53 research outputs found

    Modeling Industrial Lot Sizing Problems: A Review

    Get PDF
    In this paper we give an overview of recent developments in the field of modeling single-level dynamic lot sizing problems. The focus of this paper is on the modeling various industrial extensions and not on the solution approaches. The timeliness of such a review stems from the growing industry need to solve more realistic and comprehensive production planning problems. First, several different basic lot sizing problems are defined. Many extensions of these problems have been proposed and the research basically expands in two opposite directions. The first line of research focuses on modeling the operational aspects in more detail. The discussion is organized around five aspects: the set ups, the characteristics of the production process, the inventory, demand side and rolling horizon. The second direction is towards more tactical and strategic models in which the lot sizing problem is a core substructure, such as integrated production-distribution planning or supplier selection. Recent advances in both directions are discussed. Finally, we give some concluding remarks and point out interesting areas for future research

    Supply Chain and Revenue Management for Online Retailing

    Full text link
    This dissertation focuses on optimizing inventory and pricing decisions in the online retail industry. Motivated by the importance of great customer service quality in the online retail marketplace, we investigate service-level-constrained inventory control problems in both static and dynamic settings. The first essay studies multi-period production planning problems (with or without pricing options) under stochastic demand. A joint service-level constraint is enforced to restrict the joint probability of having backorders in any period. We use the Sample Average Approximation (SAA) approach to reformulate both chance-constrained models as mixed-integer linear programs (MILPs). Via computations of diverse instances, we demonstrate the effectiveness of the SAA approach, analyze the solution feasibility and objective bounds, and conduct sensitivity analysis. The approaches can be generalized to a wide variety of production planning problems. The second essay investigates the dynamic versions of the service-level-constrained inventory control problems, in which retailers have the flexibility to adjust their inventory policies in each period. We formulate two periodic-review stochastic inventory models (backlogging model and remanufacturing model) via Dynamic Programs (DP), and establish the optimality of generalized base-stock policies. We also propose 2-approximation algorithms for both models, which is computationally more efficient than the brute-force DP. The core concept developed in our algorithms is called the delayed marginal cost, which is proven effective in dealing with service-level-constrained inventory systems. The third essay is motivated by the exploding use of sales rank information in today's internet-based e-commerce marketplace. The sales rank affects consumers' shopping preference and therefore, is critical for retailers to utilize when making pricing decisions. We study periodic-review dynamic pricing problems in presence of sales rank, in which customers' demand is a function of both prices and sales rank. We propose rank-based pricing models and characterize the structure and monotonicity of optimal pricing policies. Our numerical experiments illustrate the potential of revenue increases when strategic cyclic policy is used.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144159/1/ycjiang_1.pd

    Loss of customer goodwill in the uncapacitated lot-sizing problem

    Get PDF
    Abstract Loss of customer goodwill in uncapacitated single level lot-sizing is studied with a mixed integer programming model extending the well-known Wagner-Whitin (WW) model. The objective is to maximize profit from production and sales of a single good over a finite planning horizon. Demand, costs, and prices vary with time. Unsatisfied demand cannot be backordered. It leads to the immediate loss of profit from sales. Previous models augment the total cost objective by this lost profit. The difference of the proposed model is that unsatisfied demand in a given period causes the demand in the next period to shrink due to the loss of customer goodwill. A neighborhood search and restoration heuristic is developed that tries to adjust the optimal lot sizes of the original no-goodwill-loss model to the situation with goodwill loss. Its performance is compared with the Wagner-Whitin solution, and with the commercial solver CPLEX 8.1 on 360 test problems of various period lengths

    Lot Sizing Heuristics Performance

    Get PDF
    Each productive system manager knows that finding the optimal trade‐off between reducing inventory and decreasing the frequency of production/ replenishment orders allows a great cut‐back in operations costs. Several authors have focused their contributions, trying to demonstrate that among the various dynamic lot sizing rules there are big differences in terms of performance, and that these differences are not negligible. In this work, eight of the best known lot sizing algorithms have been described with a unique modelling approach and have then been exhaustively tested on several different scenarios, benchmarking versus Wagner and Whitin’s optimal solution. As distinct from the contributions in the literature, the operational behaviour has been evaluated in order to determine which one is more suitable to the characteristics of each scenario

    Economic Lot-Sizing Problem with Bounded Inventory and Lost-Sales

    Get PDF
    In this paper we consider an economic lot-sizing problem with bounded inventory and lost-sales. Different structural properties are characterized based on the system parameters such as production and inventory costs, selling prices, and storage capacities. Using these properties and the results on the lot-sizing problems with bounded inventory, we present improved and new algorithms for the problem. Specifically, we provide algorithms for the general lot-sizing problem with bounded inventory and lost-sales, the lot-sizing problem with nonincreasing selling prices and the problem with only lost-sales

    Integrated production-distribution systems : Trends and perspectives

    Get PDF
    During the last two decades, integrated production-distribution problems have attracted a great deal of attention in the operations research literature. Within a short period, a large number of papers have been published and the field has expanded dramatically. The purpose of this paper is to provide a comprehensive review of the existing literature by classifying the existing models into several different categories based on multiple characteristics. The paper also discusses some trends and list promising avenues for future research

    On-line lot-sizing with perceptrons

    Get PDF
    x+167hlm.;24c

    Integrated Production-Inventory Models in Steel Mills Operating in a Fuzzy Environment

    Get PDF
    Despite the paramount importance of the steel rolling industry and its vital contributions to a nation’s economic growth and pace of development, production planning in this industry has not received as much attention as opposed to other industries. The work presented in this thesis tackles the master production scheduling (MPS) problem encountered frequently in steel rolling mills producing reinforced steel bars of different grades and dimensions. At first, the production planning problem is dealt with under static demand conditions and is formulated as a mixed integer bilinear program (MIBLP) where the objective of this deterministic model is to provide insights into the combined effect of several interrelated factors such as batch production, scrap rate, complex setup time structure, overtime, backlogging and product substitution, on the planning decisions. Typically, MIBLPs are not readily solvable using off-the-shelf optimization packages necessitating the development of specifically tailored solution algorithms that can efficiently handle this class of models. The classical linearization approaches are first discussed and employed to the model at hand, and then a hybrid linearization-Benders decomposition technique is developed in order to separate the complicating variables from the non-complicating ones. As a third alternative, a modified Branch-and-Bound (B&B) algorithm is proposed where the branching, bounding and fathoming criteria differ from those of classical B&B algorithms previously established in the literature. Numerical experiments have shown that the proposed B&B algorithm outperforms the other two approaches for larger problem instances with savings in computational time amounting to 48%. The second part of this thesis extends the previous analysis to allow for the incorporation of internal as well as external sources of uncertainty associated with end customers’ demand and production capacity in the planning decisions. In such situations, the implementation of the model on a rolling horizon basis is a common business practice but it requires the repetitive solution of the model at the beginning of each time period. As such, viable approximations that result in a tractable number of binary and/or integer variables and generate only exact schedules are developed. Computational experiments suggest that a fair compromise between the quality of the solutions and substantial computational time savings is achieved via the employment of these approximate models. The dynamic nature of the operating environment can also be captured using the concept of fuzzy set theory (FST). The use of FST allows for the incorporation of the decision maker’s subjective judgment in the context of mathematical models through flexible mathematical programming (FMP) approach and possibilistic programming (PP) approach. In this work, both of these approaches are combined where the volatility in demand is reflected by a flexible constraint expressed by a fuzzy set having a triangular membership function, and the production capacity is expressed as a triangular fuzzy number. Numerical analysis illustrates the economical benefits obtained from using the fuzzy approach as compared to its deterministic counterpart
    corecore