109,077 research outputs found

    Decision support system for in-flight emergency events

    Get PDF
    Medical problems during flight have become an important issue as the number of passengers and miles flown continues to increase. The case of an incident in the plane falls within the scope of the healthcare management in the context of scarce resources associated with isolation of medical actors working in very complex conditions, both in terms of human and material resources. Telemedicine uses information and communication technologies to provide remote and flexible medical services, especially for geographically isolated people. Therefore, telemedicine can generate interesting solutions to the medical problems during flight. Our aim is to build a knowledge-based system able to help health professionals or staff members addressing an urgent situation by given them relevant information, some knowledge, and some judicious advice. In this context, knowledge representation and reasoning can be correctly realized using an ontology that is a representation of concepts, their attributes, and the relationships between them in a particular domain. Particularly, a medical ontology is a formal representation of a vocabulary related to a specific health domain. We propose a new approach to explain the arrangement of different ontological models (task ontology, inference ontology, and domain ontology), which are useful for monitoring remote medical activities and generating required information. These layers of ontologies facilitate the semantic modeling and structuring of health information. The incorporation of existing ontologies [for instance, Systematic Nomenclature Medical Clinical Terms (SNOMED CT)] guarantees improved health concept coverage with experienced knowledge. The proposal comprises conceptual means to generate substantial reasoning and relevant knowledge supporting telemedicine activities during the management of a medical incident and its characterization in the context of air travel. The considered modeling framework is sufficiently generic to cover complex medical situations for isolated and vulnerable populations needing some care and support services

    Development of a generic activities model of command and control

    Get PDF
    This paper reports on five different models of command and control. Four different models are reviewed: a process model, a contextual control model, a decision ladder model and a functional model. Further to this, command and control activities are analysed in three distinct domains: armed forces, emergency services and civilian services. From this analysis, taxonomies of command and control activities are developed that give rise to an activities model of command and control. This model will be used to guide further research into technological support of command and control activities

    Towards Flight Trials for an Autonomous UAV Emergency Landing using Machine Vision

    Get PDF
    This paper presents the evolution and status of a number of research programs focussed on developing an automated fixed wing UAV landing system. Results obtained in each of the three main areas of research as vision-based site identification, path and trajectory planning and multi-criteria decision making are presented. The results obtained provide a baseline for further refinements and constitute the starting point for the implementation of a prototype system ready for flight testing

    Evaluation of Technology Concepts for Traffic Data Management and Relevant Audio for Datalink in Commercial Airline Flight Decks

    Get PDF
    Datalink is currently operational for departure clearances and in oceanic environments and is currently being tested in high altitude domestic enroute airspace. Interaction with even simple datalink clearances may create more workload for flight crews than the voice system they replace if not carefully designed. Datalink may also introduce additional complexity for flight crews with hundreds of uplink messages now defined for use. Finally, flight crews may lose airspace awareness and operationally relevant information that they normally pickup from Air Traffic Control (ATC) voice communications with other aircraft (i.e., party-line transmissions). Once again, automation may be poised to increase workload on the flight deck for incremental benefit. Datalink implementation to support future air traffic management concepts needs to be carefully considered, understanding human communication norms and especially, the change from voice- to text-based communications modality and its effect on pilot workload and situation awareness. Increasingly autonomous systems, where autonomy is designed to support human-autonomy teaming, may be suited to solve these issues. NASA is conducting research and development of increasingly autonomous systems, utilizing machine-learning algorithms seamlessly integrated with humans whereby task performance of the combined system is significantly greater than the individual components. Increasingly autonomous systems offer the potential for significantly improved levels of performance and safety that are superior to either human or automation alone. Two increasingly autonomous systems concepts - a traffic data manager and a conversational co-pilot - were developed to intelligently address the datalink issues in a complex, future state environment with significant levels of traffic. The system was tested for suitability of datalink usage for terminal airspace. The traffic data manager allowed for automated declutter of the Automatic Dependent Surveillance-Broadcast (ADS-B) display. The system determined relevant traffic for display based on machine learning algorithms trained by experienced human pilot behaviors. The conversational co-pilot provided relevant audio air traffic control messages based on context and proximity to ownship. Both systems made use of the connected aircraft concepts to provide intelligent context to determine relevancy above and beyond proximity to ownship. A human-in-the-loop test was conducted in NASA Langley Research Centers Integration Flight Deck B-737-800 simulator to evaluate the traffic data manager and the conversational co-pilot. Twelve airline crews flew various normal and non-normal procedures and their actions and performance were recorded in response to the procedural events. This paper details the flight crew performance and evaluation during the events

    Recommendation for a Medical System Concept of Operations for Gateway Missions

    Get PDF
    NASAs exploration missions to cis-lunar space will establish a permanent gateway to future transport missions to Mars. These missions mandate a significant paradigm change for mission planning, spacecraft design, human systems integration, and in-flight medical care due to constraints on mass, volume, power, resupply, and medical evacuation capability. These constraints require medical system development to be tightly integrated with mission and habitat design to provide a sufficient medical infrastructure and enable mission success. This concept of operations provides a vision of medical care needs that will be used to guide the development of a medical system for the cis-lunar Gateway Habitat. This medical system will serve as the precursor to what is implemented in future exploration missions to Mars. This concept of operations documents an overview of the stakeholder needs and system goals of a medical system and provides examples of the types of activities for which the system will be used during the mission. This concept of operations informs the ExMC systems engineering effort to define the Gateway Habitat Medical System by documenting the medical activities and capabilities relevant to Gateway missions, as identified by the ExMC clinician community. In addition, this concept of operations will inform the subsequent systems engineering process of developing technical requirements, system architectures, interfaces, and verification and validation approaches for the medical system. This document supports the closure of ExMC Gap Med01: We do not have a concept of operations for medical care during exploration missions, corresponding to the ExMC-managed human system risk: Risk of Adverse Health Outcomes & Decrements in Performance due to Inflight Medical Conditions

    Pilot interaction with automated airborne decision making systems

    Get PDF
    The role of the pilot and crew for future aircraft is discussed. Fifteen formal experimental studies and the development of a variety of models of human behavior based on queueing history, pattern recognition methods, control theory, fuzzy set theory, and artificial intelligence concepts are presented. L.F.M

    EEMCS final report for the causal modeling for air transport safety (CATS) project

    Get PDF
    This document reports on the work realized by the DIAM in relation to the completion of the CATS model as presented in Figure 1.6 and tries to explain some of the steps taken for its completion. The project spans over a period of time of three years. Intermediate reports have been presented throughout the project’s progress. These are presented in Appendix 1. In this report the continuous‐discrete distribution‐free BBNs are briefly discussed. The human reliability models developed for dealing with dependence in the model variables are described and the software application UniNet is presente

    Applying the lessons of the attack on the World Trade Center, 11th September 2001, to the design and use of interactive evacuation simulations

    Get PDF
    The collapse of buildings, such as terminal 2E at Paris' Charles de Gaule Airport, and of fires, such as the Rhode Island, Station Night Club tragedy, has focused public attention on the safety of large public buildings. Initiatives in the United States and in Europe have led to the development of interactive simulators that model evacuation from these buildings. The tools avoid some of the ethical and legal problems from simulating evacuations; many people were injured during the 1993 evacuation of the World Trade Center (WTC) complex. They also use many concepts that originate within the CHI communities. For instance, some simulators use simple task models to represent the occupants' goal structures as they search for an available exit. However, the recent release of the report from the National Commission on Terrorist Attacks upon the United States (the '9/11 commission') has posed serious questions about the design and use of this particular class of interactive systems. This paper argues that simulation research needs to draw on insights from the CHI communities in order to meet some the challenges identified by the 9/11 commission

    Impact of Advanced Synoptics and Simplified Checklists During Aircraft Systems Failures

    Get PDF
    AbstractNatural human capacities are becoming increasingly mismatched to the enormous data volumes, processing capabilities, and decision speeds demanded in todays aviation environment. Increasingly Autonomous Systems (IAS) are uniquely suited to solve this problem. NASA is conducting research and development of IAS - hardware and software systems, utilizing machine learning algorithms, seamlessly integrated with humans whereby task performance of the combined system is significantly greater than the individual components. IAS offer the potential for significantly improved levels of performance and safety that are superior to either human or automation alone. A human-in-the-loop test was conducted in NASA Langleys Integration Flight Deck B-737-800 simulator to evaluate advanced synoptic pages with simplified interactive electronic checklists as an IAS for routine air carrier flight operations and in response to aircraft system failures. Twelve U.S. airline crews flew various normal and non-normal procedures and their actions and performance were recorded in response to failures. These data are fundamental to and critical for the design and development of future increasingly autonomous systems that can better support the human in the cockpit. Synoptic pages and electronic checklists significantly improved pilot responses to non-normal scenarios, but implementation of these aids and other intelligent assistants have barriers to implementation (e.g., certification cost) that must overcome

    Studies of planning behavior of aircraft pilots in normal, abnormal and emergency situations

    Get PDF
    A methodology for the study of planning is presented and the results of applying the methodology within two experimental investigations of planning behavior of aircraft pilots in normal, abnormal, and emergency situations are discussed. Beyond showing that the methodology yields consistent results, these experiments also lead to concepts in terms of a dichotomy between event driven and time driven planning, subtle effects of automation on planning, and the relationship of planning to workload and flight performance
    corecore