenticated version is available online at: http://dx.doi.org/10.1038/s41467-019-09348-

    Surreal Decisions

    Get PDF
    Although expected utility theory has proven a fruitful and elegant theory in the finite realm, attempts to generalize it to infinite values have resulted in many paradoxes. In this paper, we argue that the use of John Conway's surreal numbers shall provide a firm mathematical foundation for transfinite decision theory. To that end, we prove a surreal representation theorem and show that our surreal decision theory respects dominance reasoning even in the case of infinite values. We then bring our theory to bear on one of the more venerable decision problems in the literature: Pascal's Wager. Analyzing the wager showcases our theory's virtues and advantages. To that end, we analyze two objections against the wager: Mixed Strategies and Many Gods. After formulating the two objections in the framework of surreal utilities and probabilities, our theory correctly predicts that (1) the pure Pascalian strategy beats all mixed strategies, and (2) what one should do in a Pascalian decision problem depends on what one's credence function is like. Our analysis therefore suggests that although Pascal's Wager is mathematically coherent, it does not deliver what it purports to, a rationally compelling argument that people should lead a religious life regardless of how confident they are in theism and its alternatives

    Extending the original position : revisiting the Pattanaik critique of Vickrey/Harsanyi utilitarianism

    Get PDF
    Harsanyi's original position treats personal identity, upon which each individual's utility depends, as risky. Pattanaik's critique is related to the problem of scaling "state-dependent" von Neumann-Morgenstern utility when determining subjective probabilities. But a unique social welfare functional, incorporating both level and unit interpersonal comparisons, emerges from contemplating an "extended" original position allowing the probability of becoming each person to be chosen. Moreover, the paper suggests the relevance of a "Harsanyi ethical type space", with types as both causes and objects of preference

    Robust Coin Flipping

    Full text link
    Alice seeks an information-theoretically secure source of private random data. Unfortunately, she lacks a personal source and must use remote sources controlled by other parties. Alice wants to simulate a coin flip of specified bias α\alpha, as a function of data she receives from pp sources; she seeks privacy from any coalition of rr of them. We show: If p/2r<pp/2 \leq r < p, the bias can be any rational number and nothing else; if 0<r<p/20 < r < p/2, the bias can be any algebraic number and nothing else. The proof uses projective varieties, convex geometry, and the probabilistic method. Our results improve on those laid out by Yao, who asserts one direction of the r=1r=1 case in his seminal paper [Yao82]. We also provide an application to secure multiparty computation.Comment: 22 pages, 1 figur

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page
    corecore