7,241 research outputs found

    MCE 2018: The 1st Multi-target Speaker Detection and Identification Challenge Evaluation

    Full text link
    The Multi-target Challenge aims to assess how well current speech technology is able to determine whether or not a recorded utterance was spoken by one of a large number of blacklisted speakers. It is a form of multi-target speaker detection based on real-world telephone conversations. Data recordings are generated from call center customer-agent conversations. The task is to measure how accurately one can detect 1) whether a test recording is spoken by a blacklisted speaker, and 2) which specific blacklisted speaker was talking. This paper outlines the challenge and provides its baselines, results, and discussions.Comment: http://mce.csail.mit.edu . arXiv admin note: text overlap with arXiv:1807.0666

    Semi-continuous hidden Markov models for automatic speaker verification

    Get PDF

    An improved normalized gain-based score normalization technique for spoof detection algorithm

    Get PDF
    A spoof detection algorithm supports the speaker verification system to examine the false claims by an imposter through careful analysis of input test speech. The scores are employed to categorize the genuine and spoofed samples effectively. Under the mismatch conditions, the false acceptance ratio increases and can be reduced by appropriate score normalization techniques. In this article, we are using the normalized Discounted Cumulative Gain (nDCG) norm derived from ranking the speaker’s log-likelihood scores. The proposed scoring technique smoothens the decaying process due to logarithm with an added advantage from the ranking. The baseline spoof detection system employs Constant Q-Cepstral Co-efficient (CQCC) as the base features with a Gaussian Mixture Model (GMM) based classifier. The scores are computed using the ASVspoof 2019 dataset for normalized and without normalization conditions. The baseline techniques including the Zero normalization (Z-norm) and Test normalization (T-norm) are also considered. The proposed technique is found to perform better in terms of improved Equal Error Rate (EER) of 0.35 as against 0.43 for baseline system (no normalization) wrt to synthetic attacks using development data. Similarly, improvements are seen in the case of replay attack with EER of 7.83 for nDCG-norm and 9.87 with no normalization (no-norm). Furthermore, the tandem-Detection Cost Function (t-DCF) scores for synthetic attack are 0.015 for no-norm and 0.010 for proposed normalization. Additionally, for the replay attack the t-DCF scores are 0.195 for no-norm and 0.17 proposed normalization. The system performance is satisfactory when evaluated using evaluation data with EER of 8.96 for nDCG-norm as against 9.57 with no-norm for synthetic attacks while the EER of 9.79 for nDCG-norm as against 11.04 with no-norm for replay attacks. Supporting the EER, the t-DCF for nDCG-norm is 0.1989 and for no-norm is 0.2636 for synthetic attacks; while in case of replay attacks, the t-DCF is 0.2284 for the nDCG-norm and 0.2454 for no-norm. The proposed scoring technique is found to increase spoof detection accuracy and overall accuracy of speaker verification system

    Métodos discriminativos para la optimización de modelos en la Verificación del Hablante

    Get PDF
    La creciente necesidad de sistemas de autenticación seguros ha motivado el interés de algoritmos efectivos de Verificación de Hablante (VH). Dicha necesidad de algoritmos de alto rendimiento, capaces de obtener tasas de error bajas, ha abierto varias ramas de investigación. En este trabajo proponemos investigar, desde un punto de vista discriminativo, un conjunto de metodologías para mejorar el desempeño del estado del arte de los sistemas de VH. En un primer enfoque investigamos la optimización de los hiper-parámetros para explícitamente considerar el compromiso entre los errores de falsa aceptación y falso rechazo. El objetivo de la optimización se puede lograr maximizando el área bajo la curva conocida como ROC (Receiver Operating Characteristic) por sus siglas en inglés. Creemos que esta optimización de los parámetros no debe de estar limitada solo a un punto de operación y una estrategia más robusta es optimizar los parámetros para incrementar el área bajo la curva, AUC (Area Under the Curve por sus siglas en inglés) de modo que todos los puntos sean maximizados. Estudiaremos cómo optimizar los parámetros utilizando la representación matemática del área bajo la curva ROC basada en la estadística de Wilcoxon Mann Whitney (WMW) y el cálculo adecuado empleando el algoritmo de descendente probabilístico generalizado. Además, analizamos el efecto y mejoras en métricas como la curva detection error tradeoff (DET), el error conocido como Equal Error Rate (EER) y el valor mínimo de la función de detección de costo, minimum value of the detection cost function (minDCF) todos ellos por sue siglas en inglés. En un segundo enfoque, investigamos la señal de voz como una combinación de atributos que contienen información del hablante, del canal y el ruido. Los sistemas de verificación convencionales entrenan modelos únicos genéricos para todos los casos, y manejan las variaciones de estos atributos ya sea usando análisis de factores o no considerando esas variaciones de manera explícita. Proponemos una nueva metodología para particionar el espacio de los datos de acuerdo a estas carcterísticas y entrenar modelos por separado para cada partición. Las particiones se pueden obtener de acuerdo a cada atributo. En esta investigación mostraremos como entrenar efectivamente los modelos de manera discriminativa para maximizar la separación entre ellos. Además, el diseño de algoritimos robustos a las condiciones de ruido juegan un papel clave que permite a los sistemas de VH operar en condiciones reales. Proponemos extender nuestras metodologías para mitigar los efectos del ruido en esas condiciones. Para nuestro primer enfoque, en una situación donde el ruido se encuentre presente, el punto de operación puede no ser solo un punto, o puede existir un corrimiento de forma impredecible. Mostraremos como nuestra metodología de maximización del área bajo la curva ROC es más robusta que la usada por clasificadores convencionales incluso cuando el ruido no está explícitamente considerado. Además, podemos encontrar ruido a diferentes relación señal a ruido (SNR) que puede degradar el desempeño del sistema. Así, es factible considerar una descomposición eficiente de las señales de voz que tome en cuenta los diferentes atributos como son SNR, el ruido y el tipo de canal. Consideramos que en lugar de abordar el problema con un modelo unificado, una descomposición en particiones del espacio de características basado en atributos especiales puede proporcionar mejores resultados. Esos atributos pueden representar diferentes canales y condiciones de ruido. Hemos analizado el potencial de estas metodologías que permiten mejorar el desempeño del estado del arte de los sistemas reduciendo el error, y por otra parte controlar los puntos de operación y mitigar los efectos del ruido

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    On Robust Face Recognition via Sparse Encoding: the Good, the Bad, and the Ugly

    Get PDF
    In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates
    corecore