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1 
Introduetion 

Lot-sizing is the timing and sizing of production quantities that satisfy the de
mand for a product such that production resources are used efficiently. Research 
on lot-sizing has been focussed to a large extent on the analysis of off-line roodels 
with a finite time horizon. For an overview of this literature we refer to the work of 
Bahl, Ritzman & Gupta [1987] and Aggarwal & Park [1993]. Off-line roodels as
sume that all information about problem parameters is given in advance. However, 
in many practical settings, demand information comes in gradually and a sequence 
of decisions has to bemadeover an indefinite time horizon. In such cases, off-line 
roodels are often inadequate and the lot-sizing has to be done on-line. Such situa
tions arise for instanee in material requirements systems and hierarchical planning 
systems [Silver & Peterson, 1985]. An obvious approach is to consider on-line 
lot-sizing from a probabilistic point of view by modeling the demand process as 
a random process and choosing a suitable optimality criterion. Although mathe
matically very attractive, such an approach is practically of little use, since it is 
usually already technically complicated for relatively simple roodels of the demand 
process. Most attention in on-line lot-sizing has therefore been paid to relatively 
simple heuristics. These heuristics often have varying performance characteristics 
which typically depend on the particular on-line lot-sizing problem at hand. As for 
now, no on-line lot-sizing approach exists that shows a satisfactory performance 
and is generally applicable. 
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Recent actvances in the design and manufacturing of integrated circuits have brought 

the construction of parallel computers, consisting of thousands of individual process

ing units, within our reach. A direct consequence of these technological actvances 

is the growing interest in computational models that support the exploitation of 

massive parallelism. Connectionist models [Feldman & Ballard, 1982] are compu

tational models that are inspired by an analogy with the neural network of human 
brains. The conesponding parallel computers are called neural networks and the 

field of research neural computing. For an overview of this field we refer to the 

textbook by Hertz, Krogh & Palmer [1991]. Besides the purely technica! benefit of 
parallel computation, many models in neural computing have human-like capabil
ities such as association and learning, which are essential in areas such as speech 
and image processing [Kohonen, 1988]. The largest poten ti al of neural computing 

is in areas where no efficient salution strategies exist, in which rnadeling of the 

decision process is difficult, or in which problems are characterized by incomplete 
data. In recent years neural computing has emerged as a practical technology with 
successful applications in many fields [Wong, Bodnovich & Yakup, 1997] . More
over, several of the methods, which were once justified by vague appeals to their 

neuron-like qualities, can now be given asolid statistica! foundation [Bishop, 1995]. 
The majority of these results are concerned with pattem recognition and use neural 
network models with a feed-forward network topology such as the multi-layered 
perceptron. 

The essential feature of a neural network approach to on-line lot-sizing is that it 
is an implicit rnadeling approach, which means that we look fora tuning of the pa
rameters of the neural network such that it mimics a sensible input-output behavior, 
rather than that we try to explicitly model the underlying demand process. One may 
expect that such an approach can lead to useful results, since the on-line lot-sizing 

problem is too complicated for the traditional explicit rnadeling approaches and, 
moreover, it is relatively easy to determine what would have been the optima! lot 
sizes afterwards. The latter feature enables the construction of examples of on-line 
lot-sizing situations and their conesponding off-line optima! lot sizes required for 

the tuning of the parameters of the neural network. This approach combines the 
implicit model-building skills of neural networks with traditional off- line analy
sis. Being the most successful and most widely studied neural network model, 
the multi-layered perceptron is the most obvious candidate to be investigated. In 

this thesis we investigate the potential of multi-layered perceptrans for on-line lot

sizing. 
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Figure 1.1. On-line nwdel of demand information. 
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In on-line models it is often assumed that decisions are made without any knowl
edge of future problem data. For example, in the case of on-line bin packing, items 
arrive sequentially and whenever an item has arrived it must immediately be as
signed to a bin. We refer to Karp [ 1992] for an overview of the literature in this 
area. In lot-sizing it is more realistic to adopt the following intermediale view be
tween the two extremes constituted by off-line models (complete information about 
the future) and on-line models (no future information) . It is assumed that the de
mand occurs during discrete time intervals called periods and is given for a fixed 
number of periods into the future. These periods are called the data horizon. Fig
ure 1.1 shows the conesponding on-line model of demand information and distin
guishes between demand information regarding the past, the known future, and the 
unknown future. 

Important differences between off-line and on-line models for lot-sizing are in 
the problem formulation and the definition of optimality. Since all demands are 
given in advance, off-line lot-sizing problems can be formulated as optimization 
problems, where the goal is to find lot sizes such that demand is satisfied at mini
mal cost. However, in on-line problems the impact of a lot size decision dependsin 
general on the unknown future demands, making a problem formulation conceptu
ally more difficult. 

To anticipate on the continuously changing knowledge of the future, on-line lot
sizing is usually done on a rolling-horizon basis, which can bedescribed as follows. 
At the beginning of each period, one delermines the lot sizes for a number of sub
sequent periods starting with the first period. Only the first of these lots becomes 

firm, the rest remains tentative. After this first decision has been implemented, the 
data horizon is updated and the procedure repeated. Therefore we may concentrale 
on the determination of the first lot size. 

According to the specific model assumptions for the unknown future demands, 



4 Introduetion 

we distinguish between three types of approach for on-line lot-sizing, i.e., myopie 
approaches, explicit modeZing approaches, and implicit modeZing approaches. Be
low we briefly discuss this taxonomy and give some examples. 

Myopie approaches. In a myopie approach, nothing is assumed about the un
known future demands. The most obvious myopie approach is to optimize over the 
data horizon and to implement the fi.rst lot size. A typical result in this area is due to 

Lee & Denardo [1986], who give a worst-case error bound for this approach. Many 
myopie approaches involve the minimization of some local objective. For example 
in the heuristic proposed by Silver & Meal [1973], the first lot size is taken equal 
to the cumulative demand for the first k periods, where k is chosen such that the 
average cost per period is minima!. Several myopie approaches were proposed in 

the literature which are reviewed in Chapter 2. 

Explicit modeling approaches. In an explicit modeling approach, the unknown 
future demands are explicitly modeled by assuming they are realizations of some 

random process, possibly with unknown parameter values. These parameters may 
characterize for example the noise part of the demand process or some systematic 
trend and could be estimated from past demand data. Given such an explicit model 
there are different possibilities. 

One option that is commonly used in practice is to use an explicit model of the 
demand process to forecast some of the unknown future demand values. These fore
casts are then incorporated in an off-line lot-sizing procedure [Silver & Peterson, 
1985]. The performance of such an approach strongly depends on the quality of 
the forecasts and the sensitivity of the off-line lot-sizing procedure for forecast er

rors. If, moreover, it is assumed that the unknown future demands are independent 
realizations of a random variable, on-line lot-sizing problems can be formulated 
as Markov dec is ion problems and can be solved as such [Tijms, 1994]. The re
sults of this type of research are mathematically attractive but practically of little 
use, because of the rather restrictive structure which is required for the demand 
process and the relatively complicated estimation and optimization procedures re
quired [Dellaert & Melo, 1995]. 

Finally, we mention the explicit modeling approach by Lee, Kramer & Hwang 

[1991], whomodel the unknown future demands as fuzzy sets [Zadeh, 1965] and 
solve the on-line lot-sizing problem as a fuzzy optimization problem [Delgado, 
Kacprzyk, Verdegay & Vila, 1994]. 

Implicit modeling approaches. In an implicit modeling approach, one takes a 
parameterized black-box in which the number of adaptive parameters can be in
creased in a systematic way. This black-box represents a very general class of 
functional forms and can be made increasingly general by increasing the number 
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of adaptive parameters. Given such a black-box, one tries to find parameter values 
such that the device shows a sensible input-output behavior on at least a representa
tive set of examples of on-line lot-sizing situations and their conesponding off-line 
optima! lot sizes. 

An implicit rnadeling approach for the on-line version of the well-known lot
sizing problem introduced by Wagner & Whitin [1958] was proposed by Zwieter
ing, Van Kraaij, Aarts & Wessels [1991]. Tothebest of our knowledge this is the 
only literature on the use of neural networks for on-line lot-sizing problems. We 

refer to the work of Corsten & May [ 1996] and S tehouwer, Aarts & Wessels [ 1994] 
for discussions of the potential for using neural networks for production planning 
and control applications. 

Problem statement. Advantages of myopie approaches are the absence of de
mand history requirements and their often straightforward implementation. Unfor
tunately only worst-case performance guarantees cao be given, since no assump
tions are imposed on the unknown future demands. Some of these approaches cao 
be arbitrarily bad [Vachani, 1992]. Although many myopie approaches were pro
posed in the literature, there is still no myopie approach that is robust in the sense 
that it yields a good performance, irrespective of the model parameters. These 
deficiencies could be overcome by adopting the mathematically attractive Markov 

decision formulation. However, this is only feasible if the nature of the demand 
process is well understood and oot subject to change, which is hardly the case in 
practical situations. Forthese reasoos there is a substantial gap between theory and 
practice and, up to now, there is no overall satisfactory salution approach for on-line 
lot-sizing problems. 

The intention of this thesis is to investigate the potential of implicit rnadeling 
by multi-layered perceptroos for on-line lot-sizing problems. Implicit rnadeling ap
proaches have the advantage that they do oot require any prior onderstanding of the 
demand process and therefore have potential practical value. Implicit rnadeling ap
proaches, however, do require a relevant demand history. An often heard argument 
against the use of neural networks is the black-box character of the obtained model. 
We object to that by remarking that most neural network approaches are statistically 
well-founded and from that point of view oot essentially different from statistica! 
methods [Bishop, 1995]. We aim at obtaining approaches that are robust, i.e., have 
good performance characteristics that are relatively insensitive to the model para
meters. Under the condition that suftleient learning examples cao be constructed, 
multi-layered perceptroos have the potential of providing such an approach. 
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1.2 Neural networks 

A neural network consists of a network of elementary nodes that are linked through 

weighted connections . These nodes represent computational units which are ca
pable of performing a simple computation . The result of this computation gives 
the output of the corresponding node. Moreover, the output of a node is used as 
an input for the nodes to which it is linked through an outgoing connection. The 
network topology of a neural network is determined by the number of nodes and 

the way they are connected. The neural network model under consideration is the 
multi-layered perceptron, in which the units are arranged in layers with connections 
between subsequent layers only. Multi-layered perceptrans are discussed in great 
detail in Chapter 4. For more details on other neural network models, we refer to the 
textbooks by Aarts & Korst [ 1989], Hecht-Nielsen [ 1990], Hertz, Krogh & Palm er 
[1991], and Kosko [1992] . 

The main tasks in the application of a neural network modeltoa certain problem 
consist of the determination of a network topology and conneetion weights such 
that the network solves the problem. To accomplish these tasks one can choose 
between two approaches, i.e., network construction or learning . These approaches 
are discussed next. 

Network construction. In network construction, the network topology and the 
conneetion weights are derived directly from the problem formulation and are kept 
constant during the network execution. This embeds certain information into the 
network by design, which is reproduced during operation. Network construction is 
only applicable if the problem can be modeled and analyzed properly. 

For instance, several network construction approaches were proposed for solv
ing combinatorial optimization problems [Papadimitriou & Steiglitz, 1982] . In 
these approaches the combinatorial optimization problem is formulated in terms of 
a cost function which is to be minimized by the neural network; for examples, see 
the workof Looi [ 1992] and Zwietering [1994]. The main motivation for using such 
an approach is the potential speed-up from massively parallel computation. Until 
so far, however, the results obtained using neural network approaches for combina
torial optimization problems are disappointing. Their most important deficiency is 
a poor scalability to real-life instances [Foo & Takefuji, 1995; Zwietering, 1994] . 

Learning. In learning, the network topology and the conneetion weights are it
eratively adjusted until the neural network performs the task accurately. At each 
iteration, an input is presented to the network and, according to the network out
puts, the weights are adjusted. If, with the inputs, desired outputs are supplied and 
the weights are adjusted such that the difference between network outputs and de
sired outputs is minimized in some sense, the learning is called supervised. Such 
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combinations of inputs and desired outputs are called learning examples. There are 

two other types of learning, called unsupervised learning and reinforcement learn
ing [Hertz, Krogh & Palm er, 1991]. In unsupervised learning no correct outputs are 

supplied, which can be useful in data analysis. In reinforcement learning only in

formation is supplied whether the network outputs are good or bad, which is mainly 

used for control applications. 

Supervised learning has become very popular due to the discovery of suitable 
learning algorithms like the back-propagation algorithm [Rumelhart, McClelland 

& Williams, 1986], and is especially useful in case modeling or analysis is diffi

cult. There exist many successful applications which include for instanee forecast
ing, process monitoring, fault detection, arid quality control [Dagli, 1994; Maren, 
Harston & Pap, 1990; Weigend & Gershenfeld, 1994; Wong, Bodnovich & Yakup, 

1997; Zhang & Huang, 1995]. 

1.3 Towards a solution approach 

The nature of an on-line lot-sizing problem is characterized by the following two 

components. 

1. A combinatorial component involving the timing and si zing of the production 
quantities. 

2. An uncertainty component representing the incomplete demand information. 

Insome sensethese components are conflicting, since the combinatorial component 

involves detailed puzzling and benefits by complete demand information, which is 
contradicted by the uncertainty component. The essential problem is to somehow 
understand the demand process and to exploit this knowledge in the lot-sizing by 
anticipating on the formally unknown future. Note that the nature of an on-line lot

sizing problem typically changes with the length of the data horizon. It is likely that 
the combinatorial component becomes increasingly important if the data horizon is 

enlarged . 
According to the treatment of the two components, we distinguish between two 

types of approach for on-line lot-sizing, i.e ., monolithic approaches and hierarchi
cal approaches. In a monolithic approach, both components are treated integrally. 
The Markov decision approach for on-line lot-sizing of Dellaert & Melo [1995] is 
a typical example of a monolithic approach . Hierarchical approaches first deal with 
the uncertainty component before the combinatorial puzzle is solved. A typical ex

ample of a hierarchical approach is to forecast some of the unknown future demand 
values which are then incorporated in an off-line lot-sizing procedure. Next we 
discuss the applicability of multi-layered perceptrons for on-line lot-sizing in this 

context. 
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Possibilities and limitations. The possibilities and limitations of multi-layered 
perceptroos for on-line lot-sizing can be discussed by distinguishing between large 
data horizons and small data horizons. 

In case the data horizon is large, there is smal! de mand uncertainty, and the 
essential problem lies in the combinatorial component. In such cases on-line lot
sizing problems can be viewed as combinatorial optimization problems. Zwieter
ing, Aarts & Wessels [1991] and Zwietering [1994] showed that, in theory, multi
layered perceptroos can be constructed that solveeach instanee of a combinatorial 
optimization problem. However, for most problems the minimal required size of the 
network is already exponential in the number of inputs, which makes the approach 
impractical [Aarts, Stehouwer, Wessels & Zwietering, 1995]. Fortunately, there al
ready exist excellent approaches for off-line lot-sizing problems basedon the more 
traditional techniques [Aggarwal & Park, 1993; Federgruen & Tzur, 1991; Wagel
mans, Van Hoesel & Kooien, 1992]. 

In case the data horizon is smal!, there is large demand uncertainty, the combina
torial component is less important, and the essential difficulty lies in the uncertainty 
component. We reeall that emergent features of multi-layered perceptroos are their 
supervised learning and generalization capabilities, which enable impheit model
building on the basis of learning examples. Since model-building is the essential 
difficulty in the uncertainty component, multi-layered perceptroos have potential 
as a solution approach for on-line lot-sizing problems in which there is significant 
demand uncertainty. 

From the discussion 'of these two cases , it is to be expected that there is in gen
eral a trade-off between combinatorial complexity and uncertainty. Furthermore, a 
monolithic approach based on multi-layered perceptroos seems only then appropri
ate if the data horizon is smal!. In a natura! way the question arises if it is possible 
to develop a hierarchical approach which, for the uncertainty component, exploits 
the strong points of multi-layered perceptroos and, for the combinatorial compo
nent, builds upon the numerous results and techniques from off-line lot-sizing. In 
this way the best of both fields would be combined. We investigate hierarchical ap
proaches for on-line lot-sizing problems based on supervised learning with multi
layered perceptrons. 

Prerequisites. A necessary condition for the successful application of supervised 
learning is the availability of a representative set of learning examples. Therefore, 
a first prerequisite is the availability of a relevant demand history. From these past 
demands, such a set can be constructed in different ways. One option is to let a 
human expert judge situations in which lot-sizing decisions have been made. An
other option is to calculate the optima! lot sizes afterwards, which is only possible 
if the lot-sizing model is well-defined. We study well-defined lot-sizing models and 
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adopt the latter option . For that reason, a second prerequisite is an algorithm for 
the off-line calculation of learning examples. For the derivation of such algorithms 
we adopt the theory concerning planning and forecast horizons initiated by Wagner 
& Whitin [1958] and Lundin & Morton [1975]. lf a forecast horizon cao be found, 

optima! decisions forsome periods cao be obtained with limited information about 
future demands and cost parameters, even for infinite-horizon problems. To find 
such forecast horizons we employ a forward algorithm, which solves off-line fini te 
horizon problems of increasing horizon length. 

Variabie-horizon policies. Motivated by the theory on planning and forecast hori
zons, we concentrale on the class of hierarchical approaches for on-line lot-sizing 
called variable-horizon policies . In such an approach, the lot sizes are determined 
by repeatedly optimizing over a variabie optimization horizon which is determined 
by a horizon-selection rule on the basis of the available demand information. The 

optimization part computes the timing and sizing of the lot sizes and cao be solved 
using dynamic programming techniques . The horizon-selection rule accounts for 
the uncertainty component of the on-line lot-sizing problem and uses as input the 
known future demands to return an optimization horizon within the data horizon. 
Such tasks, in which one of a finite number of possibilities has tobechosen on the 
basis of some feature vector, are usually called classification tasks. Through many 
successful applications, multi-layered perceptroos have shown to have excellent 
classification skilis [Bishop, 1995; Pao, 1989; Ripley, 1994]. We address the prob
lem of finding an optima[ horizon-selection rule by formulating it as a classification 
problem and adopting common objectives from statistica! c!assification like for in
stance the maximization of the expected classification rate. For these objectives it 
is easy to give explicit expressions for the optima! horizon-selection rules. We use 
supervised learning with multi-layered perceptroos to estimate the unknown para

meters of these expressions and derive horizon-selection rules from the developed 
multi-layered perceptrons. The thus obtained hierarchical approaches combine the 
classification skilis of multi-layered perceptroos with traditional off-Iine analyses. 

1.4 Thesis outline 

In Chapter 2, we formulate the on-line single-item lot-sizing problem with an ar
bitrary cost structure. We introduce a class of salution strategies for this problem, 
called variabie-horizon policies, in which the lot sizes are determined by repeatedly 
optimizing over a variabie optimization horizon. A horizon-selection rule chooses 
the optimization horizon given the available demand information. Furthermore, we 
introduce the corresponding off-line problem and derive forward algorithms to be 
used for the calculation of learning examples in Chapters 5, 6, and 7. These forward 
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algorithms are only partly generic and require some cost-structure specific analysis. 
In Chapter 3 we introduce three elementary cost structures which serve as a test 

bed for the evaluation of our ideas and techniques in Chapter 6 and Chapter 7. For 
these cost structures we give the cost-structure specific analysis that is required for 

the generic algorithms developed in Chapter 2. 
Chapter 4 introduces the multi-layered perceptron and discusses its use in sta

tistica! classification. We discuss the mapping capabilities of multi-layered percep
trans for different response functions . Furthermore, we address supervised learning 
in a statistica! perspective and discuss the subject of generalization. 

In Chapter 5 we formulate the problem of finding an optima! horizon-selection 
rule as a classification problem, which we analyze in a statistica! framework. We 
analyze two objectives, i.e ., maximization of expected classification rate and mini
mization of expected excess cost. Forthese objectives we give explicit expressions 
for the optima! horizon-selection rules. Supervised learning with multi-layered per
ceptrans is used to estimate the un.known parameters of these expressions. Next 
we derive so-called MLP-based horizon-selection rules from the developed multi
layered perceptrons. 

Chapter 6 studies the generalization capabilities of the MLP-based horizon
selection rules for an on-line lot-sizing problem with Wagner-Whitin cost structure. 
We discuss necessary conditions for good generalization and investigate the effect 
of the length of the data horizon on the generalization capabilities . Furthermore, we 
introduce K -nearest-neighbors, an alternative statistica! approach for classification. 
Application of this appröach yields two alternative horizon-selection rules which 
are used as a reference in our empirica! studies. 

In Chapter 7, we investigate the on-line lot-sizing performance of the variabie
horizon policies constituted by the MLP-based horizon-selection rules proposed in 
Chapter 5 by means of an extensive empirica! comparison with a benchmark of 
variabie-horizon policies. The performance evaluation is done on a rolling-horizon 
basis for the three cost structures introduced in Chapter 3, for different combinations 
of demand processes and data horizon lengths. Preliminary results for these cost 
structures were presented in Stehouwer, Aarts & Wessels [ 1995] and Stehouwer, 
Aarts & Wessels [ 1996]. 

In Chapter 8, we conclude this thesis with a discussion of the obtained results. 
Moreover, we give some suggestions for future research. 



2 
Single-item lot-sizing 

T he intention of this chapter is twofold. First, it introduces the on-line single-item 
lot-sizing problem. Second, it develops algorithms that are used for the calculation 
of leaming examples in later chapters. In genera!, such learning examples consist 
of on-line lot-sizing decision situations and their corresponding off-line optima! 
decisions. For that reason we also introduce and analyze the off-line single-item 
lot-sizing problem. Both the on-line problem and the off-line problem are generic 
in the sense that they are formulated in terms of arbitrary holding and production 
cost functions . Nevertheless, most algorithms developed in this chapter are only 
partly generic and their application typically requires some cost-structure specific 
analysis. In Chapter 3 we give this analysis for three cost structures. 

The chapter is organized as follows. InSection 2.1, both the on-line and the off
line single-item lot-sizing model are introduced. We address the n-period problem 
inSection 2.2. This problem occurs as a subproblem in the salution approaches for 
both the on-line and the off-line lot-sizing problem. InSection 2.3 we analyze the 
off-line problem. The on-line problem is addressed in Section 2.4. Furthermore, 
we introduce the class of variabie-horizon policies. Section 2.5 develops a forward 
algorithm for off-line simple planning horizon detection. Finally, inSection 2.6 and 
Section 2. 7, some more forward algorithms are derived to be used for the calculation 
of learning examples. 

11 
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2.1 Models for single-item lot-sizing 

This section introduces the off-line modeland the on-line model. Both models have 
the same basis, called the basic model, which is described first. 

2.1.1 The basic model 

Consider the case in which production has to be planned for a single commodity 
for which demand occurs during an infinite number of discrete time periods labeled 
1, 2, . . . . Let d, denote the demand in period t . lt is assumed that all period 
demands are real-valued and non-negative. Let X1 and /1 denote the amount of 
production in period t and the inventory level at the end of period t, respectively. 
X1 is called the lot size for period t. For / 1 we have 

ft=lo+LXs -Lds, t=1 , 2, ... , (2.1 ) 
s=l s=l 

where Io denotes the initia! inventory level. Furthermore, it is required that all 
demands must be satisfied on time and the lot sizes are nonnegative. Hence 

X1 ;::: 0 and I, :::: 0, t = 1, 2, . . . . (2.2) 

The model includes production and holding cost. lt is assumed that all cost func
tions are independent of time and are given in advance. Let P : IR+-+ R+ denote 
the cost function related to production and let H : IR+-+ IR+ denote the cost func
tion related to carrying inventory from one period to the next. It is further assumed 
that both P and H are strictly increasing. Therefore, there is nobenefit in producing 
more than necessary. The pair (H, P) is called the cast structure. 

By specifying the cost structure, different single-item lot-sizing models can be 
defined. Besides single-souree models like the Wagner-Whitin model , in which 
there is only one way to satisfy demand, also multiple-souree models can be de
fined. For instance, we may produce in-house or buy from outside suppliers. The 
difference between models with a single souree and those with multiple sourees is 
only in the production cost function P; see also Chapter 3. 

Below we introduce the off-line model and the on-line model. These models 
are both build upon the basic model. The difference between the two models lies 
in their assumptions concerning demand data availability. In the off-line model it 
is assumed that there is complete information about future demands, whereas in 
the on-line model it is assumed that there is only partial information about future 
demands. For both models we give a problem formulation. 

2.1.2 The off-line model 

In this subsection we introduce the off-line model and we define the off-line lot
sizing problem. Off-line means that all information about future demands is given 
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in advance . Our model encompasses an infinite number of periods. Therefore we 

extend the standard finite-horizon formulation of the problem along the lines of 
Lundin & Morton [ 1975] . First we give the standard finite-horizon formulation, 
which is defined as follows. 

Definition 2.1. A vector (X1 , ... , X,.) that satisfies (2.2) is called a production 
plan for the periods 1, ... , n. The cast of a production plan (X1 , ..• , X,.) is given 

by 

" I) P(XI) +HUt)]. (2.3) 
l=l 

The problem of finding a minimal cost production plan for the periods 1, ... , n is 

called the n-period problem; the corresponding minimal cost is denoted by f (n). 
0 

For reasons of convenience, a production plan for the periods 1, ... , n is called 
a n-period plan and a minimal cost n-period plan is called an optima! n-period 
plan. Furthermore, a production plan (Xu+t, ... , Xv) for the periods u+ 1, ... , v 
is denoted by Xu v and Xov is abbreviated to Xv . 

Next we turn to the infinite-horizon formulation . For many lot-sizing prob1ems, 
one observes that the initia! portion of an optima! production plan only depends on 
the demand information for a limited set of nearby periods. This gives rise to the 
following infinite-horizon optimality criterion. 

Definition 2.2. Let X1 be a production plan. Th en f (n I X1) denotes the cost 
of an optima! n-period plan constrained to follow X1 for the periods 1, .. . , t. A 
production plan X1 is called infinite-horizon optima!, if there exits an integer n with 
n ~ t such that 

f(N I X1) = f(N) for all N ~ n, 

irrespective of demands in periods n + 1, n + 2, .... We call t a planning horizon 
and n aforecast horizon. 0 

An obvious formulation of the off-line problem is to find infinite-horizon optima! lot 
sizes X1, X2 , • • . . For practical reasons, however, we concentrale on the delermi
nation of the first or first few in finite-horizon optima! lot sizes. It is easy to see that 
this is without loss-off generality, since by repeatedly solving instances of the off

line problem, the infinite-horizon optima! lot sizes X1, X2 , • . • can be determined 
one by one. Stated formally, the off-line problem is to findan infinite-horizon op
tima! t-period plan X1 forsome t E f\J , given /o and the demands d 1, d2, . ... The 
off-line problem is forther analyzed inSection 2.3. 
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We remark that the existence of infinite-horizon optima! lot sizes can in general not 
be assured. In fact, for specific cost structures, it is often possible to construct de
mand sequences for which no infinite-horizon optima! lot sizes exist [Bean, Smith 
& Yano, 1987]. Nevertheless, it is fairly safe to state that any reasonable problem 

is more li.kely to have infinite-horizon optima! lot sizes than not [Lundin, 1973; 
Lundin & Morton, 1975; Morton, 1981]. For conditions on the existence of plan
ning horizons we refer to the work of Bean & Smith [ 1984] and Bean & Smith 
[1993]. 

2.1.3 The on-line model 

We suppose that the realization of the demand in period t + m becomes known at 
the end of period t. In this way the demands are always known for m periods into 
the future; these periods we call the data horizon. The integer m is referred to as the 
length of the data horizon. In analogy to the definition of the off-line problem we 

can define the on-line problem as to find an infinite-horizon optima! t-period plan 
X, forsome t E N, given Ia and the demands d 1, ••• , dm. However, such infinite
horizon optima! production plans may depend on the demand in periods beyond 
the data horizon and therefore, in genera!, cannot be computed on the basis of the 

available demand information. We call an algorithm that only uses the available 
demand information to calculate a production plan an m-policy. 

Definition 2.3. An algorithm for selecting X1 , X2, ... is called an m-policy, if 
(2.2) is satisfied and the choice of X, for all t = I, 2 ... depends only on Ia and d-' 
for s < t + m. 0 

In this thesis we aim at deriving m-policies that are optima! in some sense. Possi
bie optimality criteria are to minimize some worst-case error bound on the cost, or, 
as is common in the literature on on-line algorithms, to introduce competitiveness 
[Karp, 1992] . Our definition of on-line optimality is closely related to our solu
tion approach and is therefore given in Chapter 5. The on-line problem is further 
analyzed in Section 2.4. 

2.2 The n-period problem 

This section addresses the n-period problem introduced in Definition 2.1. We have 
to solve this problem, because it occurs as a subproblem in our solution approaches 
for both the on-line and the off-line problem. As a starting point we take the short

est path formulation due to Wagner & Whitin [ 1958]. This formulation is gener
alized to handle arbitrary cost structure (H, P) . The conesponding shortest path 
algorithm is only partly generic and therefore its application to a particular cost 
structure requires cost-structure specific analysis. For three cost structures we give 
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this analysis in Chapter 3. 

Definition 2.4. Let Xn be a production plan. A vector Xuu with 0 ,::: u < v _::: n is 

called a subplan of Xn, if I u = I u = 0 and Is > 0 for all s = u + 1, ... , v - 1. 
A period t is called a production period if X1 > 0. lf /1 = 0 we say that there is a 
reg eneration point at the end of period t. 0 

Using these definitions the following property can be stated. 

Proposition 2.1. [Wagner & Whitin, 1958]. Suppose there exists an optima[ n
period plan with a regenerafion point at the end of period t with 0 < t < n. 
Then the n-period plan that is obtained by independently finding optima[ production 

plans for the first t periods and the last n - t periods with 11 = 0, is optima i. 
Proof sketch. Production cost depends only on the amount produced in a particular 
period. Furthermore, since / 1 = 0, the inventory holding cost associated with the 
last n - t periods depends only on the lot sizes for these periods. o 

Property 2.1 is known as the inventory decomposition property and is independent 
of the cost structure. In the sequel it is assumed that lo = 0. Since P is strictly 

increasing, there is no benefit in producing more than necessary, and all optimal n
period plans satisfy In = 0. From lo = In = 0 it follows that any optimal n-period 
plan can be decomposed into one or more subplans. From Proposition 2.1 it follows 
that, given the regeneration points, one can determine an optimal n-period plan by 

finding optima) subplans for each pair of consecutive regeneration points. Unfortu
nately, such optimal regeneration points are not known in advance. Nevertheless, 
the best combination of regeneration points can be selected, if optimal subplans are 
known for all possible pairs of regeneratien points. 

Let c(u, v) denote the cost of an optima) production plan for the periods u + 
1, ... , v given that I u = I u = 0 and 11 > 0 for t = u + 1, ... , v - 1. In other words, 
c(u, v) represents the cost of an optima] subplan for the periods u + 1, ... , v. Let 
the possible regeneration points 0, ... , n be represented in a network as nodes and 
Iet c(u, v) represents the cost of traversing the are from node u to node v. Then, 

since /0 = In = 0 holds, each optima) n-period plan corresponds with a path from 
node 0 tonode n. Since backJogging is prohibited, the network is acyclic. Hence, 
we can formulate the n-period problem as a shortest path proble m in an acyclic 
network, which, given the are costs c(u, v) with 0 ,::: u < v ,::: n, we can easily 

solve in 0 (n2 ) time using the forward recursion 

{ 
/(0) = 0 (24) 
f(t) = min{f(s) + c(s, t) I 0 ,::: s < t}, 1 ,::: t ,::: n. · 

We refer to this underlying network as the regeneration graph. The usefulness of 
this recursion depends strongly on the complexity of computing the n(n + 1)/2 are 
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costs and their corresponding subplans. In genera!, computing these are costs and 
their corresponding subplans can be as difficult as the original problem and depends 
on the specif'ic cost structure. Fortunately, for many interesting cost structures, the 
structure of optima! production (sub)plans have nice properties, which enable the 

are costs to be calculated in polynomial time. This holds, for instance, in case 
the cost functions P and H are respectively fixed plus linear and linear [Wagner 
& Whitin, 1958], both concave (Love, 1973; Zangwill, 1968], or both piecewise 
concave (Swoveland, 1975]; see also the workof Aggarwal & Park [1993], Bitran 
& Yanasse [ 1982], and Florian, Lenstra & Rinnooy Kan [ 1980]. 

2.3 The off-line problem 

The off-line problem was formulated as to findan infinite-horizon optima! t-period 
plan X1 forsome t E N, given the demands dt, d2, .... This means that we have to 
find a t-period plan X1 and an integer n such that f(N I X1) = f(N) for all N ~ n 
and irrespective of demands in periods n + I, n + 2, .... We called t a planning 
horizon and n a forecast horizon. 

One easily verifies that it is equivalent to formulate the off-line problem as to 
determine an infinite-horizon optimal ending condition 11 = I, which is defined as 
follows. 

Definition 2.5. We call the ending condition l1 = I infinite-horizon optimal, if 
there exits an integer n with n ~ t, such that for all N ~ n and irrespective of 
demands in periods n + 1, n + 2, ... there exists an optimal N -period plan XN with 
h=l. 0 

lf ending condition 11 = I is infinite-horizon optima!, then we can determine an 
infinite-horizon production plan X1 by solving the t-period problem with the con
straint 11 = I; the integer t is a planning horizon. 

The following result addresses the ending condition 11 = 0, which was called a 
regeneration point, and which plays an important role in many lot-sizing problems. 
lts proof is immediate from Proposition 2.1 and therefore omitted. 

Proposition 2.2. Let t and n be integers with t .::: n. Suppose that for all N ~ n 
and irrespective of demands in periods n + I, n + 2, . . . there exists an optima! 
solution to the N-period problem with a regenerafion point at the end ofperiod t. 
Then any optima! solution to the t-period problem is infinite-horizon optima!, t is a 

planning horizon, and n a forecast horizon. 0 

2.3.1 Simple planning horizons 

A planning horizon that satisfies the condition of Proposition 2.2 was called simple 
by Lundin & Morton (1975]. This gives rise to the following definitions. 
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Definition 2.6. The integer t is called a simpte planning horizon Jor Jarecast hori
zon n, if for all N 2: n and irrespective of demands in periods n + 1, n + 2, ... 
there exists an optima! N -period plan with a regeneration point at the end of period 
t. The integer t is called a simpte planning horizon if there exists an integer n such 

that t is a simple planning horizon for forecast horizon n. The integer n is called a 
simpte Jarecast horizon if there exists a simple planning horizon for forecast hori
zon n. The smallest simple forecast horizon is called the minimal simple forecast 
horizon. 0 

Combining Proposition 2.1 and Definition 2.2 yields the following result. 

Corollary 2.1. Let t be a simpte planning horizon. Then any optima! t-period plan 
is infinite-horizon optima!. 0 

So, given a simple planning horizon t, the off-line problem decomposes into at
period problem and a new off-line problem. In this way, off-line problems can be 
solved by repeatedly solving t-period problems, provided simple planning horizons 
can be found. We conclude that the existence of a simple planning horizon is a sufft

eient condition for the existence of an infinite-horizon optima! production plan. The 
necessity of this condition depends on the particular cost structure and is discussed 
next. 

Concave cost structures. Using the following well-known results of Zangwill 

[1968] for single-item lot-sizing models with concave production and holding cost 
functions, we show that for such models the existence of a simple planning horizon 
is necessary and suftkient for the existence of an infinite-horizon optima! produc
tion plan; see also the workof Zangwill [1969] and Veinott [1969]. 

Proposition 2.3. [Zangwill, 1968]. Suppose that both PandHare concave. Then 
Jor all optima! n-period plans Xn and t = 1, ... , n, we have 

(i) lr-I X Xr = 0, and 

(ii) Xr = 0 or Xr = D(t -1, k)Jorsome k E {t, ... , n}, 

where D(u, v) denotes the cumulative demandJor the periods u+ 1, ... , v. 0 

Theorem 2.1. Suppose that both P and H are concave. Then there exists an 
infinite-horizon optima! t-period plan with t E N if and only ifthere exists a simpte 
planning horizon. 
Proof The 'only-if' -part is immediate from Proposition 2.2. We now prove the 

'if' -part. Let Xr be an infinite-horizon optimal t-period plan and let n be the corre
sponding forecast horizon. In case Ir = 0, it is obvious that t is a simple planning 
horizon. What remains is the case Ir > 0. From Proposition 2.3 and the fact that 
n is a forecast horizon we infer that there exists a k E {t + I, ... , n} such that 
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I1 = D(t, k) and Xs = 0 for all s = t + 1, ... , k . It is easy to see that Xk is infinite
horizon optima! with h = 0, which implies that k is a simple planning horizon for 
forecast horizon n. This completes the proof. 0 

In the literature on concave cost models, simple planning horizons and forecast 
horizons are therefore often called planning horizons and forecast horizons, respec
tively [Bensoussan, Crouhy & Proth, 1983; Bensoussan & Proth, 1991]. Others 
completely focus on the underlying regeneration graph. Such a view was adopted by 
Federgruen & Tzur [1995], who discuss single-item lot-sizing models with concave 
production and holding cost functions within a generalized shortest path framework. 
They assume that the are costs are given and that the arcs are indivisible actions. In 
their formulation a node n is called a forecast horizon if the shortest path from node 
0 to node N goes through node t for aU N ;:: n and irrespective of the are costs 
c(u, v) with n :::=:u < v. Such a node t is referred to as a planning horizon . 

General cost structures. For models with general cost functions, the existence of 
a simpte planning horizon is in general not a necessary condition for the existence 
of an infinite-horizon optima! production plan, which is illustrated by the following 
example. 

Example 2.1. Let us take the foUowing cost structure 

l 0 
P(X) = 20+ X 

20+ 10 + 3(X -10) 

H(I) =I forall I;:: 0, 

if x= 0 
if0<X:S10 
if x> 10, 

which represents a simple overtime model with linear holding cost, setup cost 20, 
regular time production cost 1, overtime production cost 3, and a regular time pro
duction capacity of 10. Furthermore, we have an infinite horizon with demands 
d1 = 5, d2 = 25, and d1 = 5 fort ;:: 3. Then for all t-period problems with t 
even, the first regeneration point in the unique optima! t-period plan is at the end 
of period 2. Furthermore for all t-period problems with t odd, the first regeneration 
point in the unique optimal t-period plan is at the end of perioei 3. It is impossi
bie to conclude that a simple planning horizon prevails on basis of Proposition 2.2. 
Nevertheless, both the unique optima! 2-period plan as well as the unique optima! 3-
period plan have the same first lot size Xt = 10. So according to Definition 2.2 we 
have found an infinite-horizon optima! production plan, a planning horizon equal 
to 1, and a forecast horizon equal to 2. For more details on the overtime model we 
refer to Chapter 3. 0 
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Although, as indicated by the above example, concentrating on simple planning 
horizons for general cost structures is at the risk of missing an infinite-horizon op
tima! production plan, we do concentrale on detecting simple planning horizons for 
the following reasons. 

I. By looldng only for simple planning horizons, we may concentrate on the 
underlying regeneration graph as we did for the n-period problem. Since this 
concept is generic, we can develop algorithms for general cost structures. 
Nevertheless, cost-structure specific analysis is still required for the compu
tation of optima! subplans; see also Section 2.2. 

2. In the extensive empirical study to be presented in Chapter 7, we computed 
over a million learning examples for both concave and non-concave cost 

functions. In all these cases a simple planning horizon could be detected. 
Based on these results, we conjecture that a small amount of variability in the 
demand process is sufficient for the existence of a simple planning horizon. 

3. If a simple planning horizon can be detected , an attractive decomposition 
arises and infinite-horizon optimallot sizes can be determined by solving the 
corresponding finite-horizon problem. 

2.3.2 Forward algorithms 

To find simple planning horizons, one commonly employs a forward algorithm. 
Such algorithms solve t-period problems for t = 1, 2, ... until a stop criterion 
indicates that a simple planning horizon has been found. It is obvious how to build 
a forward algorithm upon the forward recursion (2.4) for the n-period problem. 

Furthermore, if fort = 1, 2, . .. we keep a record of the set of in te gers that occur as 
a regeneration point in any optima! t-period plan, at the kth iteration of the forward 
algorithm we can easily check if there exists an n and a t with 1 ::::: t ::::: n ::::: k 
such that for N = n, n + 1, ... , k there exists an optima! N-period plan with a 
re generation point at the end of period t. Despite that, Definition 2.6 does not 

provide an appropriate stop criterion. What we need is a stop criterion that requires 
only a finite number of steps . Such a criterion is derived in Section 2.5. 

The following notions can be used to express the efficiency of a forward algo
rithm with respect to the use of demand data. 

Definition 2.7. Let the smallest integer n such that t is a simple planning horizon 
for forecast horizon n be denoted by n* (t) . A forward algorithm that requires only 
n* (t) periods of demand information to discover a simple planning horizon t is 
called perfect. A forward algorithm is called proteelive if it can be guaranteed that 

it finds a simple planning horizon t under the condition that n* (t) is finite . D 

Similar notions were introduced by Lundin & Morton [ 1975] for general planning 



20 Single-item lot-sizing 

and forecast horizons. Although there exist some examples of perfect forward al
gorithms for specific cost structures [Chand & Morton, 1986], such forward algo
rithms are in general hard to obtain. 

2.4 The on-line problem 

In analogy to the definition of the off-line problem we defined the on-line problem 
as to findan infinite-horizon optima! t-period plan X1 forsome t E N, given fo and 
the demands d1, ••• , dm . Since, in genera!, such infinite-horizon optima! production 

plans cannot be computed , we resort to algorithms that only use the available de
mand information, which we called m-policies. Many such algorithms are proposed 
in the literature, which we briefly review below. 

The most obvious m-policy is to repeatedly optimize over the data horizon and 

to imptement the first lot si ze. We refer to this approach as the fixed-horizon policy. 
Among others, Blackburn & Millen [ 1980] have pointed out that the cost perfor
mance of the fixed-horizon policy is poor for small data horizons. Furthermore, 
subsequent production plans can differ notably, introducing so-called nervousness. 

Motivated by the theory on planning and forecast horizons, Chand [ 1982], Carl

son, Beekman & Kropp [198:2], and Federgruen & Tzur [ 1994] proposed m-policies 
for the Wagner-Whitin model in which the horizon over which is optimized is cho
sen dynamically. We call such policies variabie-horizon policies. Chand [1982] 
uses a simple planning hqrizon result to construct a set of candidate simple planning 
horizons to chose from . A procedure similar to that of Silver & Meal [1973] is then 
used to choose an optimization horizon from this set. Federgruen & Tzur [1994] 
apply a forward algorithm to check if a simple planning horizon prevails within the 
data horizon. If this is the case, the corresponding finite-horizon problem is solved. 

In case no simple planning horizon is detected, they take an optimization horizon 
from a set of candidate simple planning horizons according to some worst-case er
ror bound. Carlson, Beekman & Kropp [ 1982] investigated the u se of forecasting 
to extend the data horizon for the Wagner-Whitin cost structure. Their approach 
was to forecast demand for as many periods in the future as necessary for a forward 

algorithm to detect a planning horizon. 
The remaining part of the literature addresses the development of relatively 

simple heuristics that exhibit less nervousness than the fixed-horizon policy and 
perfarm well on the average. Most of these heuristics were designed for the special 

case of the Wagner-Whitin model with constant cost and de termine the first lot size 
by aggregating a number of subsequent demands. These heuristics are also called 
aggregation heuristics [Silver & Peterson, 1985] . This number is determined by 
locally minimizing some reasanabie objective function like for example least cost 
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per unit time [Si1ver & Mea1, 1973] or least cost per unit product [Gorham, 1968]. 
Other examples of such heuristics can be found in Bah!, Ritzman & Gupta [ 1987] 
and Silver & Peterson [1985]. 

Research on the performance of m-policies has mainly focussed on worst-case 

analysis and empirica! testing. Worst-case results are given by Axsäter [1982], 
Axsäter [1985], Bitran, Magnanti & Yanasse [1984], Chen, Heam & Lee [1995], 
Lee & Denardo [ 1986], Vachani [ 1992]. For empirica! testing and a comparison 
of different m-policies in a rolling-horizon environment we refer to the work of 
Baker [1977], Baker [1989], Berry [1972], Blackburn & MiJlen [1980], Blackburn 
& MiJlen [1985], Chand [1982], Carlson, Beekman & Kropp [1982], Ritchie & 
Tsado [ 1986], and Zo lier & Robrade [ 1988] . Fr om these studies it turns out that 
non of these policies dominates under all cost and demand conditions. 

2.4.1 Problem analysis 

If we concentrate on simple planning horizons, as we did for the off-line problem, 
the on-line problem involves the determination of a simple planning horizont with 
t E {1 , ... , m ). Given such a simple planning horizon t the infinite-horizon optima! 
t-period plan is obtained by solving the t-period problem. Depending on lo and 
the known future demands dt, . .. , dm and the formally unknown future demands 
dm+ 1, dm+2, ... , we distinguish between the following four cases. 

1. A simple planning horizon t for minimal forecast horizon n exists, such that 
t _::: n _::: m . Any perfect forward algorithm is able to detect these horizons in 
exactly n iterations. 

2. A simple planning horizon t for minimal forecast horizon n exists, such that 
t _::: m < n. No forward algorithm is able to detect these horizons in m or 
less iterations. 

3. A simple planning horizon t for minimal forecast horizon n exists, such that 
m < t _::: n. No forward algorithm is able to detect these horizons in m or 
less iterations. 

4. No simple planning horizon exists. 

Only in the first case, infinite-horizon optima] lot sizes can be determined with 
certainty. In the other three cases this is impossible, and one has to choose the lot 
sizes heuristically. Which of the four cases occurs depends on m, the cost structure, 
and the demand characteristics. 

In the literature we found a number of studies, which empirically investigate the 
relation between on the one hand the cost structure and the demand characteristics 
and on the other hand the expected value of the planning horizon and the corre
sponding minimal forecast horizon. Lundin [ 1973] describes some experiments 
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concerning prevalenee and values of (simpte) planning and forecast horizons for 
the Wagner-Whitin model with constant setup cost. In 97.5% of all cases a forecast 

horizon was found within 70 periods. His main condusion is that the higher the 
average demand or the demand variability, the smaller the expected forecast hori

zon. Furthermore, he showed that if demand has an upward trend it is more likely 
to find forecast horizons than when demand has a downward trend. Federgruen & 
Tzur [1994] give similar conclusions for concave cost models with time varying 
cost structure; see also the workof Lundin & Morton [1975] and Morton [1981] . 

In these studies the main focus is usually at minimal forecast horizons and their 
corresponding (simple) planning horizons. From these studies we conclude that 
these simpte planning horizons tend to be very small, indicating a very high poten
tial for variabie-horizon policies. Next we discuss these policies in more detail. 

2.4.2 Variabie-horizon polides 

Figure 2.1 gives a template representing a general variabie-horizon policy. The lot
sizes are determined by repeatedly optimizing over a chosen optimization fwrizon 
and imptementing the lot sizes of the first subplan . Note that the inventory level 
at the end of Step 4. is zero. This template can be viewed as a generalization of 

the type of variabie-horizon policies proposed by Chand [ 1982], Carlson, Beekman 
& Kropp [1982], and Federgruen & Tzur [1994] for the Wagner-Whitin model in 
which only the first lot size was implemented . To see this we refer to Proposi
tion 2.3. This result impl,ies that in case of concave cost functions, the first lot size 

of an optima! production plan equals the demand for an integer number of periods . 
So, for the Wagner-Whitin model, imptementing the first subplan and imptementing 
the first lot size are completely equivalent. 

We call a rule that determines an optimization horizon given the demands within 

the data horizon a horizon-selection rule. Such a rule can be written as a mapping 
g : lAm ~ {1, 2, . .. , m} of the demands d,, . .. , dm. Given a horizon-selection 
rule, the corresponding variabie-horizon policy is completely determined. Below, 
we show that most m-policies that were proposed for the Wagner-Wh i tin model are 

in fact variabie-horizon policies or can be simply adjusted to become one without 

loss of cost performance. 
First, let us consider the fixed-horizon policy. It is easy to see that this policy is 

a variabie-horizon policy in which the optimization horizon is fixed. 
Second, we concentrate on the class of aggregation heuristics. In such heuris

tics, one produces the cumulative demand for the first k periods in period 1 with 
k E { 1, 2, . . . , m }. The value of k is chosen on the basis of the available demand 
information. For instanee one can take that k that minimizes the average cost per 
period. We adjust the aggregation heuristics as follows. It is easy to see that by 
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1. Given lo = 0 and demands within data horizon d 1, ..• , dm. 

2. Choose an optimization horizon t E {I , 2, ... , m}. 

3. Determine an optima! t-period plan X1 • 

4. Implement the first subplan (Xt, ... , Xs) of X1 • 

5. Update the data horizon, renurnher the periods, and goto I. 

Figure 2.1. A variabie-horizon policy. 

choosing k, the inventory level becomes zero at the end of period k. Given such a 
regeneration point, by Proposition 2.1, it is optima! to solve the k-period probiem 
independently. So we may use k as an optimization horizon and implement the first 
subplan without loss of cost performance. Aithough the computation of an optima! 

k-period plan for the Wagner-Whitin cost structure and the addition of k numbers 
both require O(k) basic operations, it takes more time to compute the optima! k
period plan [Wagelmans, Van Hoesel & Kooien, 1992]. The advantage is that the 
adjusted aggregation policies can be applied to on-line problems with arbitrary cost 
structure. 

2.4.3 A benchmark of variabie-horizon polkies 

This subsection presents four variabie-horizon policies, which are used as a refer
ence in our empirica! studies. We describe these variabie-horizon policies by their 
horizon-selection rules. It is assumed that we are at the beginning of period 1 and 
that we have to choose an optimization horizon t E {I, 2, ... , m}, given /o = 0 and 

the demands dt, d2 . . . . , dm. 

Economie order quantity policies. Consider the discrete time version of the 
infinite-horizon lot-sizing model with constant demand rate Dof Harris [I9I3]. 

Then there is no demand uncertainty and it is mathematically optima! to use the 
same lot size each time a replenishment is made [Hax & Candea, 1984; Silver & 
Peterson, 1985]. Furthermore, because demand is deterministic and no shortages 
are allowed, it is clear that each replenishment is made when inventory is exactly 
zero. The optima! production policy is to produce a fixed quantity at each setup, 
which can be derived as follows. The total relevant cost per time unit correspond
ing toa fixed production quantity of Q are given by 

TRC(Q) P(Q)D + H(Ï), (2.5) 

where Ï denotes the average inventory level. Examining the fünction TRC(Q) and 
its derivatives yields the value of Q that minimizes TRC(Q). This value is called 
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the economie order quantity and is denoted by Q* . For the lot-sizing problem with 

constant demand it is optima! to set up production every n* = Q* / D time units and 

to produce Q* units product at each setup. n* is called the order cycle. Note that n* 
constitutes a planning horizon. 

Our models differ from the above model in that demand is in general subject 
to variation. Despite this difference, using a fixed economie order quantity is a 

simple and effective way for dealing with the on-line problem in situations where 
the demand rate is approximately constant [Si! ver & Peterson, 1985]. m-policies 

based on the economie order quantity proposed in the literature either u se Q* or n*. 
We propose the following variabie-horizon policy based on the order cycle. The 
selected optimization horizon is equal to the order cycle n* rounded to the nearest 
integer greater than zero. For D we take the average demand level calculated over 

the data horizon, which is recalculated every time new information comes in. Note 
that, by using the average demand rate, time variability is simply ignored. 

The least cost per unit product policy. The least cost per unit product policy 

is based on the aggregation beuristic described by Gorham [1968]. It selects the 
smallest optimization horizon t that miniruizes the total cost per unit product. In 
other words it delermines the smallest t E {I, 2, ... , m} such that 

f(t) = min f(s), (2.6) 
D(t) sE{l, ... ,m) D(s) 

where D(v) denotes the cumulative demand covering periods 1, . .. , v . We remark 
that in the original procedure, as proposed by Gorham [1968], the first (local) min
imum was chosen. 

The least cost per unit time policy. The least cost per unit time policy is basedon 
the aggregation heuristic described by Silver & Meal [1973]. It selects the smallest 
optimization horizon t that miniruizes the total cost per unit time. In other words it 
determines the smallest t E { 1, 2, . .. , m} such that 

f(t) . f(s) 
--= mm -

se{l, ... ,m) S 
(2.7) 

We remark that in the original procedure, as proposed by Silver & Meal [ 1973], the 
first (local) minimum was chosen. 

The fixed-horizon policy. The fixed-horizon policy chooses t equal to m . 

2.4.4 Discussion and outlook 

All proposed benchmark policies are generic in the sense that they can be applied to 
arbitrary cost structures. However, policies based on the economie order quantity 
require cost-structure specific analysis. In Chapter 3 this analysis is given for the 
three cost structures under consideration. 
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Chapter 5 addresses the problem of finding an optima! horizon-selection rule. Since 
the problem of selecting an appropriate optimization horizon on the basis of the de
mands d1, . • • , dm is essentially a classification problem, in that chapter, we adopt 
common objectives from statistica! classification like for instanee maximization of 
the expected classification rate. For these objectives we give explicit expressions 
for the optima! horizon-selection rules. Supervised learning with multi-layered per
ceptroos is used to estimate the unknown parameters of these expressions and we 
derive approximative horizon-selection rules from the developed multi-layered per

ceptrons. 
In the remaioder of this chapter we derive forward algorithms for the off-line 

computation of learning examples. These algorithms are used in our experiments 
in Chapter 6 and Chapter 7. 

2.5 Off-line sirnple planning horizon detection 

The first planning horizon results are due to Wagner & Whitin [ 1958], who derived 
a forward algorithm and a stop criterion for the Wagner-Whitin model. Stronger 
results have been presented by Zabel [ 1964] and Eppen, Gould & Pashigian [ 1969]; 
however, these Wagner-Whitin-type planning horizon results are often unsatisfac
tory, because they only provide sufficient conditions fora simple planning horizon 
to occur. In fact, Lundin & Morton [ 1975] showed that such horizons only exist for 
a narrow range of cost parameter values. 

2.5.1 Regeneration sets 

Building on the work ofZabel [1964], Lundin [1973] and Lundin & Morton [1975] 
developed a more general theory of simple planning horizons and other stop criteria 
around the concept of regenerafion sets. Given such a regeneratien set they provide 
forward algorithms and give sufficient conditions for simple planning horizons to 
occur; see also the work ofChand [1979] and Morton [1981] . Below we introduce 
regeneratien sets, which are used as a starting point for the derivation of a suitable 
stop criterion. 

Definition 2.8. Let -8 be a finite set of integers and let! and J denote its minimal 
and maximal element, respectively. Then -8 is called a regenerafion set, if for all 
n ::::. J and irrespective of demands in periods J + I, J + 2, . . . there exists an 
optima! salution to the n-period problem with a regeneratien point in -8. 0 

A regeneratien set -8 is defined in such a way that any n-period problem, with n ::::. 
J, has an optima! salution with a re generation point in -8. Lundin & Morton [ 1975] 
proposed different strategies for deriving stop criteria from such regeneratien sets. 
For instance, if for all elements t in a regeneration set, there exists an optima! t -
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period plan with the same first regeneratien point, then a simple planning horizon 
has been discovered. 

Let the length of a subplan Xuu be the number of periods it covers, i.e., v - u. 
The next result is straightforward from Definition 2.4. 

Proposition 2.4. Suppose a finite upper bound M exists on the length of a subplan 
in an optima! n-period plan that is independent of n. Then any set of M consentlive 
periods constitutes a regenerafion set. 0 

Note that, if a finite upper bound M can be derived that satisfies the requirement 
of Proposition 2.4, then we have regeneratien sets for any instanee of the off-line 
problem. 

Next we derive a stop criterion based on such regeneratien sets. Let 1:.1 denote 
thesetof those s that minimize the right-hand side of (2.4). Then f- 1 represents the 
set of periods that occur asthelast regeneratien point but one in an optimal t-period 
plan. The set of periods that occur as a regeneratien point in an optima! t-period 
plan is denoted by :R.1 and is defined by the forward recursion 

{ 
:R.o = 0 (2.8) 

:R.r+l = {t + 1} U Use.Ct+l :R.5 , t = 0, 1, .. . 

Given that such an upper bound M exists, the following theorem provides a neces
sary and suftleient condition fora simple planning horizon to occur. This condition 
is suitable for use as a stop criterion in a forward algorithm. 

Theorem 2.2. Suppose a fini te up per bound M exists on the length of a subplan in 
an optima! n-period plan that is independent of n. Let 

-8k(n) = :R.n n :R.n+l n ... n :R.n+k-1· 

Then t is a simple planning horizonfor jarecast horizon n if and only ift E -8M(n). 
Proof The 'only-if' -part follows directly from the definition of simple planning 
horizon. The 'if' -part we prove by showing that, if t E -8M (n), we have t E :R.N 
for all N :::_ n. We distinguish between two cases. Incasen ::;: N < n + M this is 
obvious, since t E -8M(n). What remains is the case N :::_ n + M. Take such an N . 
Propos i ti on 2.4 implies that {n, n + 1, . . . , n + M - 1} constitutes a re generation 
set. So there exists a k E {n, n + 1, . . . , n + M- 1} such that k E :R.N . Take such 
a k, then t E -8M(n) implies that tE :R.k . The proof of the theorem is completed by 
using that :R.k ~ :R.N. 0 

2.5.2 A forward algorithm 

The forward algorithm for the detection of simple planning horizons conesponding 
with Theorem 2.2 is presented in pseudo-code in Figure 2.2. For reasons of conve
nience we left out the code for the calculation of f (n) and !Rn. On terminatien of 
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proc FORWARDALGORITHM 

var 
k, n : int; 
.& : set of int; 

begin 
k, n := 1, 1; 
.& := ~~; {.& = .&t(l)} 
while k < M do 

.& := .& n ~n+l; 
if S = 0 then 

-8, k := ~n+l, 1; 
while s n ~n-k+1 =I 0 do.&, k := .& n ~n-k+l' k + 1 od 

el se k : = k + 1 fi 
n:=n+1; {.&=.&k(n-k+1)=ft0} 

od {k = M} 
end 

Figure 2.2. The forward algorithm in pseudo-code. 
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the procedure t is a simple planning horizon for forecast horizon (n- M + 1) for all 
t E .&M(n - M + 1). Notice that Theorem 2.2 does not guarantee the existence of 
simpte planning horizons; therefore, the terminalion of the forward algorithm can
not be assured. However, if a simpte planning horizon for some forecast horizon 
exists, it is going to be found by the algorithm. So the forward algorithm is protec
tive. Furthermore, if a simpte forecast horizon is found by the algorithm it is the 
minimal simpte forecast horizon . The forward algorithm is not perfect since it uses 
demand information for the periods 1, ... , n to detect a simpte planning horizon 
for minimal forecast horizon (n- M + 1). 

2.5.3 Implementation issues 

The forward algorithm has been implemented in the object-oriented programming 
language C++. We defined a class BASICCLASS, which contains generic features 
like for instanee the shortest path recursion. For a specific type of cast structure, 
a new class has to be defined that inherits from BAS!CCLASS. For this new class, 
we only have to add two additional features, i.e., (i) an algorithm that calculates 
optima! subplans and their casts and (ii) an upper bound M on the length of a 
subplan. In order to possibly speedup the forward algorithm we incorporate the 
upper bound M in the shortest path recursion. 

The forward algorithm frequently adds and merges ordered sets of integers. We 
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used the efficient implementation of ordered sets by splay trees due to Sleator & 
Tarjan [1985] from the libg++-library. The amortized complexity of adding and 
merging are O(log n) and O(n log n) in the number of nodes n, respectively. 

2.6 Off-Jine excess cost calculation 

In this section we derive an algorithm that determines the excess cost incurred when 
decomposing the off-line problem at some period tand solving the t-period problem 
independently. In this section we derive such an algorithm. Such an algorithm is 

needed in our experiments in Chapter 6 and Chapter 7. 
Let again f(u, v) denote the cost of an optima! (v - u)-period plan for the 

periods u + 1, ... , v. Then a recursive definition of f (u, v) is straightforward from 
(2.4). Wedefine D..(p, n) as 

D..(p, n) = f(p) + f(p, n)- f(n). (2.9) 

In words, D..(p, n) denotes the excess cost over the cost of an optima! n-period 
plan incurred when independently finding optima! production plans for the first p 
periods and the last n - p periods with I P = 0. Furthermore, let D.. (p) be defi ned 
as 

D..(p) = lim D..(p, n). 
n->oo 

(2.10) 

In words, D..(p) denotes the excess cost of decomposing the off-line problem at 
period p . Remark that the limit value D..(p) may not exist. Let :R.u,v denote the set 
of integers that occur as a regeneration point in any optima! (v- u)-period plan for 
the periods u+ 1, ... , v . Then a recursive definition of :Ru. u is straightforward from 
(2.8). The following result can be used as a stop criterion in a forward algorithm. 

Theorem 2.3. Suppose afinite upper bound M exists on the lengthof a subplan in 
an optima! n-period plan that is independent of n. Given is an integer p. Let 

-8k(p, n) = -8k(n) n :R.p.n n :R.p.n-'-1 n ... n :R.p.n+k-1· 

Then for all t E -8 M (p, n) we have 

(i) D..(p, N) = f(p) + f(p , t)- f(t) for all N :::_ n, and 

(ii) D..(p) = f(p) + f(p, t)- f(t). 

Proof According to Theorem 2.2, all t E -8M (p , n) are simple planning horizons. 
Completely analogously, it can be shown that all t E -8M(P. n) are simpte planning 
horizons for the instanee of the off-line problem startingin period p+ 1. So we have 

f(p , N) = f(p, t) + f(t, N) and f(N) = f(t) + f(t, N) for all t E -8M(P. n) 
and N :::_ n. From this we infer that f(p, t)- f(t ) = f(p , N) - f(N) for all 
t E -8 M (p, n) and N :::_ n, which, aftersome straightforward calculations, completes 
the proof. D 
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A major disadvantage of using Theorem 2.3 as a stop criterion in a forward algo
rithm is the large amount of memory that is required for storing the integer sets 
:Rp,s and :R5 • Besides, it is often suftleient to k:now the excess cost within a eer
taio prespecified tolerance. The following result provides a stop criterion that is 

less memory demanding. Moreover, in a natura! way, this criterion allows for the 
ioclusion of a toleranee parameter. 

Theorem 2.4. Suppose a finite upper bound M exists on the length of a subplan in 
an optima! n-period plan that is independent of n. Given is an integer p. For all 
t ~ p we define 

Lk(p, t) = mln t::..(p, s) 
l:'óS<t+k 

Uk(p, t) = max t::..(p , s). 
l :'óS<t+k 

Then we have 

(i) LM(p, t) ~ t::..(p , n) ~ UM(p, t)forall t, n with n ~ t ~ p, 

(ii) LM(p, t) ~ t::..(p) ~ UM(p, t)for all t ~ p, 

(iii) LM(p, t + 1) :::_ LM(p, t)for all t :::_ p, 

(iv) UM(p, t + 1) ~ UM(p, t)for all t :::_ p, and 

(v) UM(p, t + 1) - LM(p, t + 1) ~ UM(p, t)- LM(p, t)for all t :::_ p. 

Proof Since in case t ~ n < t + M the proof of part (i) is straightforward, 
we concentrate on the case n ~ t + M. Take such an n. From Proposition 2.4 
we k:now that {t, t + 1, . .. , t + M - 1} is a re generation set. Using the definition 
of regeneration set, there exist k, l with t ~ k, l < t + M, such that f (n) = 
f(k) + f(k, n) and f(p, n) = f(p, l) + f(l, n). Using f(p, n) ~ f(p, k) + 
f(k, n) we derive t::..(p, n) ~ t::..(p, k). Similarly, using f(n) ~ f(l) + f(l, n), 
we derive t::..(p , n) :::_ t::..(p , l). Combining these two inequalities and the definition 
of LM(p, t) and UM(p, t) yields LM(p, t) ~ t::..(p , l) ~ t::..(p, n) ~ t::..(p , k) ~ 
UM(p, t), which completes the proof of part (i) . Part (ii) is a direct consequence 
of part (i). Using part (i) we have LM(p, t) ~ t::..(p, t + M) ~ UM(p, t) for all t 
with t :::_ p , which implies parts (i i i) and (iv) . Part (v) follows immediately from 
parts (i i i) and (i v) . D 

Given such an upper bound M , we can calculate !:::.. (p) within a toleranee f3 with 

f3 :::_ 0, by using UM(p, t)- LM(p, t) ~ f3 as a stop criterion in a forward al
gorithm. Although U M (p, t) - L M (p, t) is decreasing in t, the terminati on of t~e 
forward algorithm cannot be assured. Since the implementation of this algorithm is 
straightforward, its details are omitted . 
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2.7 Off-Iine optimal optimization horizon selection 

This section derives forward algorithms that facilitate the off-line computation of 
the best possible optimization horizon . To that end we generalize the simple plan
ning and forecast horizon framework developed in Section 2.5 by adopting a differ
ent notion of optimality, called k-optimality, which is defined as follows . 

Definition 2.9. Let .ik (n) denote the costof a optima) n-period plan consisting only 
of subplans of length less than or equal tok. The corresponding optima! production 
plans are called k-optimal. 0 

It is easy to see that an inventory decomposition property as Proposition 2.1 cao 
be derived for k-optimal production plans as wel!. Therefore, we formulate the 
problem of finding k-optimal production plan as a shortest path problem on the 

regeneration graph. The difference is that only arcs with a length less than or equal 
to k have to be considered. The corresponding recursion is given by 

{ 
.ik (0) = 0 
.ik (t) = min{fi(s) + c(s, t) Is::: 0, t- k ~ s < t}, t :::_I. 

(2.11) 

Note that the set of paths with are lengths less than or equal to i is a subset of the set 
of paths with are lengths less than or equal to i. The following results are therefore 
immediate. 

Proposition 2.5. f; (t) ~ fJ (t) for all i ::: i ::: 1 and t ::: 0. 

Proposition 2.6 . .ik (t) ::: f(t) for all k, t ::: 0. 

0 

0 

Proposition 2. 7. Suppose a fini te uppe r bound M exists on the leng th of a subplan 
in an optima! n-period plan that is independent of n. Then .ik (t) = f(t) for all 
k ::: M and t ::: 0. D 

2.7.1 k-optimal simpte planning horizons 

Below, the simple planning and forecast horizon framework developed in Sec
tion 2.5 is straightforwardly generalized to k-optimality. Most results are given 
without proof, because similar results have already been proved in Section 2.5. 

Definition 2.10. The integer t is called a k-optimal simple planning horizon for 
jarecast horizon n, if for all N ::: n and irrespective of demands in periods n + 
1, n + 2, . . . there exists a k-optimal N -period plan with a re generation point at the 
end of period t. The integer t is called a k-optimal simple planning horizon if there 
exists an integer n such that t is a k-optimal simple planning horizon for forecast 
horizon n. The integer n is called a k-optimal simple jarecast horizon if there exists 
a k-optimal simple planning horizon for forecast horizon n. The smallest k-optimal 
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simple forecast horizon is called the minimal k-optimal simple forecast horizon. 
D 

Definition 2.11. Let t be a k-optimal simple planning horizon. Then any k-optimal 
t-period plan is called in.finite-horizon k-optimal. D 

Definition 2.12. Let -8 be a finite set of integers and let i and J denote its minimal 

and maximal element, respectively. Then -8 is called a k-optimal regeneration set, 
if for all n :::_ J and irrespective of demands in periods J + 1, J + 2, ... there exists 
a k-optimal n-period plan with a regeneration point in -8. D 

Proposition 2.8. Any set of k consecutive periods constitutes a k-optimal regener
ation set. D 

The following result is a direct consequence of this. 

Corollary 2.2. Suppose there exists a k-optimal simpte planning horizon. Then 
there exists a k-optimal simple planning horizon t with t E {I, .. . , k }. D 

Let L7 denote thesetof those s that minimize the right-hand side of (2.II). Then 
L7 represents the set of periods that occur as the last regeneration point but one in 
a k-optimal t-period plan. The set of periods that occur as a regeneration point in 

an k-optimal t-period plan is denoted by :R.; and is recursively defined by 

{ 
:R.~ = 0 

k k (2.I2) 
:RI = {t} U UsE.l~ :R.s, t :::_ 1. 

Proposition 2.9. Let -&7 (n) = :R.~ n :R.~+I n · · · n :R.~+t-I. Then t is a k-optimal 
simpte planning horizon Jor Jarecast horizon n, if and only if t E Jf (n). D 

2.7.2 Off-line k-optimal simpte planning horizon detection 

We conclude that k-optimal simple planning horizons can be detected by using 

the forward algorithm derived in Section 2.5 for the detection of simple planning 
horizons with M = k. Note that this only works because, in our implementation, 
we included the bound M in the forward recursion (2.4); see Section 2.5.3. 

2.7.3 Off-line k-optimal excess cost calculation 

Let Jk (u, v) denote the cost of an k-optimal ( v - u )-period plan for the periods 
u + I, ... , v. Then a recursive definition of Jk (u, v) is straightforward from (2.II ). 
Wedefine f"..k(p, n) as 

f"..k (p, n) = Jk (p) + Jk (p, n) - Jk (n) . (2.I3) 

In words, f"..k (p, n) denotes the excess cost over the costof an k-optimal n-period 
plan incurred when independently finding k-optimal production plans for the first p 
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periods and the last n - p periods with I P = 0. Furthermore, let ~k (p) be defined 
as 

~k(P) = lim ~k(p, n). (2.14) 
n-+00 

We remark that this limit value may not exist. Given such an upper bound M, we 
can calculate ~ (p) within a toleranee f3 with f3 ~ 0 by using U M (p , t)- L M (p , t) .::: 

f3 as a stop criterion in a forwardalgorithm. Although UM(p, t)- LM(p , t) is de
creasing in t, the termination of the forward algorithm cannot be guaranteed. Si nee 
the implementation of this algorithm is straightforward, its details are omitted. 

We conclude that ~k (p) can be calculated by using the forward algorithm de
rived in Section 2.6 with M = k. Note that this only works because, in our im
plementation, we included the bound M in the forward recursion (2.4); see Sec
tion 2.5.3. 

2.7.4 lmplementation issue 

Although an additional finite upper bound N on the length of a subplan in an op
timal n-period plan that is independent of n is no longer required, in case such a 
bound N is available and if N < k, we can speedup the forward algorithm by 
taking M = N . 



3 
Some elementary cost structures 

T he framework for single-item lot-sizing presented in the previous chapter was 
formulated in terms of an arbitrary cost structure. For a particular cost structure, 
the framework presupposes three features. First, optimal subplans and their costs 
can be computed efficiently. Second, there exist an upper bound on the Jength of 
a subplan in an optimal production plan. Third, we have an expression for the 
economie order quantity. This chapter derives these cost structure specific features 

for three elementary cost structures, which, in the remainder of this thesis, serve as 
a test bed for the evaluation of our ideas and techniques. 

The chapter is organized as follows. Section 3.1 addresses the Wagner-Whitin 
cost structure. The corresponding lot-size model is a single-souree model in the 

sense that there is only one way to satisfy demand. Two-source models with over
time and purchasing are addressed inSection 3.2 and Section 3.3, respectively. 

3.1 The Wagner-Whitin cost structure 

The first cost structure originates from the single-souree model described by Wag
ner & Wh i tin [ 1958] . De mand is only satisfied through in-house production. The 
production cost function P is fixed plus Iinear (concave) and is given by 

p x = 3.1 lo if x= o 
( ) S + pX if X > 0, ( ) 

33 
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P(X) 

s 

--~----------------------~x 
0 

Figure 3.1. Single-souree production cost function. 

where p denotes the production cost per unit of product and S denotes the setup 
cost. The holding cost function is linear and is given by 

H(l) =hl for all/ ;:: 0, (3.2) 

where h denotes the holding cost per unit of product per period. We assume that 
p , h > 0 and S ;:: 0, so that both P and H are strictly increasing. We refer to this 
cost structure as the Wagner- Whitin cost structure. 

3.1.1 Characterization of optimal subplans 

Since both H and P are concave, we may apply Proposition 2.3 to obtain the fol
lowing result. 

Corollary 3.1. Let Xuu be a subplanofan optima[ n-period plan X11 • Then Xu+ l = 
D(u, v). D 

Using this result it is easy to see that the cost of an optima! subplan, i.e., the cost 
of an are in the underlying shortest path problem in the regeneration graph, is given 
by 

u- l 

c(u, v) = P(D(u, v)) + L H(D(t, v)). 
t=u+l 

These are costs can be computed recursively as was shown by Evans [ 1985]. In 
his algorithm, the computation of all are costs requires 0 (n2 ) basic operations (ad
ditions, multiplications, and comparisons). Using the forward recursion (2.4), we 
obtain an O(n2 ) algorithm for the n-period proble m with Wagner-Whitin cost struc
ture. Recently, a number of authors developed algorithms for the n-period problem 
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with Wagner-Whitin cost structure requiring only 0 (n) basic operations [Aggarwal 
& Park, 1993; Federgruen & Tzur, 1991; Wagelmans, Van Hoesel & Kooien, 1992]. 
These algorithms exploit the special structure of the model even more. 

3.1.2 Bounds on the lengthof an optima! subplan 

Throughout this chapter we use the notation e;, which denotes an n-component 
vector with a one in the ith position, and zeros elsewhere. Furthermore, let LxJ 
denote the largest integer smaller than or equal to x. 

Theorem 3.1. Let Xuv be a subplanofan optima/ n-period plan X11 • Then 

V- U :S lh~J + 1 < 00. 

Proof Let o = min{Xu+t, millu<t<v Ir}. Then, since X,.v is a subplan, o > 0. Let 
X~ = Xn - oeu+t + oev. One easily verifies that X~ is a n-period plan. Since Xn is 
optima!, the costof X~ must begreater than or equal to the costof Xn. Subtracting 
the equal cost components yields the inequality 

P(o)- (P(Xu+d- P(Xu+t - o)) 
V - U - 1 < ___;_;__..:....____;___;___; _ _;____;___;_..:...;_ 

- ho 
s 

< -
- ho 

Corollary 3.1 implies that Xu+l = D(u, v) and therefore / 1 = D(t, v) for all t = 
u + 1, ... , v - 1 and o = dv. The proof of the first inequality is completed by using 

that v -u is integer. Since Xuv is a subplan, dv > 0. Together with h > 0, this 
proves the finiteness of LS/(hdv)J + 1. 0 

Corollary 3.2. Suppose a lower bound dL > 0 on positive demand in a period 
exists. Let Xuv be a subplanofan optima/ n-period plan X11 . Then 

V - U < l_!_J + 1 < 00. 
- hdL 

0 

For instanee when demand is integer valued the upper bound on the length of a 

subplan of an optima! production plan is equal to L SI h J + 1. Note that such an 
upper bound may drastically reduce the number of arcs to be considered in the 
underlying shortest path problem. We use these bounds in the forward algorithm 
developed in Chapter 2. 

3.1.3 Economie order quantity 

The purpose of this subsection is to derive a horizon-selection rule based on the 
economie order quantity as proposed in Section 2.4.3. The variabie-horizon policy 
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constituted by this rule is used as a reference in our empirica! studies. Next we ana
lyze the discrete time version of the infinite-horizon lot-sizing model with constant 
demand described in Sec ti on 2.4. 3. 

Let D be the demand rate in units per period. It is easy to see that the average 

inventory level I is equal to Q/2. The total relevant cast per period, defined by 
(2.5), become 

hQ DS 
TRC(Q) = - + - + pD. 

2 Q 

Examining TRC(Q) yields the economie order quantity Q* and the conesponding 
order cycle n* given by 

Q* = n* D = J2DS h . (3.3) 

Although Harris [1913] was the first who derived this formula, it is widely known 
as Wilson's lot size formula. Wilson was a consultant who used such a formula 
in his workon inventory management in many companies [Hax & Candea, 1984] . 
For details on this analysis we refer to the textbooks by Hax & Candea [1984] and 
Silver & Peterson [1985]. 

The horizon-selection rule selects the optimization horizon equal to the order 
cycle n* rounded to the nearest integer greater than zero. For D we take the average 
demand level calculated over the data horizon, which is recalculated every time new 
information comes in. 

3.1.4 A worst-caseresult 

InSection 2.6 we defined b.(p, n), which denotes the excess cast over the costof 
an optima! n-period plan, incurred when independently finding optima! production 
plans for the first p periods and the last n - p periods with I P = 0. The following 
worst-caseresult is due to Bitran, Magnanti & Yanasse [1984]. 

Proposition 3.1. b.(p, n) :::: S for all p = I , .. . , n. 

This result can be generalized to k-optimality as follows. 

Proposition 3.2. b.k(p , n) :::: S for all p = 1, .. . , n and k E N 

0 

0 

Note that these results also hold for the limit values b..(p) and b.k(p), provided 
these limit values exist. 

3.2 A cost structure witb overtime 

The second cast structure originates from the two-source model mentioned by Ja
gannathan & Rao [1973]. Demand is satisfied either by production during normal 
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P(X) 

s 

u c x 

Figure 3.2. Two-source production co st funct ion with overtime. 

time or by production during overtime. The production cast function P is piecewise 
concave and is given by 

{

0 if x= 0 

P(X) = S + pX if 0 <X~ C 

S +pC+ q(X- C) if X > C, 

(3.4) 

where C denotes the regular time production capacity, S denotes the setup cast, 
p denotes the regular time production cast per unit product, and q denotes the 
overtime production cast per unit product. The inventory cast function H is linear 
and is given by (3.2). We assume that q > p > 0. Furthermore, we assume that 
h , C > 0 and S ::::_ 0, so that P and H are bath strictly increasing. In the analysis, 
the difference in cast per unit product between overtime production and regular time 
production plays an important role. For notational reasans wedefine r = q- p. We 
refer tor as the overtime premium. Jagannathan & Rao [1973] and Dixon [1980] 
analyzed similar cast structures with additional bounds on overtime production and 
inventory. Baker, Dixon, Magazine & Silver [1978] and Dixon, Elder, Rand & 
Silver [1983] considered overtime rnadeis with backlogging. 

3.2.1 Properties of optimal production plans 

First consider the following general result for single-item lot-sizing models with 
arbitrary piece-wise concave cast functions due to Swoveland [1975] . 

Proposition 3.3. [Swoveland, 1975]. Suppose that Pis concave on each of k inter
vals [qi-I, qi] with i= 1, ... , k, and H is concave on each ofl intervals [bi-I, bil 
with i = 1, ... , l. Let J> = {qo, . .. , qk} and Jf = {bo, ... , bt}. Then there exists 
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an optima/ n-period plan with the property that between successive periods s and t 
with 1 :::; s < t :::; n and Is, 11 E Jf there is at most one period u with s < u :::; t 
and Xu 'f. /P. 0 

We now return to the specifk production cost function with overtime that is subject 
of this section. Using the formulation of Proposition 3.3, we have k = 2, qo = 0, 

q1 = C, and qz = oo for the production cost function P and l = 1, bo = 0, 
and b1 = oo for the holding cost function H. Applying Proposition 3.3 yields the 
following result. 

Corollary 3.3. There exists an optima/ n-period plan with the property that each 
subplan contains at most one production period with a lot size that is unequal to 
the capacity of regu/ar production C. 0 

Theorem 3.2. Let Xuv be a subplan of an optima/ n-period plan Xn . Then Xb :::; Xd 
for all production periods band d with u + 1 :::; b < d :::; v. 
Proof We concentrate on the case that Xuv contains two or more production 
periods, otherwise the proof is trivia!. Suppose, on the contrary, that there exist 
production periods b and d with u + 1 .:s b < d .:s V such that xb > xd. We show 
that such a production plan cannot be optima!. Let 8 be defined by 

{ 

min{Xb, millb~r<d 11 , C- Xd} if Xd < Xb :::; C 

8 = min{minb~r<d Ir, C- Xd} if Xd < C :::; Xb 

min{Xb - C, minb<r<d /r} if C .:S Xd < Xb . 

From Xb and Xd being production periods and Xuv being a subplan of Xn, we infer 
that 8 > 0. Let X~ = Xn - oeb + oed. One easily verifies that X~ is a n-period plan 
and has lower cost. This contradiets with Xn being optima!. 0 

3.2.2 Characterization of optimal subplans 

Definition 3.1. A subplan Xuv of a n-period plan Xn is called well-formed if 

(i) At most one production period t with u+ I :::; t :::; v exists such that X1 :/= C, 
and 

(ii) Xb _:s Xd for all production periods band d with U + 1 :::: b < d _:s V . 

0 

The following result is straightforward from Corollary 3.3 and Theorem 3.2. 

Corollary 3.4. There exists an optima/ n-period plan that consists only of well
formed subplans. 0 

To facilitate a characterization of optima! well-formed subplans, we introduce the 
cumulative demand axis as described by Chung & Lin [ 1988] . Instead of giving 
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i" . + ---------------- + . + . "i 
Xq x,*_ ' x,* 

i" du+ 1 •I• du+ 2 "IE --- --------- -- ------- -- -- -- -- "IE dv •I 

----------------~.------------ - ------ -- -------------~~-----------. 

Bu+l Bu+2 Bu+3 Bv Bv+l 

Figure 3.3. 'Cumulative demand a.xis. 

each period an equal length on a time axis, each period is represented by an interval 
of length proportional to the demand in that period, and demand is spread uniformly 
over a period. The origin is used to indicate the beginning of period 1. We then 
mark the points B 1 = 0 and B1 = D(O, t - 1) fort = 2, . . . , n + I. Each point 
B 1 refers to the end of period t - 1 and the beginning of period t , hence the interval 
from Bt to Bt+ I represents the demand in period t. In Figure 3.3 this concept is 
visualized fora subplan Xuu with k production periods i, < iz < . . . < ik. Using 
this cumulative demand axis, it becomes clear that production in period ik is used 

to meet the demand from Bu+l - X;* to Bu+I· Production in period ik- I is used 
to meet the demand from Bu+I - X;* - X;*_ ' to Bu+l - X;*, and so on. In a 
subplan the production in each period cao only be used to meet present or future 
demand and inventory must be positive, therefore we require B u+l - X;* > B;., 

Bv+l - X;• -X;"_' > B;k-l, and so on. 

Theorem 3.3. Let Xuu be a well-formed subplan of an optima/ n-period plan Xn. 

Suppose that Xu u has k production periods i 1 < iz < . . . < ik . Then we have 

(i) i, =u+ 1, 

(ii) Ijk = 1, then Xu+ l = D(u , v), and 

(üi) lfk > 1, then the lot sizes X;1 , ••• , X;k are given by 

l ({3, C, ... , C) 
(X;,, ... , X;*)= (C, .. . , C, {3) 

ifO < {3 ::: C 

iff3 > C, 

where f3 = D(u , v)- (k -l)C. The timing ofthe lot sizes i,, ... , ik is given 

by (,. = is for s = 2, .. . , k, where is is defined for s = k, k - 1, . .. , 1 by 
the backward recursion 

k 

J.,. = max{j I Lt + 1 ::: i < is+l' B u+l - L X;m > B j }, 

m=s 

with boundary condition ik+ I = v + 1. 
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Proof Since X" u is a subplan, parts (i) and (ii) are obvious. The remaioder of this 
proof concentrates on part (iii). Subplan X"v contains k production periods. Since 
X"v is well-formed, at least k - 1 of these production periods have a lot size of C. 
The lot size in the remaining production period is equal to ~ = duv - (k - l)C. 
Since X"v is well-formed, there are two possibilities for the timing of~, i.e., in case 
0 < ~ ::::: C it must be in the first production period and in case ~ > C it must be 
in the last production period. Using the definition of cumulative demand axis and 
since X"v is a subplan, is ::::: is for s = 2, .. . , k . Suppose there exists an index s 
with 2 ::::: s ::::; k such that is < }s. Let t be the largest such index. So it < i~> and 
is = is for all t < s ::::; k. We define X~ = Xn - X;, e;, + Xi, e J, · From the definition 
of i1 it follows that X~ is a n-period plan and one easily verifies that X~ has lower 
cost. This contradiets with Xn being optima! and we conclude that is = is for all 

s = 2, ... ' k. 0 

Theorem 3.3 implies that given the number of production periods of a well-formed 
subplan for the periods u + 1, . . . , v, computing the optima! lot sizes X"+ 1, .. . , Xv 
requires O(v - u) basic operations. Since an optima! n-period plan exists that 
consists only of well-formed subplans, it is suftleient to enumerate over all (v -
u) possible values for k and to choose a subplan with lowest cost. In this way, 
an optima! subplan can be obtained using O((v - u)2) basic operations, and the 
computation of all are costs requires O(n4 ) basic operations. Using the forward 
recursion (2.4), we obtain an algorithm for the n-period problem with the overtime 
cost structure that requir.es 0 (n4

) basic operations. 

3.2.3 Bounds on the lengthof an optimal subplan 

Lemma 3.1. Let X"v be a subplanofan optima[ n-period plan Xn . Then 

d-b ::: l~J < oo 
for all production periods b and d with u + 1 ::::; b < d ::::; v. 

Proof We concentrale on the case that X"v contains two or more production pe
riods, otherwise the proof is trivia!. Let 8 be defined by 8 = min{Xb, minh~ t <d ft}. 
From the definition of subplan and from b being a production period it is obvious 
that 8 > 0. Let X~ = Xn - 8eb + 8ed. One easily verifies that X~ is a n-period plan. 
Since Xn is optima!, the costof X~ must be greater than or equal to the costof Xn. 
Subtracting the equal cost components gives the inequality 

(d _ b) < _( P_(_X_d _+_8_) _-_P_(_X_d )_) _-_(_P_( X_b_)_-_P_(_X_b_-_8_)) 
- h8 
< _q_- _P 

h ' 
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which, tagether with d - b being integer, completes the proof of the first inequality. 

The finiteness of Lr I h J + 1 is obvious from h > 0. 0 

Lemma 3.2. Let Xuu be a subplan of an optima[ n-period plan Xn. Then there 
exists a last production period d with u < d :::: v and 

V- d < < 00. l s J 
- hmin{C,du} 

Proof From Xuu being a subplan it is obvious that a last production period d exists. 
If d = v we have v - d = 0 < oo and the result is obvious. We concentrale on the 
case d < v. Let 8 = min{Xd, miOd:;::z<u /z}. Then, since Xuu is a subplan, y > 0. 
Because dis the last production period, 11 = D(t, v) for all t = d , . . . , v- 1, and 
therefore y = min{Xd, lu-d = min{Xd, du}. Below, we show that y is bounded 
from below. Therefore consider the following two cases. In case d = u + 1, it 
is obvious that xd = D(u , v) 2::. du . In case u + 1 < d < V, Corollary 3.3, 
Theorem 3.2, and Xu+I > 0, imply that Xd 2::. C . So y 2::. min{C, du}. Let 
X~ = Xn - oed + oeu. One easily verifies that X~ is a n-period plan. Since Xn is 
opti mal, the cast of X~ must be greater than or equal to the cost of Xn . Subtracting 
the equal cost components yields the inequality 

P(o) - (P(Xd) - P(Xd - 8)) 
v - d < . 

- ho 

By distinguishing between different cases for Xd and 8 we have 

s if xd :::: c 
S- r(Xd - C) if xd > c, xd - 8 :::: c, and 8 :::: c 

V -d ~ h8:::: S- r(Xd- 8) if Xd > C, Xd - 8 :::: C, and 8 > C 

s - ro if Xd > C, Xd - 8 > C, and 8 :::: C 

S- rC if Xd > C, Xd - 8 > C, and 8 > C 
' 

:::: s. 
Using that 8 2::. min { C, du} yields v - d :::: SI (h min { C, du}). The proof of the first 
inequality is completed by using that v-dis integer. Since Xuu is a subplan, du > 0. 
Tagether with h > 0 and C > 0 this proves the finiteness of LSI(h min{C, du})J . 
0 

Theorem 3.4. Let Xuu be a subplanofan optima[ n-period plan Xn . Then 

V - Lt < l!:_J + l S J + 1 < 00. - h h min{C, du} 

Proof Theorem 3.3 implies that period u + 1 is the first production period. Let 
period d bethe last production period. Then u + 1 :::: d :::: v . Applying Lemma 3. 1 
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yields d - u .:S Lr j h J + 1. The proof is completed by combining this inequality 
with the equality of Lemma 3.2. 0 

The results of Theorem 3.4 are easily verified by substituting p = q and C = oo to 
obtain Theorem 3.1. 

Corollary 3.5. Suppose a lower bound dL > 0 on positive demand in a period 
exists. Let Xuv be a subplanofan optima! n-period plan Xn. Then 

V - U < l~J + l S J + 1 < 00. - h h min{C, dL} 

0 

Corollary 3.4 providesus with an upper bound on the lengthof an individual are on 
a shortest path, i.e., a subplan Xuv can be part of an optima! plan only if v - u is 
less than or equal to this bound. Using this upper bound in our dynamic program
ming algorithm may reduce the number of computations drastically. Besides this 
computational profit, weusethese upper bounds as a stop criterion for our forward 
algorithm. 

3.2.4 Economie order quantity 

Again we derive a horizon-selection rule based on the economie order quantity as 
proposed in Section 2.4.3. The corresponding variabie-horizon policy is used as a 
reference in our empirica! studies. Next we analyze the discrete time version of the 
infinite-horizon lot-sizing model with constant demand described inSection 2.4.3. 

Let D be the_ demand rate in units per period. It is easy to see that the average 
inventory level I is equal to Q/ 2. The total relevant cost per period, defined by 
(2.5), become 

TRC(Q) = P(Q) D + H(Q/2) 
Q 

= h Q + I DQS + p D . ~f 0 < Q .:s c 
2 D(SQrC) + qD If Q > C. 

Carefully examining TRC(Q) yields the economie order quantity Q* and the cor
responding order cycle n*. Let r 1, r2 be defined by 

r, = J2~S' 
and 

r
2 

= J2D(S - rC) . 
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Th en 

{

rl 

Q* = n* D = ~ 

ifO < r1.:::; C 

if S > rC, r2 > C, and TRC(r2) <TRC(C) 

otherwise. 

43 

(3.5) 

The horizon-selection rule selects the optimization horizon equal to the order cycle 
n* rounded to the nearest integer greater than zero. For D we take the average 
demand level calculated over the data horizon, which is recalculated every time 
new information comes in. 

3.3 A cost structure with purchasing 

The third cost structure is based on the following two-source model. Demand is 
satisfied either by in-house production or by purchasing from an outside supplier. 
Suppose that the in-house production capacity is equal to C, and let p, q denote 
the in-house production cost per unit product and the purchasing cost per unit prod
uct, respectively. There is a fixed setup cost S for in-house production in a eertaio 
period; there are no fixed charges for purchasing. So the in-house production cost 
is fixed plus linear (concave) as in the Wagner-Whitin cost structure and the pur
chasing cost is linear. Such models arealso called models with stockouts or models 
with Iost-sales and were analyzed by Sandbothe & Thompson [ 1990] as concave 
cost network flow problems. 

As was indicated by Chen, Heam & Lee [1994] the difference between single
souree models and multiple-souree models can be captured in the production cost 
function. To make any sense, q must begreater than p, which implies that a break
even point B exists between producing and purchasing. This break-even point is 
found by solving S + pB = qB and is given by B = Sj(q - p) . For the same 
reason we assume that B < C. Using this result, the two-source model is captured 
by the following piecewise linear production cost function 

{

qX 

P(X) = S + pX 

S + pC + q (X - C) 

ifO .:::; X .:::; B 

if B < X .:::; C 

if x > c. 
(3.6) 

The inventory cost function H is linear and is given by (3.2). We assume that 

q > p > 0, h , C > 0, and S ~ 0, so that P and H are both strictly increasing. 
In the analysis, the difference in cost per unit product between purchasing and in
house production is important. For notational reasoos we define r = q - p. We 
refer to r as the purchase premium. 
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0 B c 

Figure 3.4. Two-source production costfunction with purchasing. 

3.3.1 Properties of optimal production plans 

Using the formulation of Proposition 3.3, we could choose k = 3, qo = 0, q1 = B , 
q2 = C, and q3 = oo for the production cost function P. But, since P is concave 
on [0, C], we may also take k = 2, qo = 0, q 1 = C, and q2 = oo. For the holding 
cost function H, we takel = 1, bo = 0, and b1 = oo. Applying Proposition 3.3 
yields the following result. 

Corollary 3.6. There exists an optima/ n-period plan with the property that each 
subplan contains at most one production period with a lot size that is unequal to 
the capacity of in-house production C. 0 

Given a production plan X. Let R(X1 ), S(X1 ) denote the amount of in-house pro
duction in period t, and the amount of product purchased in period t , respectively. 
These quantities can be calculated from X1 by 

and 

R(X,) = { ~' 
ifO:::: XI :::: B 

if B <XI:::: c 
if X1 > C 

S(XI) = XI - R(XI ). 
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Using this notation we can state the following two results due to Sandbothe & 
Thompson [1990]. 

Proposition 3.4. There exists an optima! n-period plan X11 such that I,S(X,) = 0 
for all t with 1 :S t :S n. 0 

Proposition 3.5. There exists an optima! n-period plan X11 such that 11-t(C -
R(X1 ))R(X1 ) = Oforall t with 1 :St::: n. 0 

3.3.2 Characterization of optimal subplans 

Definition 3.2. A subplan Xuv of a n-period plan X11 is called welljormed if 

(i) At most one production period t with u+ 1 ::: t ::: v exists such that X, =!= C, 

(ii) S(X,) = 0 fort =u+ 1, .. . , v- 1, and 

(iii) R(X,) E {0, C} fort= u+ 2, ... , v. 

0 

The following result is straightforward from Corollary 3.6, Proposition 3.4, and 
Proposition 3.5. 

Corollary 3.7. There exists an optima! n-period plan that consists only of well
formed subplans. 0 

Using the cumulative demand axis defined inSection 3.2.2 we can now characterize 
optima] well-formed subplans. The proof of the following result is similar to that 

of Theorem 3.5 and therefore omitted. 

Theorem 3.5. Let Xuv be a well-formed subplan of an optima[ n-period plan X11 • 

Suppose that Xuv has k production periods i1 < i2 < ... < ik . Then we have 

(i) it = u+ 1, 

(ii) Ijk= I, then Xu+l = D(u, v), and 

(iii) Ijk > 1, then the lot sizes Xi,, ... , Xik are given by 

(Xi,, ... , Xik) = l ({3, C, ... , C) 
(C, .. . , C, {3) 

ifB<f3::SC 

otherwise, 

where f3 = D(u, v) - (k - l)C. The timing of the lot sizes i2, . . . , Îk is given 
by is = fr for s = 2, . .. , k, where is is defined fors = k, k - 1, ... , 1 by 
the backward recursion 

k 

is= max{j I u+ 1 ::: j < fr+l· Bu+l- L xim > Bj}. 
m=s 

with boundary condition }k+ l = v + 1. 
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Xn being optima!. We conclude that is = }s for all s = 2, ... , k. 0 

Theorem 3.5 implies that, given the number of production periods of a well-formed 
subplan for the periods u + 1, ... , v, computing the optima! timing and sizing of 

the lot sizes requires O(v - u) basic operations. Since an optima! n-period plan 
exists that consists only of well-formed subplans, it is suftkient to enumerate over 
all (v -u) possible values for k and to choose a subplan with lowest cost. In this 
way, an optima! subplan can be obtained using O((v - u)2) basic operations, and 
the computation of all are costs requires 0 (n4 ) basic opera ti ons. Using the forward 

recursion (2.4), we obtain an algorithm for the n-period problem with the purchase 
cost structure that requires 0 (n4 ) basic operations. 

3.3.3 Bounds on the length of an optima) subplan 

The following result provides us with an upper bound on the length of a subplan of 
an optima! n-period plan. 

Theorem 3.6. Let Xuu be a subplanofan optima! n-period plan Xn. Then 

V- U S l~J + 1 < 00. 

Proof Let 8 = min {X u+ 1, minu+ 1 :::r <u Ir}. Th en, from the definition of subplan, 
it is obvious that 8 > 0. Furthermore, let X~ = Xn - 8eu+1 + 8eu. One easily 
verifies that X~ is a n-period plan. Since Xn is optima!, the cost of X~ must be 
greater than or equal to the costof Xn. Subtracting the equal cost components gives 
the inequality 

(P(Xu + 8) - P(Xu)) - (P(Xu+ I) - P(Xu+ 1 - 8)) 
v - (u + 1) < ------------------- h8 

q-p 
<--h , 

which, together with v-u being integer, completes the proof of the first inequality. 
The finiteness of Lr I hJ + 1 is obvious from h > 0. 0 

3.3.4 Economie order quantity 

In this subsection we derive a horizon-selection rule based on the economie order 
quantity as proposed in Section 2.4.3. The corresponding variabie-horizon policy 
is used as a reference in our empirica! studies. Next we analyze the discrete time 
version of the infinite-horizon lot-sizing model with constant demand described in 
Section 2.4.3. 

Let D be the demand rate in units per period. The analysis is different from 
the analysis for the two former models. Suppose we use a fixed lot size of Q. 
Then it consists of an in-house production part R(Q) and a purchase part S(Q). 
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Proposition 3.4 implies that it is not optima! to keep purchased goods in inventory. 
So either Q = S(Q) = D, and demand is satisfied directly by purchasing, or 
Q = R(Q), and demand is satisfied by setting up production. In case Q = S(Q), 
i.e., 0 ::=: Q ::=: B, there is no inventory and the total relevant cost per period are 
given by 

TRC(Q) = qD, 

which is independent of Q. In case Q = R(Q), that is, B < Q ::=: C, the average 
inventory level Ï is equal to Q/2 and the total relevant cost per period are given by 

Let 

and 

hQ DS 
TRC(Q) =2+Q+pD. 

rl=~ 

Q, ~r 
if r1 ::=: B 

if B < r1 ::=: C 

if r1 > C. 

Then, in case TRC(Q1 ) > q D, no economie order quantity exists and all demand 
is directly satisfied by purchasing from the outside supplier. Otherwise, in case 
TRC(Q1) ::=: q D we have an economie order quantity 

Q* = n* D = Q1 . (3.7) 

The horizon-selection rule selects the optimization horizon equal to the order cycle 
n* rounded to the nearest integer greater than zero. For D we take the average 
demand level calculated over the data horizon, which is recalculated every time 
new information comes in. 
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4 
Mul ti -layered perceptrans for statistica! 

classification 

A multi-layered perceptrou consists of a layered network of elementary nodes 
that are linked through weighted connections. Thesenodes represent computational 
units, which are capable of performing a simp ie computation that consists of a sum
mation of the weighted inputs of the node, foliowed by the addition of a constant 
called the bias weight, and the application of a response function. The result of 
the computation of a unit gives the output of the corresponding node. The nodes 
are arranged in layers with connections between the inputs of the network and the 
nodes in the first layer and between subsequent layers only. 

A history of Perceptrons. Early workon multi-layered perceptrous dates back 
to McCulloch & Pitts [ 1943], who studied a simp ie mathematica! model for the 

behavior of a single neuron in a biologica! nervous system consisting of a simple 
processing unit. Single-layered networks of such units were studied by Widrow 
& Hoff [ 1960] under the name adalines and by Rosenblatt [ 1958] and Rosenblatt 
[1962] whocalled them perceptrons. Multi-layered perceptrous can be viewed as 
an extension of these single-layered networks. Rosenblatt [ 1962] showed that per
ceptrous can be used for adaptive pattem classification, by introducing a learning 
algorithm called the perceptrou convergence procedure and by proving his famous 
perceptrou convergence theorem. This theorem states that the perceptrou conver-

49 
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gence procedure finds the conneetion weights of a single-layered perceptron that 
solves a given pattem classification problem if such a solution exists. Among oth
ers, Minsky & Papert [ 1969] demonstrated the limitations of single-layered per
ceptrans by showing that they can only classify sets that are linearly separable. 
Minsky & Papert [ 1969] suggested the u se of multi-layered perceptrans to over
come these difficulties. However, due to the Jack of a convergence procedure for 
this type of networks and the convincing argument of Minsky & Papert [ 1969] for 
single-Iayered perceptrons, interest in perceptrans dropped toa modest level. In the 
last decade, multi-layered perceptrans regained interest due to the discovery of the 
back-propagation algorithm, which enabled an efficient evaluation of derivatives in 
multi-Iayered perceptrons. This algorithm is the backbone of many learning algo
rithms. Although sirnilar ideas had been developed earlier by Werbos [ 1974] and 
Parker [ 1985], it was the paper by Rumelhart, McClelland & Williams [ 1986] that 
introduced the back-propagation algorithm toa broader audience. 

In recent years multi-layered perceptrans have emerged as a useful neural net
workmodel with applications in many fields. The majority of these applications are 
in pattem recognition and classification. For examples of such applications we refer 
to the work of Huang & Lippmann [ 1988], Maren, Harston & Pap [ 1990], Michie, 
Spiegelhalter & Taylor [1994], and Ripley [1994]. 

The remainder of this chapter is outlined as follows. In Section 4.1 we intro
duce multi-Iayered perceptrans and we show that multi-layered perceptrans can be 
viewed as mappings . Their network mapping capabilities are discussed in Sec
tion 4.2. InSection 4.3 we address the supervised learning problem, i.e., the prob
lem of constructing a multi-layered perceptron on the basis of learning examples. 
Supervised learning in the presence of noise or uncertainty is analyzed in Sec
tion 4.4. Section 4.5 is devoted to the subject of generalization . Finally, in Sec
tion 4.6, we introduce statistica! classification and discuss the use of multi-layered 
perceptrans in this area. 

4.1 Network mappings 

In a multi-layered perceptron the inputs of units in the first layer correspond to the 
inputs of the network, while the inputs of the units in a higher layer are the outputs 
of the units in the preceding layer. The outputs of the units in the highest layer 
determine the outputs of the network, and this is called the output layer. Units that 
are not output units are called hidden units, and the corresponding layers are called 
hidden layers. The topology of a multi-layered perceptron is determined by the 
number of inputs, the number of layers, and the number of units per layer. 

Let the term m-layered perceptron (mLP) refer to a multi-layered perceptron 
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with m layers of computational units or, equivalently, m layers of weights. Below 
wedefine the mapping represented by a general mLP with nC0l inputs and nCil units 
in layer l for l = 1, . .. , m. Let x; denote the ith input and let yyl denote the output 
of unit i in layer l . We assume that within layer l each unit has the sameresponse 

function given by / Cl) 0. 
The output of the ith unit in the first layer is obtained by first computing a 

weighted linear combination of the nCOl inputs, and adding a bias weight, which 

yields 
n (O) 

aj'l = L wj~ l x;+ wj~, (4.1) 
i=l 

where wyl denotes the weight of the conneetion between input i and first layer unit 

i and w j~ denotes the bias weight of first layer unit i - Sametimes -wj~ is called 
a threshold. The bias weight can be modeled as an ordinary weight by adding an 
extra input with fixed value xo = 1. Rewriting ( 4.1) then yields 

n (O) 

aj'l = L w):lx; . (4.2) 
i=O 

The output of first layer unit i is then obtained by applying the response function 
jCil(·) and is given by 

yj'l = /Cil(aj' l) . (4.3) 

The output of the kth unit in layer l + 1 is obtained by first computing a weighted 
linear combination of the n1 inputs from layer l, and adding a bias weight, which 

yields 
n(l) 

(1+1 ) "' (1+1) (I) + (1+1) 
ak = ~ wkJ YJ Wko ' (4.4) 

J=l 

where wt+ll denotes the weight of the conneetion between unit i in layer land unit 

k in layer l + 1, and wi~+ l l denotes the bias weight of unit k in layer l + 1. Again, 
this bias weight can be modeled as an ordinary weight by adding an extra unit 0 in 

layer l with a fixed output value y61
l = 1. Rewriting ( 4.4), then yields 

n(l) 

(1+1) "' (1+1 ) (I) 
ak =~wkJ Yj · (4.5) 

)=0 

The output of unit k in layer l + 1 is then obtained by applying the response function 
jCI+Il (-) and is given by 

(1+ 1) - / (1+ 1)( (1+1 ) ) 
Yk - ak · (4.6) 



52 Multi-layered perceptrans for statistica/ classification 

xl x2 1 

Figure 4.1. An example of a 2LP with two inputs, three hidden units, and two output 
units. The bias weights are shown as weights from extra inputs having afixed value 
I. 

We refer to the above recursive computation of outputs from inputs as forward 
propagation. An example of a 2LP is shown in Figure 4.1 . This network has 2 
inputs, 3 hidden units, and 2 output units. Combining (4.1), (4.4), and (4.6), we 
obtain an explicit expression for the complete mapping represented by this 2LP. 
This expression is given by 

Y)" = f'" ( w)i' + t w);' !'0 
( wj~ + t wj;>x,)) for k = I, 2 (4.7) 

From this example it is clear that a multi-layered perceptron can be viewed as a 
mapping f : RM -+ IRK, where M denotes the number of inputs and K the number 

of output units. Mapping f is called the network mapping. In the next section 
we address the question what network mappings can be realized by multi-layered 
perceptrons, i.e., we investigate the network mapping capabilities of multi-layered 
perceptrons. 

4.2 Network mapping capabilities 

In recent years the capabilities of multi-layered perceptrans to realize mappings 

have been investigated by many authors. Network mapping capabilities of multi
layered perceptrans can be subdivided into exact capabilities and approximation 
capabilities. Exact capabilities of multi-layered perceptrans are determined by the 
set of mappings that can be realized as a network mapping. Approximation capa-
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bilities of multi-layered perceptrans are determined by the extend to which they can 

approximate arbitrary mappings. 
Below, we discuss some results on the network mapping capabilities for the type 

of multi-layered perceptrans under consideration. We concentrate on multi-layered 

perceptrans with one output unit. The corresponding results for multi-layered per
ceptrans with more than one output unit can be easily deduced from this simplitied 

case as was shown by Hornik, Stinchcombe & White [I989]. We introduce the no

tation (a, ,8)-mLP to denote an m-LP with response function a for the hidden units 

and response function ,8 for the output units. For reasans of convenience (a , a)
mLP is abbreviated to a-mLP. 

First, we discuss the exact capabilities of 8-mLPs, where 8 : IR ---+ {0, I} 
denotes the hard-limiting response function given by 

e(x) = -II if x> 0 

0 if x < 0. 
(4.8) 

Second, we discuss the approximation capabilities of 8-mLPs and a-mLPs, where 
a : IR ---+ [0, I] denotes the log is tic sigmoid response function given by 

1 
a(x) = -- . 

I+ exp(-x) 
(4.9) 

The term sigmoid refers to "S-shaped". The logistic sigmoid response function can 
beseen as a differentiable approximation of the hard-limiting response function of 
(4.8). Finally, we discuss the approximation capabilities of (8, À)-mLPs and (a, À)

mLPs, where À : IR ---+ IR denotes the linear response fimction given by 

À(x) =x. ( 4.I 0) 

4.2.1 Exact capabilities 

8-mLPs can be seen as classification devices that classify input veetors to one of 
a finite number of classes and the exact capabilities of 8-mLPs can be studied by 

considering their classification capabilities . For our discussion of the classification 
capabilities of 8-mLPs we follow the workof Zwietering [ I994 ]. A subset V Ç IRM 
is said to be classified by a 8-mLP with M inputs and one output unit, if its network 
mapping f : IRM ---+ {0, I} satisfies 

f(x) = g if x E V 

if x fj. V . 

The decision region fJ (f) of this 8-mLP is defined by 

fJ(f) ={x E IRM I f(x) =I}. 
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J(xl ,x2) 

/;wJ 
-~ 
w2~ 

-~ 
wl 

xl x2 

(a) (b) 

Figure 4.2. (a) An example of a e-I LP with two inputs and one output unit. The 

network mapping f: IR2
--+ {0, 1} is given by f(xt, x2) = e(wtXt + w2x2 +wo). 

(b) The shaded region corresponds to the decision region of the e-I LP given by 

'!J(f) = {(Xt' X2) E IR2 I WjX] + W2X2 +wo::: 0}. 

Thus V is classified by a e-mLP with network mapping f if the decision region 
'iJ (j) equals V. In this way, input veetors x E RM belong to one of two classes, 
i.e., either they are in V or they are not in V. To illustrate this, in Figure 4.2 we 
give an example of a e-lLP with two inputs and one output unit. One easily verifies 
that its decision region is a closed affine half space in IR2

. The two classes are 
separated by a line in R2

, called the decision boundary. The orientation of this 
decision boundary and its distance to the origin can be changed by adjusting the 
weights w1 and w2 and the bias weight wo. 

In order to specify the classification capabilities of e-mLPs we need to define 
the following collections of subsets of IRM. Let V* denote the complement of V. 

Definition 4.1. The collection of closed affine halfspaces HM, the collection of 
polyhedra PM, the collection of open and closed affine halfspaces iJ M, the collee
ti on of pseudo polyhedra PM, and the collection of fini te unions of pseudo polyhe
dra U M are defined by 

H M = {V s; IRM I 3a E IRM \ {0} 3b E IR : V = {x E IRM I a · x+ b ::: 0}}, 

PM ={V s; IRM I V= n~l W;, W; E HM, K E INo}, 
- M HM = {V s; IR I V E HM V V* E HM}, 
- M K -
PM ={V s; IR I V= ni=l W;, W; E HM, K E No}, and 
- M L -
UM ={V s; IR I V= ui=! V;, V; E PM, L E No}, 

respectively. 0 

A polyhedron V E PM is the intersection of a finite collection of closed affine 
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halfspaces. Therefore, all its bounds, usually called faces, belong to the set. A 
pseudo polyhedron V E PM is the intersection of a finite collection of closed or 
open affine halfspaces and can have faces betonging to the set and faces betonging 
to its complement V*. The collection OM can be viewed as the collection of all 

subsets of IRM that have a finite number of piece-wise linear bounds. The following 
result specifies the classification capabilities of 8-mLPs. 

Theorem 4.1. [Zwietering, 1994]. Let Cm,M denote the colteetion of subsets ofRM 
that can be classified with a 8-mLP with M inputs and one output unit. Then 

(i) Cl,M = HM u {0, IRM}, 

(ii) PM C Cz,M C OM, and 

(iii) Cm,M = UMform ~ 3. 

0 

These results appeared in the papers by Zwietering, Aarts & Wessels [1991] and 
Zwietering, Aarts & Wessels [1992]. Gibson & Cowan [1990] and Gibson [1993] 
obtained related results. Zwietering [1994] derived a detailed characterization of 

Cz,M by giving necessary and suftleient conditions for a subset to be classifiable 
with a 8-2LP. For more details and examples of subsets that can or cannot be clas
sified by a 8-2LP we refer to the workof Zwietering, Aarts & Wessels [1992], 
Zwietering [1994], and Gibson & Cowan [1990]. 

4.2.2 Approximation capabilities 

In the discussion of the approximation capabilities of multi-layered perceptrans we 
distinguish between the task of classification, in which input veetors have to be 
assigned to classes and the task of regression, in which continuous variables have 
to be predicted given input vectors. Be!ow we discuss the approximation capabili
ties of 8-mLPs and a-mLPs for classification and the approximation capabilities of 
(8, À)-mLPs, (a, À)-mLPs, and a-mLPs for regression. 

Classification. Lippmann [ 1987] showed that 8-mLPs, with m ~ 3, can approxi
mate any decision boundaries with arbitrary accuracy, provided the number of hid
den units is sufficiently large. Despite these capabilities the practical use of 8-mLPs 
for classification is limited. The main reason for this is that the hard-limiting re
sponse function is inappropriate for use in learning algorithms; see also Section 4.3. 
In such cases a-mLPs can be used for c!assification by rounding the outputs to the 
nearest integer or by imptementing a winner-takes-it-all mechanism. Bishop [ 1995] 
shows that a-mLPs with m ~ 2 can approximate any decision boundary with arbi
trary accuracy, provided the number of hidden units is sufficiently large. 
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Regression. Among others, Homik, Stinchcombe & White [ 1989] showed that 
(tJ, À)-mLPs with m ::::_ 2 can approximate arbitrarily well any continuous function, 
provided the number of hidden units is sufficiently large. The authors also show 
that the same result holds for (a, À)-mLPs with m ::::_ 2; see also the workof Barron 

[1991], Cybenko [1989], Funahashi [1989], and Hornik [1991]. 
The regression capabilities of a-mLPs can be characterized using the above 

results for (a, À)-mLPs. One easily verifies that a unit with a logistic sigmoid re
sponse function can approximate a unit with a linear response function with arbi

trary accuracy by rescaling its incoming and outgoing weights [Bis hop, 1995]. As a 
result ofthat, a-mLPs, with m ::::_ 2, can approximate arbitrarily well any continuous 
function with range [0, 1], provided the number of hidden units is sufficiently large. 
We remark that, by choosing a suitable transformation, any bounded continuous 

function can be transformed to a function with range [0, 1 ]. 
Numerous alternative response functions exist with similar approximation ca

pabilities. Hornik [1991] stressed that it is the multi-layered feed-forward topology 
that gives multi-layered perceptrans the potential of being universa[ approximators, 
rather than the specific choice of the response function, by showing that any con
tinuous, bounded, and non-constant response function is sufficient. An extensive 
treatment of this area is beyond the scope of this thesis ; elaborate discussions are 
provided by Ellacott [ 1994], Light [ 1992], Mason & Parks [ 1992], and Zwietering 
[1994]. 

A final remark addresses the profit of using mLPs with m > 2, consiclering the 
fact that we can approximate any mapping with arbitrary accuracy with a 2LP. One 
possibility is that by using more hidden layers we obtain more efficient approxi
mation in the sense that the same accuracy is obtained with fewer weights. So far, 
however, there are hardly any results on this subject. 

4.3 Supervised learning 

From the results presented in the previous section we conclude that multi-layered 
perceptrans have quite impressive network mapping capabilities, but no construc
tion methods were provided for finding appropriate network topologies. When ap
plying multi-layered perceptrans toa certain task one has to choose a suitable net
werk topology and weights such that the network perfarms the task accurately. If 
the underlying task is well-understood and can be analyzed properly, these parame

ter values can be derived directly from the problem formulation. Usually, however, 
this is not the case and the only available information consists of examples of the 
desired input-output behavior. In such cases one can apply supervised learning 
techniques. In this section we concentrale on the problem of determining suitable 
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weights fora multi-layered perceptron with a fixed network topology on the basis 
of a finite set of examples. The problem of choosing a suitable network topology is 
addressed in Section 4.5 in the context of generalization. 

4.3.1 Problem formulation 

Given is a multi-layered perceptron with M inputs and K outputs and a finite set 
-8 ={si, ... , SN} of learning examples, where Sn = (xn. tn) with n = 1, ... , N, 
Xn E IRM represents an input vector for the rriülti-layered perceptron, and tn E IRK 

represents the conesponding desired output or target vector. We refer to -8 as the 
learning set. The network is supposed to be already completely specified apart 
from the weights. For reasans of convenience we group all weights in the network 
to farm a single weight vector w. Let y(xn ; w) denote the output vector of the 
multi-layered perceptron with weight vector w on input of input vector Xn . Then 
the supervised learning problem is defined as to find a weight vector w such that 
the difference between the target vector tn and the output vector y(xn ; w) is minimal 
for all n = 1, ... , N. Usually, the difference is measured by an appropriate error 
function. Let E = E(w) denote the total error function, which can be written as 
a sum, over all examples in the learning set, of the error En (w) of each individual 
example, i.e., 

N 

E(w) = L En (w), ( 4.11) 
n=l 

where n = 1, . . . , N labels the examples in the Iearning set. Many different error 
functions have been proposed in the literature and the selection of an appropriate 
one is usually problem-dependent [Bishop, 1995; Xu, Klasa & Yuille, 1992] . The 
most commonly used error function is the sum-of-squares error fitnetion given by 

N 

E(w) = L En(w) , (4.12) 
n=l 

where 

K 

En (w) = 11 y(Xn; w) - tn 11
2= L (Yk (Xn; w) - tnd2

' 

k=l 

and where 11 · 11 denotes the Euclidean norm. 
Remark that, although the capabilities of multi-layered perceptrans to reproduce 

target veetors given input veetors may be useful in itself, usually the purpose is to 
generalize, i.e., to reproduce target veetors given input veetors that are outside the 
learning set. Generalization is subject of Section 4.5. 
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4.3.2 Solution approaches 

Supervised Jearning involves the search for a weight vector w such that the total 
error function E is minimaL If the chosen response functions are differentiable, 

supervised Jearning can be viewed as the unconstrained minimization of a differ
entiable function of many variables. Such probieros have been widely studied, 
and many of the conventional approaches in this area can directly be applied to 
supervised learning with multi-layered perceptrons; see for example the standard 

textbook on global optimization techniques by Fletcher [ 1987]. 
In the simplest case of a À-1LP with the sum-of-squares error function ( 4.12), 

E is a convex function of w having a single minimum. This minimum can be found 
by solving a set of coupled linear equations [Bishop, 1995] . For more general net
works, in particular those with more than one layer, E is typically a non-linear 
function of w and local minima may exist. As a consequence of this, it is in gen
eral impossible to find closed-form solutions forthese minima. Instead, supervised 
learning approaches, which are called learning algorithms, typically minimize E 
by an iterative procedure in which the weights are adjusted in a sequence of steps 
until some stop criterion is met. At each such step we can distinguish between two 
distinct stages. In the first stage, the derivatives of E with respect to the individual 
weights must be evaluated at the current values of the weights. Until the discov
ery of the back-propagation algorithm, the computationally efficient evaluation of 
these derivatives was considered as a major problem. In the second stage, these 
derivatives are used to compute the weight adjustments. The most commonly used 
weight adjustment schemes involve some kind of gradient descent. 

Although there are various Jearning algorithms that show a good performance 
on a wide range of applications, they all typically require problem-specific tun
ing, making a sound comparison of the different learning algorithms cumbersome. 
Therefore, no single best universallearning algorithm can be designated . In these
quel we discuss the back-propagation algorithm and gradient-descent based weight 
adjustment schemes. Furthermore, we discuss weight initialization and stop crite
ria. Elaborate overviews of the literature on learning algorithms are provided by 
Bishop [1995], Hertz, Krogh & Palroer [1991], Xu, Klasa & Yuille [1992]. 

4.3.3 Error back-propagation 

Below we give a derivation of the back-propagation algorithm. We use the notation 
introduced in Section 4.1 for a general mLP. It is assumed that we are given an 
arbitrary fixed network topology, with arbitrary continuous, differentiable response 
functions, and an arbitrary differentiable error function. 

We reeall that the back-propagation algorithm is a procedure for the evaluation 
of the derivatives of the total error function E with respect to the weights w )'/. Using 
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( 4.11) these derivatives cao be expressed as sums over the learning examples of the 

derivatives of the error functions En. Consequently the learning examples (xn, tn) 

may be considered one at a time. Thus we may concentrate on the calculation of the 
derivative of En with respect to weight w)?. We suppose that we have supplied the 

input vector Xn to the network and calculated the outputs of all units by successive 
application of ( 4.3) and ( 4.6). First we note that En depends on w )IJ only through 

a Y), which yields 

(I) 
oEn oEn oa1 

OW(/) = aa(l) OW(/). 
Jl J Jl 

(4.13) 

Let 8)') bedefinedas 

8ul = oEn 
J aa(l). 

} 

(4.14) 

For notational reasoos we de fine Y;(O) = Xni. Using this notation and ( 4.1) and ( 4.4) 
it follows that 

aa(l) 
~) (I 
OW(/) = Y; -1) 

Jl 

( 4.15) 

Substituting (4.14) and (4.15) into (4.13) yields 

oEn = 8Ul ct-I) (4 16) 
OW (/) J Y, . 

) I 

The calculation of the 8il)'s cao be executed recursively as follows. Starting at the 
output layer, for output unit k in layer m we have 

(ml oEn a En oyiml 
8k = -c,;;) = c;;;)-c,;;)• ( 4.17) 

aak oyk aak 

which, using ( 4.6), can be simplified to 

8 cml _ J'Cml( cml) oEn 
k - ak a (m), 

Yk 
( 4.18) 

where f'(m) denotes the derivative of the response function JCm). For hidden unit j 
in layer l with 1 .::; l < m, we note that En only depends on ai'l through ai'+I) for 

k = 1, ... , nU+ I ), which yields 

n (l+ l) · (1+ 1) 

Cll a En '""' a En oak 8 j = :;;--Ttï = L ') (I+ I) --;;--<i) . 
ua1 k=l aak ua1 

( 4.19) 
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1. Apply input vector Xn to the network and use forward propagation to find all 
outputs yJL> of units in the network. 

2. Evaluate the errors 8~m) for the output units using ( 4.17). 

3. Back-propagate the ~rrors 8~m) using the error back-propagation rule ( 4.20) 

to obtain 8y> for each hidden unit. 

4. U se ( 4.16) to evaluate the derivatives. 

Figure 4.3. The back-propagation algorithm. 

This can be simplified using (4.4) and (4.14) to what is known as the error back
propagation rule given by 

n(l+l) 

8y> = j'U>(ay>) L 8~/+ l ) wt+l)_ ( 4.20) 
k=l 

With this rule we can recursively calculate the errors of units in the hidden layers 
from the errors of units in the output layer, where the errors are represented by the 
8Jl) 's. Remark that this holds for any network with feed-forward topology. The 
back-propagation algorithm for evaluating the derivatives of En with respect the 
weight wj'! is summarized in four steps in Figure 4.3. 

The derivative of the tota1 error function E with respect to the weight w )? can 
be determined by summlng the derivatives of En for all learning examples which 
results in 

()E N ()En 

---m = I: ---m. 
dW ji n= l dW ji 

(4.21) 

We end our discussion of the back-propagation algorithm witharemark on its com
putational efficiency. Let W denote the total number of weights. Then one can 
easily verify that applying the above steps to evaluate the W derivatives of En re
quires O(W) operations. Note that this is quite efficient, since evaluation of the 
derivatives using their explicit formulas using forward propagation would require 
0 ( W2

) operations. The evaluation of the derivatives of E thus requires 0 (N W) 
operations. 

The above derivation of the back-propagation algorithm allows for general forms 

of the error function, the response functions and the network topology. In our exper
iments in Chapter 6 and Chapter 7 we use a sum-of-squares error function. More
over, in each unit, we use the logistic sigmoid response function, which has the 
convenient property that its derivative can be expressed in terms of the response 
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function itself as 

a' (x) = a(x)(l - a(x)). (4.22) 

This enables an efficient software implementation of the calculation of the deriv

ative. For derivations of the back-propagation algorithm for particular combina
tions of error functions and response functions we refer to the textbooks by Bishop 
[1995], Hertz, Krogh & Palmer [1991] and Rumelhart, McCielland & Williams 
[1986]. 

4.3.4 Weight adjustment schemes 

In this subsection we discuss gradient-descent based weight adjustment schemes 
for the minimization of E with respect to the weight vector w. First, we introduce 
two basic weight adjustment schemes called batch learning and sequentiallearning 
and discuss their convergence properties. Since local minima may exist, we distin
guish between local convergence, i.e., convergence toa local minimum, and global 
convergence, i.e. , convergence toa global minimum. After that, we extend the two 
basic schemes by adding a nwmentum term. 

Batch learning. In batch learning, we start with an initia) guess for w and we 
update the weights repeatedly in the direction in which the total error function de
creases most rapidly, i.e., in the direction of the negative gradient. The correspond
ing weight adjustment scheme equals 

N 

flw = -rJ'VwE = -TJ L 'ïlwEn, (4.23) 
n=l 

where w denotes the weight vector, 'ïlwEn denotes the gradient of En with respect 
to w, and TJ E IR+ is called the learning rate. Note that the weights are adjusted 
after alllearning examples in the learning set have been presented to the network. 

Under suitable conditions, the batch learning weight update scheme converges 
to a local minimum of E. The value for TJ can be fairly critica), since a too small 
value results in slow convergence, whereas a too large value results in divergent 
oscillations. Furthermore, we remark that once trapped in aIocal minimum there is 
noescape and global convergence cannot be assured. 

Sequential learning. In sequentia) learning, the weights are adjusted in the di
rection of the negative gradient of the error function for one learning example at a 
time. The corresponding weight adjustment scheme equals 

flw = - TJ'ïlwEn , ( 4.24) 

where the learning examples in the Iearning set are selected randomly or considered 
in sequence. 
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Convergence results for sequentia! learning require that the learning rate is made 
to decrease at each iteration according to some cooling schedule, given by IJt with 
t = 1, 2, .... It has been frequently mentioned in the literature that the advantage 
of sequentia! learning over batch learning is that, due to its random behavior, se

quentiallearning can escape from local minima. Furthermore, an analogy between 
sequentia! learning and simulated annealing [Kirkpatrick, Gelatt & Vecchi, 1983], 
where the temperature is controlled by the learning rate 1J1, has been mentioned 
[Bottou, 1991]. Heskes, Slijpen & Kappen [1993] elaborate on the analogy with 

simulated annealing by showing that the fastest possible cooling schedule for IJ1 

that guarantees convergence to a global minimum is exponentially slow. In prac
tice, however, a constant value of 1J1 generally leads to much better results, although 
the guarantee of global convergence is lost. 

Several authors claimed that sequentia) learning often yields the best results, 
especially for complex problems with many local minima [Barnard, 1992; Heskes 
& Wiegerinck, 1996] . Schiffmann, Joost & Werner [1992] campare the sequen
tia! version of gradient descent using a fixed learning rate with a large number of 
learning algorithms on a complex real world benchmark. They make a distinction 
between global weight adjustment schemes, in which the same learning rateis used 
for all weights, and local weight adjustment schemes, in which each weight has its 
own learning rate that is typically adapted during execution. In this study, sequentia! 
learning with a fixed learning rate was the best global weight adjustment schemes; 
only some of the local weight adjustment schemes gave slightly better results. 

We end our discussi6n with some additional advantages of sequentia! learning 
over batch learning. Since weights are adjusted after every presentation, sequentia! 
learning is memory efficient. Moreover, in case of large redundant learning sets, 
sequentia) learning runs faster [Bishop, 1995; Ellacott, 1994] . Finally, sequentia! 
learning is naturally suitable for parallel implementation. 

Momentum. For both batch learning and sequentia! learning a value of IJ that is 
too large may result in divergent oscillations. Conversely, if IJ is too small, the com

putation times may become prohibitive. The optima! value of IJ typically changes 
during the search. One commonly used remedy is to add a momenturn term, which 
adds a weighted average of the previous gradients to the current gradient. To illus
trate its effect we consider batch learning with momentum, which is given by 

~w(t) = -IJ'ilwE lw(r) +p,~w(t- 1), 

where t refers to the tth weight adjustment. This is equivalent to 

/ 

~W(t) =-IJL p,"'ilwE lw(r -s), 

s=O 

(4.25) 

( 4.26) 
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and can be seen as applying exponential smoothing to ( 4.23). In the case that the 
subsequent gradients are approximately the same we have 

{ 
2 T} 

b.w = -T]'ïlwE I + f..L + f..L + .. . } = ---'ïlwE, 
I-f...l, 

( 4.27) 

resulting in an increase of the effective learning rate from TJ to TJ/(1 - f..L). It is 
obvious that f..L must be chosen such that 0 ::=:: f..L < I. On the other hand, if the 

subsequent gradients oscillate, successive ftuctuations cancel to obtain a long term 
trend with an effective learning ra te close to TJ Bishop [ I995] . The corresponding 
weight adjustment scheme for sequentia! learning with momenturn is as follows. 
After presentation of the learning example labeled n, the weights are adjusted ac
cording to 

b.w(t) = -T]'ïlwEn lw(t) +f..Lb.W(l- I). (4.28) 

An extra effect of using a momenturn term for sequentiallearning is that one obtains 
an approximation ofthe total gradient. We referto the workof Wiegerinck, Komoda 
& Heskes [ I994] for convergence results of sequentia! learning with momentum. 

4.3.5 Stop criteria 

Possible stop criteria are to stop after (i) a fixed number of iterations, (i i) a fixed 
amount of computation time, or (i i i) the error on the learning set has dropped below 
some prespecified level. A disadvantage of these criteria is that they ignore the 
network's generalization capabilities. Stop criteria that account for generalization 
capabilities are discussed inSection 4.5. 

4.3.6 Weight initialization 

Weight initialization has received relatively little attention in the Iiterature. The 
most commonly employed weight initializing procedure is to choose small random 
values. Random values are used to avoid problems due to symmetry in weight 
space [Rumelhart, McC!elland & Williams, I986]. For the logistic sigmoidal re
sponse function, large absolute values of the initia! weights results in small values 
of derivatives of the response function, which leads to small values of the gradi
ent and consequently a flat error surface. If, on the other hand, the initia! weights 
are too small, the logistic sigmoid response function becomes approximately linear, 
which may slow down learning [Bishop, I995] . Unfortunately, there does not ex
ist a clear definition of small, and fine-tuning is needed for a particular problem at 
hand. Recently, a number of alternative weight initialization procedures have been 
proposed, which typically use prior, problem-specific knowledge. Smyth [1992] 
used the decision boundaries of a K -nearest-neighbors classifier [Duda & Hart, 
I973] as initialization of the first hidden layer weights. Wessels & Barnard [ I992] 
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developed a procedure in which the weights are initialized such that the hidden unit 
decision boundaries are uniformly oriented in feature space. Denoeux & Lengellé 
[ 1993] used prototype vectors. 

4.4 Learning in a statistical perspeelive 

As we have stressed before, the real purpose of supervised learning is to model 
the process underlying the learning examples, rather than to memorize the set of 
learning examples. In this way, on input of an input vector outside the learning set, 

the best possible prediction for the corresponding output vector can be made. It is 
important to note that such a process may be subject to noise or may be inherently 
stochastic. In this section we discuss supervised learning by means of sum-of
squares error minimization in a statistica! perspective. 

Following Bishop [ 1995], we model the process that generates the learning ex
amples by a random variabie pair (X, T) defined on r2x x QT, where r2x s; IRM 
denotes the input space and QT s; IRK denotes the target space. The process can 
then be characterized by the joint probability density function of X and T denoted 

by !x.T· 
Let { (Un, Vn) };;: 1 be a sequence of independent and identically distributed ran

dom learning examples with common distribution fx .T · Given is an {a, ,8}-mLP 
with M inputs and K outputs completely specified apart from its weights w. Let 
y(x; w) denote the output vector of the network on input of input vector x E r2x. 
We introduce the sequençe of random variables {an }~ 1 , where an denotes the sum
of-squares error between y(Un ; w) and Vn given by 

K 

GYn =11 y(Un; w)- Vn 11 2= I::(ydUn; w)- Vnk)2
, ( 4.29) 

k = l 

where Yk(Un ; w) and Vnk denote the kth component of y(Un; w) and Vn , respec
tively. It is obvious that random variables an with n = 1, 2, ... are independent 
and identically distributed. Finally, we introduce the sequence of random variables 
{EN }~=I, where EN denotes the mean sum-of-squares error of the N learning exam
ples labeled n = 1, . .. , N given by 

1 N 
EN= -"'""' N~GYn. (4.30) 

n=l 

The following result is obtained by applying the the strong law of large numbers 
[Feller, 1968] . 

Theorem 4.2. Suppose E{ 11 y(X; w) - T 11 2} < oo. Then, with probability I, 

Jim EN= E, 
N-.oo 
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where 

E = J J 11 y(x ; w) - t 11
2 /x,T(x, t)dtdx. 

Using the identity /x,T(x, t) = fr(t I X= x)fx(x) we rewrite (4.31) as 

E = J 11 y(x; w) - E{T I X= x} 11
2 

fx (x)dx + 

J var{T I X = x} fx (x)dx, 
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(4.31) 

0 

( 4.32) 

where fT (t I X = x) denotes the conditional probability density function of T given 
X and E{ · I·} and var{ ·I·} denote the condition al expectation and the condition al 
variance, respectively. Note that the second term of ( 4.32) is independent of w and 
can be neglected when minimizing E with respect to w. Furthermore, since the 
integrand in the first term of (4.32) is non-negative, a global minimum of E with 
respect to w is attained when 

y(x; w) = E{T I X= x}= f tfr(t I X= x)dt. (4.33) 

For the individual network outputs Yk (x; w) this corresponds to 

Yk(x; w) = E{Tk I X= x}= f tk/Tk(tk I X= x)dtk. (4.34) 

This important result states that in the limit as the size N of the learning set goes 
to infinity, the network mapping corresponding with a minimum of E is given by 
the conditional expectations of the targets. We notice that this only holds under the 
condition that (i) E{ll y(X; w) - T 11

2 } < oo and (i i) the {a, .B }-mLP has sufficient 
network mapping capabilities such that there exists a choice w which makes the first 
term in ( 4.32) sufficiently small. On easily verifies that condition (i) is satisfied, if 
,8 is bounded and E{ Tk} and E{ ~2 } are both fini te for k = 1, ... , K . 

For obvious reasons we call the mapping x ~ E{T I X = x} the target map
ping, i.e., the mapping that has to be learned by the multi-layered perceptron . In 
practice, we minimize the sum-of-squares error function ( 4.12) on a finite learning 
set of realizations of (X, T). In that case, the network outputs corresponding with 
a minimum of error become approximations of the conditional expectations of the 
targets. In other words the network mapping corresponding with a minimum of 
error becomes an approximation of the target mapping . For this approximation to 

be good, the learning set must be sufficiently large as to approximate an infinite 
learning set. The problem of determining a suitable network topology and a learn
ing set that is sufficiently large is discussed in the next section in the context of 
generaliza ti on. 
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A final remark is that Theorem 4.2 is independent of our choice of feect-forward 
network topology, or even of using multi-layered perceptroos at all. It only requires 
that the representation for the mapping y(x; w) is such that there exists a choice for 
w which makes the first term in ( 4. 32) sufficientl y smal!. The contri bution of multi
layered perceptroos is that they provide a practical framewerk for finding such a 
representation. 

4.5 Generalization 

In the context of supervised learning with multi-layered perceptrons, generalization 
refers to the predietien of target veetors for new input vectors, i.e., for input veetors 
that are not in the learning set. Good generalization is in general not simply evident 
and there are a number of conditions that must be satisfied, in order to achieve good 
generalization. These can be divided into problem specific and model specific con
ditions. This section is organized as follows. In Section 4.5.1 we discuss problem 
specific and model specific conditio os for good generalization. The problem of se
lecting an optima! network topology is addressed inSection 4.5.2. InSection 4.5.3, 
stop criteria for learning that take generalization capabilities into account are dis
cussed. Finally, inSection 4.5.4, we discuss committees of networks. 

4.5.1 Condition for good generalization 

Below we discuss two classes of conditions that enable generalization in multi
layered perceptrons. 

Problem specific conditions. A first necessary condition for good generalization 
is that the target mapping is insome sense smooth, i.e., a small change in the inputs 
should, most of the time, produce a small change in the outputs. Problems that do 
not satisfy this condition are learning the input-output behavior of pseudo-random 
number generators and data encryption algorithms, for instance. 

A second necessary condition for good generalization is that the learning set 
is a sufficiently large and representative subset of what statisticians use to call the 
population, i.e., all examples that you want to generalize to. The importance of 
this condition becomes clear when we distinguish between two types of general
ization: interpatation and extrapolation. Interpolation applies to input veetors that 
are surrounded by learning examples that are close in some sense; everything else 
is extrapolation. In particular, input veetors that !ie outside the subspace spanned 
by the learning examples require extrapolation. Interpolation can often be done re
liably, but extrapolation is usually unreliable [Barnard & Wessels, 1992; Haley & 
Soloway, 1992] . Hence it is important to have suftleient learning examples to avoid 
the need for extrapolation. In some cases preprocessing may be necessary to en-
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sure that the problem only requires interpolation. Problems that inherently require 
extrapolation are inappropriate for an approach based on supervised learning with 
multi-layered perceptrons. 

Model specific conditions. In the previous sec ti ons we focussed on the minimiza
tion of some error function Eon a finite learning set by choosing appropriate values 
for the weights in a multi-layered perceptron of fixed topology. What remains is the 
problem of determining a network topology that is optima) with respect to gen
eralization capabilities. We saw that the suitability of a certain network topology 
depends on its network mapping capabilities; see Section 4.2. In Section 4.4 we 
noted that, in case of a learning set that is sufficiently large, a necessary condition 
for good generalization is the requirement that the network has sufficient network 
mapping capabilities to represent the target mapping. 

In practice, however, there is usually only limited data available so that the op
tima! network topology is determined by the particular learning set at hand. In such 
cases, we typically seek for the network topology that achieves the best general
ization. Remark that the network topology with the best possible generalization 
with respecttoa certain learning set may have poor generalization capabilities. The 
dependency between the optima) network topology and the learning set can be char
acterized by the so-called bias-varianee trade-off, which we now briefly discuss. 
A theoretica) treatment of this subject is provided by Bishop [1995] . Let f be the 
network mapping of a multi-layered perceptron obtained by applying some learning 
algorithm with a fini te learning set -8. Then f can be viewed as a function of -8, i.e., 
f = j(-8) , and the bias measures the extent to which the average of the network 
mapping over all possible learning sets -8 differs from the target mapping. The vari
anee measures the sensitivity of the network mapping to the particular choice of 
learning set. Bias and varianee are complementary quantities, and the best general
ization capabilities are typically obtained as a campromise between the conflicting 
requirements of low bias and small variance. Networks with too little network map
ping capabilities typically smooth out some of the underlying structure (high bias), 
while networks with too much network mapping capabilities over-fit the learning 
examples (high variance) . 

4.5.2 Learning and generalization 

Next we address the problem of determining a multi-layered perceptron with the 
best possible generalization capabilities with respect to a given set of learning ex
amples. Various approaches have been presented in the literature for this problem. 

The most commonly used approach to select an optima! network topology for 
a given learning set is to execute the learning algorithm for different fixed network 
topologies and to select the topology with the best generalization capabilities. To 



68 Multi-Jayered perceptrans for statistica] classincation 

overcome over-fitting, one typically starts with a simple network and one increases 
the number of hidden units . 

An alternative approach is to let the learning algorithm adapt the topology of 
the network during execution. Possibilities are to start with a small network and to 
add units or to start with a large network and to prune units [Fahlman & Lebiere, 
1990]. 

Both approaches require a method to assess the generalization capabilities of 
a network. Depending on the available number of learning examples one of the 

following two methods can be used. In the hold out method the generalization 
capabilities of a network are assessed using an independent set of examples. The 
total error on this set is called the generalization error. In practice, the availability 
of learning examples may be limited and we may not be able to afford the luxury 

of keeping aside such a set of examples. In such cases we can adopt the method 
of cross-validation, where we divide the available set of examples into a number of 
distin ct segments, develop a network using the data of all but one of these segments, 
assess the generalization capability of the network on the remaining segment, and 
repeat the process for each possible choice for the segment that is omitted from 
the learning process. The results are then averaged. The disadvantage of such an 
approach is the increase in computational effort. 

4.5.3 Alternative stop criteria 

In Section 4.3.5 we discussed stop criteria for learning algorithms. These criteria 
completely ignored the network's generalization capabilities. Next we discuss two 
alternative stop criteria in which, during execution of the learning algorithm, the 
generalization error is monitored on an independent set of examples. The monitor
ing can be done by using the hold out method or by using cross-validation. 

In the first stop criterion, called premature stopping, the learning algorithm is 
stopped when the generalization error first starts to increase. This criterion is based 
on the observation that during a typical execution of a learning algorithm, the gen
eralization error often shows a decrease at first, foliowed by an increase as the 
network start to over-fit the learning set. In the second stop criterion the learning 
algorithm is executed for a fixed number of iterations while always storing a copy 
of the network with the lowest generalization error. 

The major advantage of using such stop criteria is the absence of over-fitting 
hazard. Consequently, the generalization capabilities of thus obtained networks 
are independent of the choice of network topology, provided the network mapping 
capabilities are sufficient. 

Remark that, in this way, there are typically three independent sets of examples 
involved, i.e. , a learning set used for weight adjustments, a validation set to monitor 
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the generalization error during execution of the learning algorithm in order to piek 
the best network, and a test set to asses the generalization capabilities of the final 
network. 

4.5.4 Committees of networks 

In practical gradient-based learning algorithms global convergence is not guaran
teed, hence the final network might be sensitive to the initia! values of the weights. 

For that reason it is common practice to develop several networks with different 
weight initializations. The problem now is to decide which of these networks we 
are actually going to use. One possibility is to keep the network with the lowest 
error on the validation set and simply discard the remaining networks. Drawbacks 

of this technique are the effort waste for developing the discarded networks and 
the danger of the selected network being biased to the validation set. These draw
backs can be overcome by grouping the networks logether to form a committee and 
let the committee delermine the final output [Perrone & Cooper, 1993]. This de
termination can be done by majority voting or by averaging all network outputs, 
for instance. The advantage of such a committee decision is that significant im
provements can be obtained with little extra computational requirements. Often the 
generalization capabilities of such a committee are even better than the best indi
vidual network. Bishop [1995] showed that some reduction of generalization error 
is to be expected, due to the reduced varianee which results from the averaging over 
different networks. 

4.6 Statistical classification 

The task of classification occurs in a wide range of information processing prob
Iems of great practical significance, from automatic reading of postcodes to med
ica! diagnosis. In genera!, a classification problem is concerned with the construc
tion of a classification rule that assigns objects to pre-defined classes on the basis 
of observed features. The most general and commonly used framework in which 
solutions to classification problems are formulated is a statistica! one. The cone
sponding field of research is called statistica! classification or statistica! pattem 
recognition. It is a wel! established field with a long history. In recent years it has 
been demonstraled that multi-layered perceptrous can be viewed as an extension of 
conventional techniques in statistica! classification; see for example the textbooks 
by Duda & Hart [1973] and Ripley [1996]. Based on the numerous comparisons 

of the performance of neural network classifiers with the performance of conven
tional classifiers, we may conclude that multi-layered perceptrous often provide a 
practical solution approach with a performance that is competitive with the best 
traditional approaches [Huang & Lippmann, 1988; Michie, Spiegelhalter & Taylor, 
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1994]. In the remainder of this section we discuss multi-layered perceptrans in the 
context of statistica! classification. 

4.6.1 Preliminaries 

Suppose we have to assign objects to one of K pre-defined classes on the basis of 
M observed real-valued features. Let Q ~ IRM denote the space of feature veetors 

and let L = {1, ... , K} denote the set of class labels. We model the relation 
between objects and their conesponding class label by a pair of random variables 
(X, Y) defined on Q x L. This relation can be characterized by the joint probability 
density function of X and Y denoted by fx .r . The conesponding classification 
problem can now be formulated as to find a classification rule g : Q ~ L that 
optimizes some appropriate objective. After introducing some basic concepts, we 
discuss two such objectives, i.e., maximization of expected classification rate and 
minimization of expected cost. 

4.6.2 Some basic concepts 

In statistica! classification it is often convenient to write the joint probability density 
function in the form 

fx .r(x, l) = P{Y = 11 X= x}fx(x) , (4.35) 

where P{Y = l I X = x} and fx denote the conditionat probability that an object 
belongs to class l given feature vector x and the probability density function of X, 

respectively. The quantity P{Y = l I X = x} is called the posterior probability, 
since it gives the probability that an object belongs to class l after the feature vector 
x is observed. Similarly, the joint probability density function can be written in the 
form 

fx .r(x, l) = fx(x I Y = l)P{Y = 1}, (4.36) 

where fx (x I Y = l) and P{Y = l} denote the conditionat probability density 
function of X given Y = l and the probability that an object betonging to class l, 
respectively. The quantity P{Y = l} is called the prior probability, since it gives 
the probability that an object belongs to class l befare its feature vector is observed. 
Combining these two expressions for the joint probability density function we ob
tain 

fx(x I Y = l)P(Y = l} 
P(Y = 11 X= x}="'------'---

fx(x) ' 
(4.37) 

which is called Bayes' formula . It is named after Rev. Thomas Ba yes, an 18th 
century mathematician . Bayes' calculations were published in 1763, two years 
after his death [Ba yes, 1763]. 
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Bayes' formula allows the posterior probabilities to be expressed in termsof prior 

probabilities P{Y = /} and conditional probability density functions fx(x I Y = l), 
where fx (x) can be written in the form 

fx(x) = L fx(x I Y = l)P{Y = /}. (4.38) 
IE of. 

4.6.3 Maximization of expected classification rate 

In the present part we consider the problem of finding a classification rule g : Q ~ 

L that maximizes the expected classification rate r(g) defined by 

r(g) = J P{Y = g(x) I X= x}fx(x)dx. (4.39) 

lf g(x) is chosen such that P{Y = g(x) I X= x} is maximal for every x, then r(g) 
is maxima!. This justifies the following statement of the rate-optimal classification 
rule. To maximize the expected classification rate, select that class l for which 
P{Y = l I X = x} is maxima!. The resulting expected classification rate is called 

the Bayes rate and is the best performance that can be achieved. 
In practical classification applications the posterior probabilities are usually un

known and the rate-optimal classification rule cannot be applied. In such cases, 
one can use available examples of objects, their feature vectors, and corresponding 

classes to estimate the posterior probabilities, which can be used to classify objects. 
In this way we obtain approximative classification rules. One approach is to es
timate the conditional probability density functions fx (x I Y = l) and the prior 
probabi !i ties P{Y = /} separately and then combine them using Ba yes' theorem 

to give posterior probabilities. An alternative approach is to estimate the posterior 
probabilities directly. Below, we show that,with a suitable representation of the 
learning examples, the outputs of a multi-layered perceptron obtained by minimiz
ing the sum-of-squares error on a finitesetof learning examples can be interpreted 
as approximations to posterior probabilities. 

Given is an {a, f3 }-mLP with M inputs, one per input dimension,and K output 
units, one per class. The network is supposed to be already completely specified 

apart from the weights w. Learning examples are constructed as follows. Fora pair 
(x, l) of an object feature vector and its corresponding class label we take the input 

vector equal to x. The corresponding target vector is defined by t = e1, where e1 
denotes a K component vector with a one in the lth position, and zeros elsewhere. 

We model the relation between input veetors and target veetors by the pair of 

random variables (X, T) defined on Q x {0, 1} K, where T = (T1, ... , h) is given 
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1
1 if y = k 

Tk = 
0 otherwise 

for k = 1, ... , K. (4.40) 

We apply Theorem 4.2 to obtain that in the limit as the size of the learning set goes 
to infinity, the network mapping corresponding with a minimum of E is given by the 
conditionat expectations of the targets. Using E{Tk I X= x} = P{Y = k I X= x} 
this yields that a global minimum of E with respect to w is attained when 

Yk(x; w) = P{Y = k I X= x} for all k EL. (4.41) 

This only holds under the condition that (i) the {a , ,8 }-mLP has sufficient network 
mapping capabilities such that there exists a choice wwhich makes the first term in 
(4.32) sufficient1y smalland (ii) E{ll y(X; w) - T 11 2 } < oo. One easily verifies 
that E{Tk} and E{Tl} are both finite for k = 1, ... , K . A sufficient condition for 
(i i) to hold is that output unit response function ,8 is bounded. A suitable choice is 
to use u -mLPs. 

For miniruizing the sum-of-squares error ( 4.12) on a finite learning set we con
clude that on input of object feature vector x, the network output values can be 
interpreted as estimates for the posterior probabilities P{Y = k I X = x}. Similar 
results can be found in the papers by Ruck, Rogers, Kabrisky, Oxley & Suter [ 1990] 
and Yeung [1993]. 

4.6.4 Class overlap 

It is in general impossible todetermine the class of an object on the basis of a feature 
vector with certainty. For instanee because the feature vector simply contains too 
little information about the object. In the previous subsection we saw that in such 
cases it is rate optima! toselect the class I for which the posterior probability P{Y = 
I I X = x} is maximaL According to (4.37) this corresponds to selecting the class 
I for which !x (x I Y = l)P{Y = /} is maxima!, where we use that !x (x) can 
be viewed as a normalization factor. We reeall that fx (x I Y = /) denotes the 
probability density function of X given that the object belongs to class /. From 
equali ty ( 4. 38) we know that the overall probabili ty density function fx (x) can 
be written as a sum of I L I components fx (x I Y = l)P{Y = /}, one for each 
class I E L. Since the classification problem is completely characterized by these 
components, the nature of a classification problem depends on the amount by which 
these components overlap. We refer to this phenomenon as class overlap. 

The amount of overlap between two probability density functions is usually 
called the overlapping coefficient and refers to the area under the two probability 
density functions simultaneously. The overlapping coefficient is defined as follows. 
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Definition 4.2. [Bradley, 1985]. Let U and V be random variables on IRn with 
conesponding probability density functions Ju and fv. Then the overlapping eoef
tkient À u. v is defined by 

À u, v = J min {Ju (x), fv(x) }dx. 

0 

Below we derive a measure for the amount of overlap for the general classification 
problem wjth the classification rate objective. There are two differences with the 
ordinary overlapping coefficient. The first difference is that there can be more than 
two probability density function involved. The second difference is that the proba
bility density functions are weighted by their conesponding prior probabilities. The 
conesponding overlapping coefficient is denoted by Àx,r. For the two-class case we 
have 

Àx,r = J min{fx(x I Y = l)P{Y = 1}, fx(x I Y = 2)P{Y = 2}}dx, 

which, using Bayes' rule, can be rewritten as 

Àx,r = J min{P{Y = 1 I X= x}, P{Y = 21 X= x}}fx(x)dx 

= 1- J max{l- P{Y = 1 I X= x}, 1- P{Y = 21 X = x}}fx(x)dx. 

Using the identity P{Y = 1 I X= x}+ P{Y = 2 I X= x} = 1, we derive 

Àx,r = 1 - J max{P{Y = 1 I X= x}, P{Y = 21 X = x}}fx (x)dx 

= 1 - J P{Y = g* (x) I X = x}fx(x)dx 

= 1 - r(g*), 

where r ( ·) denotes the expected classification ra te as defined by ( 4. 39) and g * de
notes the rate-optimal classification rule. For the general classification problem we 
define the overlapping coefficient by 

Àxr = 1- r(g*). (4.42) 

So the overlapping coefficient Àx.r conesponds with the misclassification rate of 
the Bayes' optima! classification rule. For exarnple, in case of non-overlapping 
components we have r(g*) = 1 and Àx.r = 0. In practical classification applica
tions, r (g* ) usually cannot be calculated exactly. Nevertheless we know that r (g) ::: 
r(g*) for any classification rules g, which can be rewritten as Àx y ::: 1 - r(p) . So 
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the expected misclassification ra te 1 - r (g) of any horizon-selection rule g pro
vides an upper bound for À x, y, No te that we can estimate 1 - r (g) by calculating 
the misclassification rate of g on an independent set of learning examples, 

4.6.5 Minimization of expected cost 

In some applications, maximization of the expected classification rate is an inap
propriate objective, Distinct examples of such applications can be found in medica! 
diagnosis, where it is often necessary to discriminate between the different types 
of erroneous classifications [Low & Webb, 1990], A simp ie approach to obtaining 

such discrimination is to introduce a cost matrix with elements cu denoting the 
cost incurred for classifying an object that belongs to class l E L to class k E L, 
However it depends on the application if such a cost matrix is sufficient A more 
general approach is to introduce a cost function c : Q x L x L ---+ IR, where 
c(x, l, k) denotes the cost incurred for classifying an object with feature vector x 

that belongs to class l E L to class k E L , Below we workout this approach, Since 
P{Y = l I X = x} is the probability that the true class label of x is l, the expected 
cost associated with assigning an object with feature vector x to class k is 

E{c(X, Y, k) I X= x}= :Lc(x, l, k)P{Y = ll X= x}, (4A3) 
leL 

For notational reasons we abbreviate the conditional expectation E{c(X, Y, k) I 
X = x} to c(k I x), We can now consider the problem of finding a classification 
rule g : Q ---+ L that minimizes the overall expected cost c(g) defined by 

c(g) = J c(g(x) I x)fx(x)dx, (4A4) 

lf g(x) is chosen such that c(g(x) I x) is minimal for every x, then the overall cost 
is minimaL This justifies the following statement of the cost-optimal classification 
rule, To minimize the overall expected cost, we compute the conditional expecta
tions c(k I x) for all k E L and select class k for which c(k I x) is minimaL The 
resulting minimum overall cost is called the Bayes costand is the best performance 
that can be achieved, One easily verifies that maxiruizing the expected classifica

tion ratereduces to a special case of miniruizing the overall expected cost by taking 
c(x, l, k) equal to 

1
1 if l f=, k 

c(x, l, k) = 
0 otherwise, 

(4A5) 

Note that in this case there is no cost distinction, since all errors have equal cost 
The notion class overlap, as defined in the previous section, can be easily extended 
to the more general cost objective by defining ÀX,Y = c(g*), where g* denotes the 
cost-optimal classification rule, 
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In practical classification applications the conditionat expectations are usually un

known and the cost-optimal classification rule cannot be applied. In such cases, 

one can use available examples of objects, their feature vectors, and corresponding 
classes to estimate the conditionat expectations, which can used to classify objects. 

In this way we obtain approximative classification rules. One approach is to esti

mate the posterior probabi !i ties and use ( 4.43) to give the conditionat expectations. 

An alternative approach is to estimate the conditionat expectations directly. Below 
we show that, with a suitable representation of the learning examples, the outputs 

of a multi-layered perceptron obtained by minimizing the sum-of-squares error on 
a finite set of learning examples can be interpreted as approximations to the condi
tionat expectations. 

Given is an {a, ,8}-mLP with M inputs, one per input dimension,and K output 

units, one per class. The network is supposed to be already completely specified 
apart from the weights w. Learning examples are constructed as follows. For a 
pair (x, l) of an object feature vector and its corresponding class label we take 
the input vector equal to x. The conesponding target vector is defined by t = 
(c(x, l, 1), ... , c(x, l , K)). 

We model the relation between input veetors and target veetors by the pair of 
random variables (X, T) defined on Q x IRK, where T = (T1, . . . , h) is given by 

Tk = c(X, Y, k) for k = 1, ... , K. (4.46) 

We apply Theorem 4.2 to obtain that in the limit as the size of the learning set goes 

to infinity, the network mapping corresponding with a minimum of Eis given by the 
conditionat expectations of the targets. Using E{Tk I X =x} = c(k I x) this yields 
that a global minimum of E with respect to w is attained when 

Yk (x; w) = c(k I x) for all k E .L (4.47) 

This only holds under the condition that (i) the {a, ,8}-mLP has suftleient network 

mapping capabilities such that there exists a choice w which makes the first term in 
(4.32) sufficiently smalland (ii) E{ll y(X; w) - T 11 2 } < oo. A suftleient condi
tion for (i i) to hold is that both output unit response function ,B and cost function 
c(x, l, k) are bounded. In that case a suitable choice is to scale the targets between 

0 and 1 and to use a-mLPs. 
For minimizing the sum-of-squares-error on a finite learning set we conclude 

that on input of object feature vector x, the network output values cao be interpreted 
as estimates for the conditionat expectations c(k I x). 

4.6.6 Discussion 

The accuracy of the thus obtained estimates of posterior probabilities and condi

tionat expectations depends on a number of conditions. To begin with, good gener-
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alization is only possible if the learning set is sufficiently large and representative 
and if the multi-layered perceptron has sufficient network mapping capabilities; see 
Section 4.5. Furthermore, the minimization of sum-of-squares-error as a function of 
the weights must be done appropriately. If these conditions are satisfied we expect 
the estimates to be accurate. 

Note that the accuracy of these estimates becomes less important when used in a 
classification rule since, in that case, only correct classification counts. Depending 
on the chosen objective, such a classification rule classifies correctly if the estimated 
value of the posterior probability of the correctclassis maxima!, or if the estimated 
value of the conditionat expectation of the correctclassis minima!. This observation 
has been an inspiration for authors to derive alternatives for the traditional sum-of
squares error function that are tailored for use in a classification rules [Hampshire & 
Pearlmutter, 1991]; see a lso the workof Bishop [ 1995], Bridle [ 1990], and Weigend 
[ 1993] 



5 
MLP-based horizon-selection rules 

In Chapter 2 we introduced a generic single-item lot-sizing model, and we studied 
three different problem formulations. We briefly discuss these problem formula
tions below. 

First, we addressed the off-line finite-horizon problem, which was solved by 
dynamic programming. This problem was called the n-period problem. 

Second, we studied the off-line infinite-horizon problem which we called the 
off-line problem. In many settings, infinite-horizon optima! lot sizes depend on 
limited future demand information only. The theory of planning and forecast hori
zons addresses this subject. We studied so-called simple planning horizons and 
showed that, given a simp ie planning horizon t, the off -line problem decomposes 
into the t-period problem and the remaining off-line problem. In this way, the off
line problem can be solved by repeatedly solving off-line finite-horizon problems, 
provided simple planning horizons can be found. We derived a forward algorithm 
for the detection of simple planning horizons. 

Third, we addressed the on-line infinite-horizon problem which we called the 
on-line problem. As long as simple planning horizons can be calculated on-line, 
the above decomposition applies and optima! off-line solutions can be obtained. In 
genera!, however, simple planning horizons cannot be calculated on-line. For that 
reason, many beuristics have been proposed in the literature for on-line lot-sizing 
problems. However, most of these heuristics were tailored to the Wagner-Whitin 

77 
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cost structure. In Section 2.4.2 a class of heuristics for the generic on-line problem 
is introduced, called variabie-horizon policies. In a variabie-horizon policy the lot 
sizes are determined by repeatedly solving finite-horizon problems that are split 
off from the on-line problem. This splitting is done by a horizon-selection rule, 
which determines the number of periods over which is optimized on the basis of 
the available demand information. Section 2.4.3 showed that most of the existing 
heuristics for the Wagner-Whitin cost structure can be adapted to become variabie
horizon policies withoutlossof cost performance. 

This chapter addresses the problem of finding optima! horizon-selection rules. 
We formulate the problem of finding an optima! horizon-selection rule as a classi
fication problem, which we analyze using the results and techniques from statisti
cal classification presented in Section 4.6. We consider two objectives, i.e., maxi

mization of expected classification rate and minimization of expected excess cost. 
Forthese objectives we give explicit expressions for the optimal horizon-selection 
rules. Supervised learning with multi-layered perceptroos cao be used to estimate 
the unknown parameters of these expressions. In this way we obtain approximative 
horizon-selection rules, called MLP-based horizon-selection rules. In Chapter 6 we 

investigate the generalization capabilities of the MLP-based horizon selection rules. 
The on-line lot-sizing performance of the variabie-horizon policies constituted by 
these rules is investigated in Chapter 7. 

5.1 Optimal off-line versus optimal on-line 

InSection 2.7 we showed that optima! off-line optimization horizons correspond to 

m-optimal simple planning horizons. Furthermore, we developed a forward algo
rithm to detect such m-optimal simple planning horizons. The u se of this algorithm 
for on-line lot-sizing is limited, since such horizonscan only be calculated on-line 
if an m-optimal simpte planning horizon s for forecast horizon n exists, such that 

s ::=: n ::=: m. Furthermore, a proteelive forward algorithm must be available that 
is able to calculate s and n using no more than m periods of demand information. 
A perfect forward algorithm would be an example of such an algorithm; see also 
Section 2.3. In any other case, optima! off-line optimization horizons depend on 
demand realizations beyond the data horizon and can therefore not be computed 

on-line. Note that different demand realizations beyond the data horizon may lead 
to different optima! off-line optimization horizons. What weneed is a definition of 
what is meant by an optima! on-line optimization horizon. To this end we make the 
following two important observations. 

1. The task of selecting optimization horizons given available demand informa
tion can be seen as a classification task, where the objects to be classified 
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correspond to decision situations, the feature veetors represent available de
mand information, and the classes correspond to optima! off-line optimiza
tion horizons. From this view-point, horizon-selection rules correspond to 
classification rules and the problem of finding an optima! horizon-selection 
rule can be seen as a classification problem. A possible objective would then 
be to find a horizon-selection rule that maximizes the expected classification 
ra te. 

2. Although we do not know the exact relation between available demand in
formation and the optima! off-line optimization horizon, we can calculate 
examples of this relation from demand history using the forward algorithm 

developed in Chapter 2. With such examples at hand it is possible to apply 
techniques from statistica! classification to the abovementioned classification 
problem. 

In the remaioder of this chapter we exploit these observations by formulating the 
problem of finding an optima! horizon-selection rule as a classification problem 
and by adopting an appropriate objective. We analyze two such objectives, i.e ., the 
classification rate objective and the excess cost objective. 

5.2 Classification rate objective 

A horizon-selection rule for the genericon-line problem with cost structure (H, P) 
and data horizon length m can be represented as a mapping g : Qm --+ Lm, where 
s-2m s; IRm denotes the space of possible de mand veetors and Lm = {I, ... , m} 
denotes the set of possible optimization horizons. Using the terminology of Sec
tion 4.6, we can state that s-2m represents the space of feature vectors, and Lm rep
resents the set of class labels. Before we can formulate the problem of finding 
an optima! horizon-selection rule, we have to model the relation between demand 
veetors and their corresponding optima! off-line optimization horizons. 

5.2.1 Preliminaries 

We reeall that optima! off-line optimization horizons correspond to m-optimal sim
ple planning horizons. Therefore, in the sequel, we use the term m-optimal simple 
planning horizon . 

We assume that m-optimal simple planning horizons always exist and therefore 
can be calculated off-line. Note that the non-existence of m-optimal simple plan
ning horizons could be modeled by the introduetion of an extra class and extending 
Lm with an extra class label. This, however, goes beyond the scope of this the
sis and is mainly of theoretica! interest; see also Section 2.5 which discussed the 
existence of planning horizons. 
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Since more than one m-optimal simple planning horizon may exist, we have to 
break ties in some way. If the forward algorithm developed in Chapter 2 terminates, 
it returns the minimal m-optimal simple forecast horizon and all corresponding m
optimal simple planning horizons. To break ties, we concentrale on the smallest 

m-optimal simple planning horizon, which for reasoos of convenience is called the 
minimal m-optimal simple planning horizon. 

Since m-optimal simple planning horizons can in general not be computed on
line, they can in general not be expressed as a function of the m demands within 
the data horizon. For that reason, we model the relation between demand veetors 
and their corresponding minimal m-optimal simple planning horizon by the pair of 
random variables (Xm, Ym) defined on Qm x Lm . This relation can be characterized 
by the joint probability density function of Xm and Y m denoted by fxm. Ym. 

5.2.2 Problem formulation and analysis 

We now formulate the problem of finding an optima) horizon-selection rule for the 
genericon-line problem with cost structure (H, P) and data horizon length m as to 
find a mapping g : Qm ~ Lm that maximizes the expected classification rate r(g) 
given by 

r(g) = J P{Ym = g(x) I Xm = x}fxm (x)dx, (5.1) 

where P{Ym = l I Xm = x} denotes the posterior probability that l E Lm is the 
minimal m-optimal simple planning horizon given the demand vector x E r2m and 
fxm denotes the probability density function of Xm. We refer to this objective as the 
classification rate objective. 

If g(x) is chosen such that P{Ym = g(x) I Xm =x} is maximal for every x, then 
r(g) is maximaL This justifies the definition of the rate-optimal horizon-selection 
rule p;" given by 

p;"(x) = argmaxP{Ym = ll Xm =x}. (5 .2) 
IE .Cm 

The expected classification rate r(p;" ) of the rate-optimal horizon-selection ruleis 
called the Bayes rate. Note that , in this way, we implicitly define an optima! on-line 
optimization horizon to be an optimization horizon that has the highest posterior 

probability of being an m-optimal simple planning horizon . 

5.2.3 Properties of the rate-optimal horizon-selection rule 

At first we conjectured that the Bayes rate r(p;") is increasing in m for m ::::_ I, 
because the amount of relevant demand information increases. However, looking at 
the trivia) case m = I , it is easy to see that, in genera), this is inval id. For the case 
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m = 1 there is only one class, i.e., one possible off-line optima! optimization hori

zon, and therefore r (pn = 1. The reason for this is that the characteristics of the 

classification problem, represented by the joint probability density function fxm .Ym' 

change with m. Below, we present some results concerning these characteristics. 

Proposition 2.7 showed that, under the condition that a finite upper bound M 
exists on the lengthof a subplan in an optima! production plan for the n-period prob
Jem that is independent of n, the notions optimality and k-optimality are equivalent 
for k ~ M. It is easy to see that, under the same condition, equivalence holds for 

the notions simple planning horizon and k-optimal simple planning horizon. The 

following result is then immediate. 

Proposition 5.1. Suppose afinite upper bound M exists on the lengthof a subplan 
in an optima! production plan for the n-period problem that is independent of n. 
Then the random variables Y M, Y M+t, .. . are identically distributed. The corre
sponding dis tribution equals the distribution of minimal simpte planning horizons. 

0 

Note that, if a bound M exists that satisfies the requirement of Proposition 5.1, ran

dom variables Yk with k = 1, ... , M - 1 are in general not identically distributed, 
the number of relevant classes may change with k, and optimality is in general not 
equivalent to k-optimality for k = 1, .. . , M - 1. Next we show that if a bound 
M exists that satisfies the requirement of Proposition 5. 1, the Bayes rate r(p;,) in

creases with m for m ~ M. 

Theorem 5.1. Suppose a finite upper bound M exists on the lengthof a subplan in 
an optima! production plan for the n-period problem that is independent of n. Then 

r(p'M) ::S r(pM+I) ::S .. . . 

Proof Take some m ~ M. Consider the horizon-selection rule g : s-2m+ 1 ~ ~m+ 1 

that for each x E s-2m+l, applies p; to (xt, . . . , Xm), discards Xm+t, and returns 
p; (xt, ... , Xm). Let x = (xt, ... , Xm+l) and x= (xt, . .. , Xm). Then, using Propo
sition 5.1, we obtain 

P{Ym+t = g(x) I Xm+t =x}= P{Ym = p;(x) I Xm =x}, 

and one easily verifies that r(g) = r(p;), which, using r(g):::: r(p;+ 1), completes 
the proof. 0 

In the same way we did for m-optimal simple planning horizons, the relation be

tween de mand veetors and their corresponding ( off -line) minimal m -optima! simp Ie 
forecast horizons can be modeled by a pair of random variables (Xm, Zm) defined 
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on Qm x N and characterized by a joint probability density function fxm ,Zm. The 
following result uses this model to derive a lower bound on the Bayes rate. 

Theorem 5.2. Suppose a perfect forward algorithm exists for the dereetion of m
optimal simple planning horizons. Then we have 

r(p;)::: P{Zm :::= m} . 

?roof Consicter the following horizon-selection rule denoted by g. We apply the 
perfect forward algorithm. If the algorithm terminates within the data horizon, it 

returns the minimal m-optimal simple planning horizon found by the algorithm. If 
the algorithm does not terminale, some optimization horizon is returned randomly. 
The expected classification rate r(g) of this horizon-selection ruleis greater than or 
equal to P{ Zm :::: m }, the probability that the m-optimal minimal forecast horizon 
is smaller than or equal to the data horizon. Since p:;, is rate-optimal, we have 

r(p;) ::: r(g). This completes the proof. D 

Unfortunately, we do not have a perfect algorithm for the generic lot-sizing model 
available. What we do have available is a proteelive forward algorithm. This algo
rithm can be used to generale a set of examples of the relationship between demand 
veetors and m-optimal minimal simple forecast horizons. From such a set of exam
ples we can estimate the probabilities P{Zm :::: m} . We remark that perfect forward 

algorithms do exist for special cases of the generic lot-sizing model. For example, 
Chand & Morton [ 1986] derived a perfect forward algorithm for the Wagner-Whitin 
cost structure. The next result concerns the characteristics of Zm as a function of m 
and can be proven using similar arguments as in Proposition 5.1. 

Proposition 5.2. Suppose afinite upper bound M exists on the lengthof a subplan 
in an optima! production plan for the n-period problem that is independent of n. 

Then the random variables ZM, ZM+I, ... are identically distributed. The corre
sponding dis tribution equals the dis tribution of minimal simple jarecast horizons. 
D 

The protective forward algorithm developed in Chapter 2 for the calculation of sim
pte planning horizons for forecast horizons uses some finite upper bound M on the 

length of a subplan in an optima! production plan. To detect a simpte planning 
horizon t for forecast horizon n, the forward algorithm requires a data horizon of 

n + M - 1 periods. The following lemma is basedon this observation. lts proof is 
analogous to that of Theorem 5.2 and therefore omitted. 

Lemma 5.1. Suppose a finite upper bound M exists on the length of a subplan in 
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an optima! production plan for the n-period problem that is independent of n. Then 

r(p:) :=: P{Zm ::;: m- M + 1}. 

0 

This lemma is used in the following proof of convergence of the Bayes rate. Further

more, in this proof, we use the assumption that m-optimal simple planning horizons 

always exist. 

Theorem 5.3. Suppose afinite upper bound M exists on the lengthof a subplan in 
an optima! production plan for the n-period problem that is independent of n. Then 

lim r(p~) = 1. 
m--+oo 

Proof Let m > M. Using Lemma 5.1 and Proposition 5.2 we obtain P{ZM ::::: 
m - M + 1} ::::: r (p~) ::::: 1. Fr om the assumption that m-optimal simple planning 
horizons always exist it is evident that m -optimal simple forecast horizons always 

exist and thus can be calculated off-line. This implies that limk--+oo P{ZM ::::: k} = 1. 
The proof is now completed by letting m ~ oo and using elementary calculus . 
0 

5.2.4 An MLP-based horizon-selection rule 

The rate-optimal horizon-selection rule r(p~) requires explicit knowledge of the 
posterior probabilities P{Ym = l I Xm = x}. Unfortunately these quantities are 
usually unk.nown and this rule cannot be directly applied. Below we show that 
with a suitable representation of the learning examples, on input of demand vector 

x the outputs of a multi-layered perceptren obtained by minimizing the sum-of
squares error on a finite set of learning examples can be interpreted as estimates of 
the posterior probabilities P{Ym = l I Xm = x} . By substituting these estimated 
posterior probabilities into (5.2), we obtain an MLP-based horizon-selection rule. 

Computing learning examples. We now describe how we construct a learning 
example from demand history. To that end we consider the genericon-line problem 

with cost structure (H, P) and data horizon length m. Withoutlossof generality, we 
consider some sequence of periods in demand history, labeled 1, 2, .... Further

more, we suppose that the inventory level at the beginning of period 1 equals zero. 
We apply the forward algorithm developed in Section 2.3 for the detection of sim

ple planning horizons with parameter M set to m. As was shown inSection 2.7, on 

termination, this algorithm returns a minimal simple m-optimal planning horizon s 
for forecast horizon n. As in Section 4.6.3, a learning example (x, t) is constructed 

as follows. Fortheinput vector we take x = (d1, • • . , dm) . The corresponding target 
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vector is defined by t = es, where es denotes an m component vector with a one 
in the sth position, and zeros elsewhere. Thus constructed target veetors we call 
zero-one target vectors. 

Multi-layered perceptrons. Given is a multi-layered perceptron with m inputs, m 
output units and sigmoidal response functions a that is completely specified apart 
from the weights w. The following statement is justified by the results of Sec
tion 4.6.3. After minimization of the sum-of-squares error function on a finite set 
of learning examples with zero-one target vectors, on input of demand vector x, 
the network output values Yk (x; w) can be interpreted as estimates for the posterior 
probabilities P{Ym = k I Xm =x}. The mapping p~LP : Qm -.. Lm given by 

p~LP (x) = arg max Yk (x; w) , 
ke.Cm 

(5.3) 

can thus be seen as an approximative horizon-selection rule with respect to the 
classification rate objective. 

5.3 Excess cost objective 

In Section 4.6.5 we generalized the classification rate objective by introducing a 
cost function c(x, l, k), which denotes the cost incurred for classifying a class lob
ject with feature vector x to class k . This enabled discrimination in terms of cost 
between the different types of erroneous classifications. For our purposes, such 
discrimination may be very important, since the developed horizon-selection rule 
is incorporated in a variabie-horizon policy, and the performance of a variabie
horizon policy is evaluated in terms of production and holding cost rather than in 
termsof classification rate. Before we can formulate the problem of finding an opti
ma! horizon-selection rule, we have to define the cost of choosing an inappropriate 
optimization horizon. 

5.3.1 Preliminaries 

In Section 2.6 we introduced t:.. (p ), which denotes the excess cost (over infinite
horizon optimality) of decomposing the off-line problem at period p. Based on 
Theorem 2.3 we developed a forward algorithm for the calculation of t:..(p). This 
algorithm requires knowledge of a finite upper bound M on the length of a subplan 
in an optima! production plan. Although such bounds were derived in Chapter 3 
for the cost structures under consideration, we prefer to use use the excess cost 
over infinite-horizon m-optimality because (i) no bounds are required and (ii) no 
variabie-horizon policy with a data horizon of length m can do better than infinite
horizon m-optimality. InSection 2.6 we generalized t:..(p) towards k-optimality 
to obtain t:..k (p ) , which denotes the excess cost (over infinite-horizon k-optimality) 
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of decomposing the off-line problem at period p . We showed that the forward 
algorithm forcalculating b..(p) can be used to calculate b..k(p) by choosing M = k. 

Given a variabie-horizon policy for the on-line problem with cost structure 
(H, P) and data horizon length m. Suppose we execute one iteration of this pol

icy and we select an optimization horizon p E Lm. Then, by definition, we have 
excess costof b..m(p). These excess cost can in general not be calculated on-line. 
Consequently, b..m (p) can in general not be written as a function of the m demands 
within the data horizon d1, ..• , dm .and a cost function c(x, k, l) as proposed in Sec

tion 4.6.5 does not exist. 
For this reason we model the relation between demand veetors and the excess 

cost (over infinite-horizon m-optimality) of decomposing the off-Iine problem at 
period p by the pairs of random variables (Xm , Cm(p)) for p = 1, 2, . .. , which 

are defined on Qm x IR . This relation can be characterized by the joint probability 
density function of Xm and Cm (p) denoted by fxm ,Cm (p). For notational reasoos 
we introduce Cm = (Cm (1 ), . . . , Cm (m)) and the joint probability density function 

fxm ,Cm of Xm and Cm 0 

Remark that, for similar reasons an m-optimal simpte planning horizon may 
not exist, it may occur that b..m (p) does not exist. As for the classification rate 
objective, we assume that the cost excesses b..m(P) can always be calculated off
line. Note that, in practice we can always use the bounds L(p, t) and U(p , t) from 
Theorem 2.3 to estimate b..m(p) . 

5.3.2 Problem formulation and anaJysis 

The problem of finding an optima! horizon-selection rule for the generic on-line 
problem with cost structure (H, P) and data horizon length mis now formulated as 
to find a mapping g : Qm ---+ Lm that minimizes the overall expected excess cost 
c(g) defined by 

c(g) = J E{Cm(g(x)) I Xm = x}fxm (x)dx, (5.4) 

where E{ Cm (k) I Xm = x} denotes the conditional expectation of the excess cost 
when decomposing the off-Iine problem at period k given the demand vector x E 

Qm . We refer to this objective as the excess cost objective. 
If g(x) is chosen such that E{ Cm (g (x)) I Xm = x} is minimal for every x, then 

c(g) is minimaL This justifies the definition of the cost-optimal horizon-selection 

rule r; given by 

r;(x) = argminE{Cm(l) I Xm =x}. (5.5) 
IE .Cm 

The expected excess cost c(r;) of the cost-optimal horizon-selection rule is called 
the Bayes cost. Note that, in this way, we implicitly define an optima! on-line op-
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timization horizon to be an optimization horizon with lowest conditional expected 
excess cost. 

5.3.3 Properties of the cost-optimal horizon-selection rule 

At first we conjectured that the Bayes cost c(p,~) is decreasing in m for m ::: 1, 
because the amount of relevant demand information increases. However, looking at 
the trivia! case m = I, it is easy to see that, in genera!, this is inval id. For the case 
m = 1 there is only one class and therefore c(pr) = 0. The reason for this is that 
the characteristics of the classification problem, represented by the joint probability 
density function fxm .cm, change with m . Below, we present some results concerning 
the characteristics of the classification problem as a function of m. 

Proposition 2.7 showed that, under the condition that a finite upper bound M 
exists on the length of a subplan in an optima! production plan for the n-period prob
lem that is independent of n, the notions optimality and m-optimality are equivalent 
for m ::: M. It is easy to see that under the same condition, equivalence holds for 
!:l(p) and !:lm(p). The following result is then immediate. 

Proposition 5.3. Suppose afinite upper bound M exists on the lengthof a subplan 
in an optima! production plan for the n-period problem that is independent of n. 
Thenforall p =I, 2, ... the random variables CM(p), CM+t(p), ... are identi
cally distributed. The corresponding distribution equals the distribution of excess 
co st (over infinite-horizon M -optimality) when decomposing the off-line problem at 
period p. D 

Note that, if a bound M exists that satisfies the requirement of Proposition 5.3, 
random variables Cm (p) with m = 1, ... , M - I and p = I, 2, . . . are in general 
not identically distributed, the number of relevant classes may change with m, and 
optimality is in general notequivalent to m-optimality for m = I, ... , M- 1. Next 
we show that if a bound M exists that satisfies the requirement of Proposition 5.3, 
the Bayes cost c(p';") decreases with m for m ::: M . Since this result is similar to 
that of Theorem 5.1 its proof is omitted . 

Theorem 5.4. Suppose afinite upper bound M exists on the lengthof a subplan in 
an optima! production plan for the n-period problem that is independent of n. Then 

c(r~) ::=: c(r~+ 1 ) ::=: .... 

The following conjecture is inspired by 
Theorem 5.3 for the classification rate objective. 

Conjecture 5.1. lim c(r;) = 0. 
m-+oo 

D 

D 
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5.3.4 An MLP-based horizon-selection rule 

The cost-optimal horizon-selection rule r; requires explicit knowledge of the con

ditional expectations E{ Cm (l) I Xm = x}. Unfortunately these quantities are usu
ally unknown and this rule caooot be directly applied. Below we show that with a 
suitable representation of the learning examples, on input of demand vector x the 
outputs of a multi-layered perceptron obtained by minimizing the sum-of-squares 
error on a fini te set of learning examples cao be interpreted as estimates of the con
ditional expectations E{Cm (l) I Xm =x}. By substituting these estimated posterior 
probabilities into (5.5), we obtain an MLP-based horizon-selection rule. 

Computing learning examples. We now describe how we construct a learning 
example from demand history. To that end we consider the genericon-line problem 
with cost structure (H, P) and data horizon length m. Without loss of generality, 
we consider some sequence of periods in demand history, labeled 1, 2, .... Fur
thermore, we suppose that the inventory level at the beginning of period 1 equals 
zero. We use the forward algorithm developed in Section 2.6 for the calculation of 
!:::.. ( p) with the parameter M set to m. The algorithm is applied for p = 1, ... , m to 
obtain excess cost !:::..m(l), ... , !:::..m(m); see Sectîon 2.6. A learning example (x, t) 
can now be constructed as follows: for the input vector x we take x = (d1 , ••. , dm) 
and for the target vector t we take t = (!:::..m(l), . . . , !:::..m(m)). Thus constructed 
target veetors we call cost target vectors. 

Multi-layered perceptrons. Given is a multi-layered perceptron with m inputs 
and m output units. The network is supposed to be already completely specified 
apart from the weights w. The relation between input veetors and target veetors 
was already modeled by the pair of random variables (Xm, Cm). We apply Theo
rem 4.2 to obtain that, in the limit as the size of the learning set goes to infinity, the 
network mapping corresponding with a minimum of E is given by the conditional 
expectations of the targets . Furthermore, a global minimum of E with respect to w 

is attained when 

Yk(x ; w) = E{Cm (k) I Xm =x} for all k E Lm . (5.6) 

This only holds under the condition that (i) the multi-layered perceptrou has sufti
eient network mapping capabilities such that there exists a choice w which makes 
the first term in (4.32) sufficiently smalland (i i) E{ll y(Xm ; w)- Cm 11 2} < oo. A 
sufficient condition for (i i) to hold is that both the output unit response functions 
and the excess cost functions !:::..m(P) for p = I, ... , m are bounded. In that case 
a suitable choice is to scale the targets between 0 and I and to use multi-layered 
perceptroos with logistic sigmoid response functions, for instance. We remark that 
this was proven for the Wagner-Whitin cost structure in Proposition 3.2. 
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For minimizing the sum-of-squares-error function on a finite set of learning exam
ples with cast target veetors we conclude that, on input of demand vector x, the net
workoutput values approximate the conditionat expectations E{ Cm (k) I Xm = x}. 
The mapping r:;:LP : Qm ~ Lm given by 

r:;:LP (x)= arg minyk(x; w) (5.7) 
kE.Cm 

can thus be seen as an approximative horizon-selection rule with respect to the 
excess cast objective. 

5.4 Discussion 

This chapter addressed the problem of finding optima! horizon-selection rules for 
the on-line problem with cast structure (H, P) and data horizon length m. To that 
end we formulated the problem of finding an optima! horizon-selection rule as a 
classification problem. We considered two objectives: the classification rate objec
tive and the excess cast objective. For each of these objectives we derived and an
alyzed an explicit expression for the optima! horizon-selection rule. Unfortunately 
these optima! horizon-selection rules cannot be applied, because they are expressed 
in unknown quantities li.ke for example posterior probabilities. lt was shown that 
multi-layered perceptrans can be used to estimate these unknown quantities on the 
basis of learning examples. In this way we obtained MLP-based horizon-selection 
rul es. 

Implementation. The ideas and results in this chapter are completely indepen
dent of the cast structure (H , P). The only exception is found in the implementa
tion of the procedure for the calculation of learning examples. Learning examples 
are computed using the forward algorithms developed in Chapter 2. To imptement 
these forward algorithms fora particular cast structure, an algorithm for calculation 
of optima! subplans for that cast structure is needed. In Chapter 3 such algorithms 
were derived for three different cast structures. For these cast structures we imple
mented procedures for the construction of learning examples. In these procedures 
we always calculate bath zero-one target veetors and cast target vectors. These vee
tors are combined tofarm combined learning examples of the farm (x, t , c), where 
x denotes an input vector, t a zero-one target vector, and ca cost targets vector. Ad
vantages of using combined learning examples are a reduced data starage and the 
possibility of computing, for example, the cast effectiveness of an approach based 
on zero-one target vectors. 

Performance evaluation. The performance of the MLP-based horizon-selection 
rules can be evaluated on an independent set of learning examples. For instance, in 
case of the classification rate objective, one can calculate the classification rate on 
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an independent set of learning examples with zero-one target vectors. Such selec
tion of optimization horizons for demand sequences that are outside the learning set 
is called generalization. The generalization capabilities of the MLP-based horizon
selection rules depend on the extent to which the conditions for good generalization 
discussed in Section 4.5 are satisfied. Stated briefly, the learning set must be suf
ficiently large and representative, and the multi-layered perceptcon must have suf
tleient network mapping capabilities. For instance, if these conditions are satisfied 
in case of the classification rate objective, it is likely that p:;:LP has a near-optimal 
classification rate, i.e., close to the Bayes rate. On the other hand, if one or more 
of these conditions are violated the classification rate may be far from optima!. In 
Chapter 6 we analyze the generalization capabilities of the horizon-selection rules 
p,~LP and r:;:LP. The on-line lot-sizing performance of their corresponding variabie
horizon policies is evaluated in Chapter 7. 



06 



6 
Generalization capabilities of MLP-based 

horizon-selection rules 

T he implementation of the horizon-selection rules for the on-line lot-sizing prob
lem proposed in the previous chapter involves the construction of multi-layered 
perceptrans on the basis of learning examples using supervised learning. As every 
methad that uses examples of input-output behavier to model a process, supervised 
learning is closely related to the subject of generalization. In that context, general
ization refers to the predietien of outputs for new inputs, i.e., predietien of outputs 
for inputs that are not used for modeling. Good generalization is in general not 
simply evident and generalization capabilities are, among other factors, determined 
by the smoothness of the target mapping and the representativeness of the learning 
set. 

This chapter studies the generalization capabilities of the MLP-based horizon
selection rules for on-line lot-sizing probieros with Wagner-Whitin cost structure. 
Particularly, it investigates the effect of the length of the data horizon and the type 
of learning examples on the generalization capabilities. These investigations are 
based on a set of experiments. 

The remaioder of this chapter is out! ined as follows. Sec ti on 6. 1 discusses 
necessary conditions for good generalization. The experimental setup is given in 
Section 6.2. As a reference, in Section 6.3, we adopt the K -nearest-neighbors 
technique, which can be used for classification. Such K -nearest-neighbors clas-

91 
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sifiers have shown reasonable generalization capabilities in a large variety of tasks 
[Michie, Spiegelhalter & Taylor, 1994]. Application of the K -nearest-neighbors 
technique to the two objectives introduced in Chapter 5 yields two horizon-selection 
rules. Section 6.4 and Section 6.5 are devoted to generalization with zero-one tar

get veetors and generalization with cost target vectors, respectively. Finally, in 
Section 6.6, we formulate the main conclusions of this chapter. 

6.1 Generalization 

In Chapter 5 we formulated the problem of finding an optima! horizon-selection 
rule as a classification problem and analyzed two objectives, i.e., the classification 
rate objective and the excess cost objective. Optima! horizon-selection rules were 
derived forthese objectives, which contained some un.known quantities, e.g., pos
terior probabilities. It was shown that these quantities can be estimated using a 

multi-layered perceptron constructed on the basis of learning examples. In this way 
we obtained two MLP-based horizon-selection rules, one for each objective. 

Depending on the objective, the notion of generalization bas a different mean
ing. In case of the classification rate objective, multi-layered perceptrans were used 
to estimate posterior probabilities and generalization refers to the prediction of these 
probabilities for new demand vectors. In case of the excess cost objective, multi
layered perceptrans were used to estimate conditionat expectations of excess cost 
and generalization refer~ to the predietien of these expectations for new demand 
vectors. Section 4.5 gave necessary conditions for good generalization and a dis
tinetion was made between problem specific conditions and model specific condi
tions for good generalization. Below, we discuss these conditions. 

6.1.1 Problem specific conditions 

In Section 4.5, two problem specific necessary conditions for good generalization 
were given. First, the target mapping underlying the learning examples must be suf
ficiently smooth. Second, the learning set must be sufficiently large and represen
tative. In this thesis we consider artificial demand processes with known stationary 
distributions. For the construction of learning examples, demands are drawn from 
these distributions. Therefore, representativeness of a learning set is guaranteed un
der the condition that the set is sufficiently large. The required number of learning 

examples is determined by the smoothness of the target mapping. Next we give the 
target mappings for the two objectives in case of a generic on-line problem with 
cost structure (H, P) and data horizon length m . Furthermore, we discuss their 
smoothness. 
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Classification rate objective. Let us denote the target mapping underlying the 
Iearning examples with zero-one target veetors by 4lm : r.lm --+ [0, l]m. Then 4Jm is 
given by 

4Jm(X) = (4Jm, t(X), ... , 4Jm,m(X)), (6.1) 

where 4Jm,dx) = P{Ym = k I Xm = x} for k = 1, .. . , m. InSection 5.2.4 it 
was shown that the network mapping of a multi-Iayered perceptren obtained by 
miniruizing the sum-of-squares error function on a finite set of learning examples 

with zero-one target veetors approxi mates the target mapping 4lm; see also Sec
ti on 4.6.3. The generalization capabilities of such a network are partly determined 
by the smoothness of 4lm· Since 4lm is in general unknown, it is impossible to an
alyze the smoothness of 4lm fora given m. But we can give the following general 
result on the smoothness of 4lm as a function of m , which is obvious from Proposi

tien 5.1 and our assumption that m-optimal simple planning horizons always exist. 

Proposition 6.1. Suppose afinite upper bound M exists on the lengthof a subplan 
in an optima! production plan for the n-period problem that is independent of n. 
For x E IR00 and for m = 1, 2, .. . we define Xm = (Xt, ... , Xm). Then for all 
x E R 00 there exist inlegers l E LM and N :=:: M such that 

(i) 4JM.J(XM)::;: 4JM+J!(XM+I)::;: · · ., 

( ii) 4JM,k (XM) :::: 4JM+l.k (XM+ 1) :::: . .. for alf k E J:.M \ {l}, and 

1
1 ifk=l 

(iii) 4Jm.k (Xm) = . for all m :=:: N and k E LM. 
0 otherwzse 

D 

Next we use these results to discuss the smoothness of 4lm as a function of the 
data horizon length m . Assume that the assumption of Proposition 6.1 holds and 
such a bound M exists. We start by consiclering the case that m is sufficiently 
large. From (iii) we infer that the functions 4Jm.k with k E Lm are of the form 
4lm.k : r.lm --+ {0, 1 }. Using the terminology introduced in Section 4.2.1, these 
functions can be viewed as classification functions . The corresponding decision 
regions are given by 

f1,(4Jmk) ={x E r.lm I 4Jmk(X) = 1} fork = 1, . .. , m. (6.2) 

At each decision boundary, the target mapping 4lm is discontinuous. The more 
decision boundaries, the more discontinuities, and the less smooth 4Ym· 

We now decrease m. For m sufficiently small, the discontinuities at the deci
sion boundaries vanish. Using (i) and (i i) we infer that when further decreasing m, 
the smoothness of 4Jm at the dec is ion boundaries increases until m = M. Proposi
tien 6.1 does not address the case m < M . 
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Excess cost objective. Let us denote the target mapping underlying the learning 
examples with cost target veetors by 1/lm : Qm ~ lAm. Then 1/lm is given by 

1/lm(X) = (1/lm,l(X), ... , 1/lm,m(X)), (6.3) 

where 1/lm.k(x) = E{Cm(k) I Xm = x} for k = 1, ... , m. InSection 5.3.4 it 
was shown that, the network mapping of a multi-layered perceptron obtained by 
miniruizing the sum-of-squares error function on a finite set of learning examples 
with cost target veetors approximates the target mapping 1/1 m. The generalization 
capabilities of this network are partly determined by the smoothness of 1/lm. Since 
1/lm is partly determined by the cost structure (H, P), at this point nothing can be 
stated about its smoothness. 

6.1.2 Model specific conditions 

Data driven model building approaches, like supervised learning, typically have 
some parameter which controls the level of model fiexibility. A necessary condition 
for good generalization is that the value of this parameter is chosen such that the 
level of model ftexibility is optima! with respect to the learning set. Section 4.5.1 
discussed this subject by means of the bias-varianee trade-off. Too much model 
ftexibility leads to over-fitting; too little model ftexibility smoothes out some of the 
underlying structure. The model ftexibility of a multi-layered perceptron is deter
mined by its network mapping capabilities which are controlled by its topology. 
Remark that in most learning algorithms convergence to a global minimum of the 
sum-of-squares error function E with respect to the weights w is not assured. A 
final condition for good generalization with multi-layered perceptroos is that the 
weights are chosen such that E is sufficiently smal!. 

6.1.3 Expectations 

From the above results we suspect that the conditions for good generalization for 
learning with zero-one target veetors deteriorate with m. Furthermore, we suspect 
that fora given data horizon length m the target mapping 1/lm is smoother than the 
target mapping c/Jm. In the remainder of this chapter this is further investigated. 

6.1.4 Generalization assessment 

Genera!ization assessment is done by means of the hold out method introduced in 
Section 4.5, in which generalization capabilities are measured on an independent 
test set. With respect to generalization capabilities we make a distinction between 
the multi-layered perceptron and its conesponding horizon-selection rule. The gen
eralization capabilities of the multi-layered perceptron is measured by the sum-of
squares error on an independent test set. This is an obvious choice since it was 
obtained by miniruizing the sum-of-squares error on a finite learning set. The gen-
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eralization capabilities of the conesponding horizon-selection rule are measured 
differently. From that viewpoint, generaJization can be seen as the selection of 
optimization horizons for new demand vectors. Obvious choices to measure gener
alization capabilities are then to calculate the classification rate on an independent 
test set in case of the classification rate objective, and to calculate the average excess 
cost on an independent test in case of the excess cost objective. 

6.2 Experimental setup 

In this chapter we consider an on-line lot-sizing problem with a Wagner-Whitin 
cost structure (holding cost h = 1, setup cost S = 200, and production cost p = 1) 
and demands that are uniformly distributed on [0, 200]. The length m of the data 
horizon is varied between 2 and 10. 

For the calculation of learning examples we generatea 10,000 period demand 
sequence by independently drawing from a uniform distribution on [0, 200]. For 
each value of m, we generate three sets of 2,500 combined learning examples from 
this sequence, i.e., a learning set, a validation set for monitoring the generaJization 
capabilities during execution of the learning algorithm, and a test set for assessing 
the generalization capabilities of a network afterwards . By taking the learning set 
rather large we want to accomplish that it approximates an infinite learning set. 

Note that these combined learning examples contain both zero-one target vee
tors and cost target veetors as described in Section 5.4. The procedure for the 
computation of zero-one target veetors and cost target veetors was described in 
Sections 5.2.4 and 5.3.4, respectively. These procedures use the forward algorithms 
developed in Chapter 2 in which the Wagner-Whitin cost structure specific features 
derived inSection 3.1 are included. 

6.2.1 Preprocessing 

We include a preprocessing step in which all elements of input and target veetors 
are scaled between 0 and 1. Such sealing has the advantage that all target mappings 
are of the form g : [0, 1] ~ [0, 1], such that we can use multi-layered percep
trans with sigmoidal units in all cases. Sealing has the additional advantage that it 
allows us to take identical weight initialization procedures and identical values of 
the learning parameters. This may reduce the amount of time spent on parameter 
tuning drastically. Furthermore, in this way, the generalization performance among 
different target vector types and data horizon lengths can be compared fairly. 

Next we describe the sealing procedure in detail. For the input vectors, we ex
ploit our foreknowledge of the demand distribution and divide each input by 200, 
the maximal possible value of demand in a period. The zero-one target veetors obvi
ously need no further sealing. The sealing of the cost target veetors is less straight-
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forward. We use the worst-caseresult presented in Proposition 3.2 for the Wagner
Whitin cost structure. This result states that i'::lm(P) ::: S, where S denotes the setup 
costand i'::lm(P) denotes the excess cost (over infinite-horizon m-optimality) of de
composing the off-line problem at period p; see also Section 2.7 and Section 5.3. 

Consequently 1/fm is bounded and the appropriate sealing is obtained by dividing the 
elements of all cost target veetors by S = 200. The only remaining difference after 
preprocessing between learning with zero-one target veetors and learning with cost 
target veetors is that the network horizon-selection is determined by the output unit 

with maximum response and the output unit with minimum response, respectively. 
This difference is removed by applying the transformation 1 - x to the elements of 
the scaled cost target vectors. 

6.2.2 Learning algorithm 

Aftersome experimentation with different settings of the parameters of the learning 
algorithm, we have chosen the following setting. The initia! values of the weights 
are drawn from a uniform distribution on [- 1, 1]. We use the sequentia! version 

of gradient descent with momenturn term using the som-of-squares error function 
( 4.12) with learning rate 1J ::::: 0.1 and momenturn term J.L = 0.9. To develop a net
work, the learning algorithm is executed for 625,000 iterations. During execution, 
the som-of-squares error is monitored on the validation set and the network with 
the lowest generalization error is kept. For more details on the learning algorithm 
we refer to Section 4.3. 

6.2.3 Network topology selection 

For the construction of the horizon-selection rules p:;:LP and r:;:LP, we use multi
layered perceptrans with m inputs and m output units as implied by the structure of 
the learning examples. Furthermore, we take logistic sigmoid response functions. 
To determine a suitable network topology for each value of m, we investigate five 
network topologies of increasing network mapping capabilities consisting of net
works with 0, m, m + 2, m + 4, and m + 6 hidden units, respectively. All network 
topologies have one hidden layer, except for the 0 hidden unit topology, which has 
no hidden layer. We develop ten networks for each of the 5 x 9 = 45 different 
combinations of data horizon lengths and network topologies. These ten networks 

are combined to form a committee by averaging over network outputs. For each 
committee we compote the som-of-squares error on the validation set. Both the 
horizon-selection rules p:;:LP and r:;:LP are obtained by selecting the committee with 
the lowest som-of-squares error on the validation set. 
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6.2.4 Learning curves 

The development of the sum-of-squares error on the learning set and the validatien 
set during execution of the learning algorithm is called the learning curve. We in
vestigate the learning curves for learning with both zero-one target veetors and cost 
target vectors. To enable a comparison between curves for different data horizon 
lengths, we monitor the average sum-of-squares error per output unit. This quan
tity is obtained by dividing the sum-of-squares error on each of the sets by m and 
by averaging over the ten multi-layered perceptrens with best network topology. 
In Figure 6.1 we plot this quantity for three values of m. In all cases the sum-of
squares error on the learning set decreases in the number of iterations. In some 
cases we observe that the sum-of-squares error on the validatien set initially de
creases, but starts to increase after some number of iterations. This effect, known as 
over-fitting, only occurs for zero-one target val u es, where it increases with m. Most 
networks converged within 200, 000 iterations. Cernparing the learning curves for 
zero-one and cost target veetors with equal m, we observe that for the Jatter, the 
curves are smoother, have smaller variation, and show no over-fitting. 

6.3 K -nearest-neighbors 

An alternative supervised learning technique from statistica! classification is K
nearest-neighbors. First, we describe this technique in general and show that it can 
be used for estimation of posterior probabilities. Next we apply the K -nearest
neighbors technique to obtain approximate horizon-selection rules for the classifi
cation rate objective and the excess cost objective, respectively. Throughout this 
chapter, these KNN-based horizon-selection rules are used as a reference for the 
MLP-based horizon-selection rules . 

6.3.1 K -nearest-neighbors estimation 

Consider the general classification problem defined in Section 4.6, where the ob
jective is to maximize the expected classification rate. Given are an integer K and a 
set of N examples of objects, characterized by their feature veetors x E Q and their 
class labels l E J:., and distributed according to fx .Y. We call this set the learning 
set. Let N1 denote the number of class llearning examples. 

Consider some new object with feature vector x E Q . We draw a hypersphere 
around x exactly enclosing K learning examples. Let the volume of the hyper
sphere be denoted by V K(x) and let QK(l, x) denote the number of class l learning 
examples contained in the hypersphere. Then the conditional probability density 
!x (x I Y = l) can be estimated by 

QK(l, x) 

N, VK(X), 
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Figure 6.1. Learning curves for different target vectors. The horizontal axis de
notes the number of iterations of the learning algorithm. The vertical axis denotes 
the averages of the sum-of-squares error per output unit of the ten multi-layered 
perceptrans with optima/ network topology with respect to the learning set. 
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the probability density fx (x) can be estimated by 

K 

NVK(X)' 

and the prior probability P{Y = /} can be estimated by 

Nt 

N 

99 

By substituting these estimates into Bayes' formula (4.37) we obtain an estimate 
for the posterior probabilities P{Y = l I X= x} given by 

QK (l, x) 

K 

The classification rule that for a given x assigns the class for which Q K (l, x) j K is 
largest is called the K -nearest-neighbors classification rule. For asymptotic results 
on the convergence of this rule to the Bayes rate when N goes to infinity we refer 
to the textbook by Duda & Hart [ 1973]. For fini te N only negative results exist. It 
can, for instance, be shown that the convergence can be arbitrarily slow requiring 
a number of learning examples that grows exponentially with the input dimension 
Duda & Hart [1973]. 

6.3.2 Parameter selection and generalization 

An important issue is the problem of selecting K . We remark that there is a relation 
between selecting an appropriate network topology in the context of multi-layered 
perceptrans and selecting an appropriate value for K . Both parameters control the 
level of flexibility of the model with respect to the data. Therefore the dependency 
between the optima! value for K and the learning set can also be characterized by 
the bias-varianee trade-off as discussed inSection 4.5.1. If K is too large, some of 
the underlying structure is smoothed out (high bias) . If K is too small, the obtained 
model is very sensitive to the learning set teading to over-fitting (high variance). 
Usually, K is determined as follows: calculate the performance of the classification 
rule on an independent validation set for a number of values of K and choose the 
one with the best performance on the validation set, i.e., the best generalization 
capabilities. 

6.3.3 KNN-based horizon-selection rules 

Similar to the development of the MLP-based horizon-selection rules in Chapter 5 
we can apply the K -nearest-neighbors technique to estimate posterior probabilities 
and conditionat expectations. Below we derive horizon-selection rules for both the 
classification rate objective and the excess cost objective. 
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Classification rate objective. Suppose we have a set of N learning examples with 
zero-one target vectors. Let K besome integer value with K .::; N . Given a demand 

vector x E Qm, we can estimate the posterior probabilities P{Ym = l I Xm =x} by 

QK (l, x) 

K 

where QK (l, x) denotes the number of class l learning examples contained in the 
hypersphere around x exactly enclosing K learning examples. The mapping p~NN 

Qm ~ i:.m given by 

P~NN (x) = arg max QK (l, x) 
IELm K 

(6.4) 

can thus be seen as an approximative horizon-selection rule with respect to the 
classification rate objective. 

Excess cost objective. Suppose we have a set of N learning examples with cost 
target veetors denoted by (x(il, cOl) for i = I, .. . , N. Let K besome integer value 

with K .::; N . Given a demand vector x E Qm, we can estimate the conditional 
expectation E{Cm(l) I Xm =x} by 

K L c)il, 
iEti-K (x) 

where '/JK(x) denotes the set of indices of the learning examples contained in the 
hypersphere around x exactly enclosing K learning examples. The mapping r~NN 
Qm ~ i:.m given by 

r;;:'N (x) = arg min : L c)i) 
IE.l.m iE~K (x) 

(6.5) 

can thus be seen as an approximative horizon-selection rule with respect to the 
excess cost objective. 

Parameter selection. A suitable value for K is determined as follows. For the 
classification rate objective we compute the classification rate of p~NN on the vali
dation set for K = 1, ... , 20. This is done using the zero-one target veetors of the 
combined learning examples. We choose that value of K with the highest classi

fication rate. For the excess cost objective we compute the average excess cost of 
r!NN on the validation set for K = I , . .. , 20. This is done using the cost target 
veetors of the combined learning examples. We choose that value of K with the 
lowest average excess cost. 
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m 
p~LP 

KNN 
Pm 

avg ind com 

2 75.32 75.68 75.08 74.00 

3 81.72 81.92 81.16 80.76 
4 88.95 89.88 89.72 88.04 
5 91.87 92.28 92.44 89.52 
6 92.15 92.68 93.08 87.40 
7 91.32 92.28 92.76 85.60 

8 91.24 91.92 92.80 84.60 
9 91.10 92.12 92.24 84.16 

10 91.28 91.56 92.36 82.40 

Table 6.1. Classification rate in percentages on test set for horizon-selection rules 
p~LP and p~NN. The entries for p~LP represent averages of ten networks ( avg), best 
individual networks (ind), and cammiltees (com). 

6.4 Generalization with zero-one target veetors 

This section addresses generalization with zero-one target veetors and is organized 
as follows. Section 6.4.1 assesses the generalization capabilities of the horizon
selection rules p;;:Lr and p~NN . Class overlap is studied in Section 6.4.2. Sec ti ons 

6.4.3 and 6.4.4 investigate model specific and problem specific conditions for good 
generalization, respectively. Finally, Section 6.4.5 gives some conclusions. 

6.4.1 Generalization assessment 

We assess the generalization capabilities of the horizon-selection rules p:;:LP and 
p~NN for data horizon lengths m = 2, . . . , 10, by calculating the corresponding 
classification rates on the independent test set. Table 6.1 presents these results. 

The classification rate for p:;:LP increases from 75% for m = 2 to 93% for 
m = 6. For m :::_ 7 the classification rate slowly deteriorates to 92% for m = 10. 
The overall performance of the committees is better than the average performance 
of the individual networks. In most cases, a committee performs even better than 
the best individual network. 

The classification rate for p~NN increases from 74% for m = 2 to 89% for 
m = 5. For m :::_ 6 the classification rate rapidly deteriorates to 82% for m = 10. 

Before discussing these results we remark that we do not know the Bayes rates 
r (p;") for m = 2, . .. , 10. Therefore it is difficult to see what is good generalization 
and what is not. This problem is partly overcome by using the KNN-based horizon
selection rule as a reference. It is clear that the overall performance of p:;:LP is 



102 Generalization capabilities of MLP-based horizon-selection rules 

better than that of p~NN 0 For largervalues of m the classification rates for both p~LP 
and p~NN fall short of our expectationso Apparently, one or more of the necessary 
condition for good generalization have been violatedo Furthermore, it seems that the 
amount of vialation increases with m and that the K -nearest-neighbors technique is 

more sensitive to this vialation than multi-layered perceptronso 

6.4.2 Class overlap 

Section 406.4 discussed the phenomenon class overlap, which strongly effects the 
characteristics of a classification problemo In this subsection we investigate the 
presence and the amount of class overlap for different val u es of m 0 The presence of 
class overlap is evident from Figure 602, which gives a graphical representation of 
the 7,500 learning examples generated for the case m = 20 The two axes represent 
demands in subsequent periodso This tigure was obtained by platting the input 
veetors of the learning examples with 2-optimal simple planning horizon equal to 1 
or 2 in (a) or (b), respectivelyo As an illustration we give a graphical representation 
of the horizon-selection rule constituted by the best committee for the case m = 2 
in (c) and (d)o To understand the origin of this overlap, we briefly summarize the 
procedure used to compute these learning exampleso 

Each learning example is obtained by applying a forward algorithm to a se
quence of periods indemand history, labeled 1, 2, 0 0 0 0 On termination, the forward 
algorithm returned a minimal m-optimal simple planning horizon s for some fore
cast horizon no The input vector of the learning example was obtained by taking 
the first m demands d 1, 0 0 0 , dm 0 The remaining demands dm+ 1, 0 0 0, dn, necessary 
for determining s, were discardedo It is this discarding of demand information that 
"introduces" class overlap in the learning exampleso We remark that this discarding 
of demand information is a consequence rather than a souree of class overlap, since, 
if such class overlap exists, it is inherently present in the underlying classification 
problemo 

In Section 406.4 we derived an expression for the amount of class overlap in a 
classification problem called the overlapping coefficient. Let Àm denote the over
lapping coefficient for the classification problem with data horizon length mo Then, 
by definition, we have Àm = 1 - r(p~), where r(p~) denotes the Bayes rateo We 
can es ti mate r (p~) in the following two wayso 

The first way is based on the observation that for any horizon-selection rule p 
we have r(p) :=::: r(p~)o So the expected classification rate r(p) of any horizon
selection rule p provides a lower bound for the Bayes rateo Just as we did when 
assessing generalization capabilities, we can estimate r(p) by calculating the clas
sification rate of p on the independent test set. 

In the second way we use the lower bound on the Bayes rate provided by The-
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Figure 6.2. Graphical representation of 7,500 learning examples with zero-one tar
get veetors for the case m = 2. For each learning example ((x, , xz) , (t1 , tz)), the 
input vector (x! , x2) is plot in (a), if (tl , t2) = (1, 0), or in ( b ), if (t, , tz) = (0, 1 ). 
( c) mui ( d) show the behavior on these examples of the best committee rfLP. Input 
vector (x,, xz) is plot in ( c), if rfLP (x,, x2) = 1, or in ( d), if rf'r (x, , xz) = 2. 
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orem 5.2. We reeall that P{Zm :=: m} denotes the probability that a minimal m
optimal simple forecast horizon prevails within the data horizon. In Theorem 5.2 

it was shown that, under the condition that a perfect forward algorithm exists, 

r (p~1 ) :::=-_ P{ Zm :=: m}. We can u se this bound, because Chand & Morton [ 1986] 

derived such a perfect forward algorithm for the Wagner-Whitin cost structure. For 
each m with 2 :=: m :=: 10, we estimate P{Zm :=: m} by the fraction LB(m) of the 
7,500 available learning examples (for which we stored the corresponding minimal 

m-optimal simple forecast horizons) that has a minimal m-optimal simple forecast 

horizon smaller than or equal to m. InSection 5.2.3 it was shown that in case m = 1 
we have r(pj) = P{Zt :=: 1} = 1 and therefore LB(l) = 1. 

Let MLP(m) denote the classification rate on the test set of the best MLP-based 
horizon-selection rule we found for data horizon length m. Let KNN (m) denote the 

classification rateon the test set of the best KNN-based horizon-selection rule we 

found for data horizon Jength m . In case m = 1, the problem of selecting an optima! 
optimization horizon is trivia! and therefore it is obvious to define MLP(l)= 1 and 
KNN(l)=l. 

Figure 6.3 shows the values of MLP(m), KNN(m), and LB(m), for 1 :=: m :=: 
10. The best estimate of r(p:n) as function of m is now obtained by taking the 
maximum of MLP(m), KNN(m), and LB(m). The difference between MLP(m) 
and LB(m) for m > 6 is an indication of the optimality gap, which for instanee 
could be closed by adding more Jearning examples. 

6.4.3 Model specific conditions 

A necessary condition for good generalization is that the level of model ftexibility is 
optima! with respect to the Jearning set. This is certainly not a suftleient condition 

for good generalization, since the learning set may be too small or not representa
tive, for instance. To investigate this condition we plot generalization capabilities 
as a function of the model ft exibility in Figure 6.4 for different data horizon lengths 
m. The classification rate of p~LP on the test set as function of the number of hid

den units is plot in Figure 6.4(a) and the classification rate of p~NN on the test set as 
function of K is plot in Figure 6.4(b) . Next we discuss these plots. 

Multi-Iayered perceptrons. We reeall that during execution of the learning algo
rithm the sum-of-squares error on the validation set (generalization error) is moni

tored and a copy of the network with the Jowest generalization error is kept. After 
termination of the algorithm this copy is restored. The advantage of this approach 

is that over-fitting due to a too smalllearning set or a too large model ftexibility is 
overcome. From the learning curves (c) and (e) in Figure 6.1 the risk of over-fitting 

is clear. Consequently, the generalization capabilities as function of the number of 
hidden units have the following typical shape. Let N;, denote the smallest number 
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of hidden units for which the best possible generalization is achieved with data hori

zon length m. Suppose we increase the number of hidden units n starting at n = 0. 
Then for n < N;, the generalization capabilities increase with n. For n :::: N; the 
generalization capabilities are approximately constant. For the different values of 

m, we abserve such a shape in Figure 6.4(a) . For example in the case m = 6 we 
have N* = 12. We abserve that N; increases for 2 .::: m .::: 6. For m > 6 we have 
N;, ~ 10. 

K -nearest-neighbors. In Figure 6.4(b) the generalization capabilities of the hori
zon selection rule p~NN are plot for different va lues of K and m. We abserve that 
for small values of K the model flexibility is too high for the given learning set. 
The optima! value of K typically lies in the interval [10, 20]. 

Conclusion. From Figure 6.4 we infer that investigating more hidden units or 
larger values of K will most probably not result in significant improvements, upon 
which we conclude that the model specific conditions for good generalization are 
satisfied with respect to the learning sets. So the disappointing generalization capa
hilities for m > 6 cannot be explained in this way. As a consequence of that, one or 
more of the problem specific conditions for good generalization must be violated. 
This also explains the over-fitting during learning observed in the learning curves 
(c) and (e) in Figure 6.1. From the increase of N,~ for 2 .::: m .::: 6 we conclude that 

the functional complexity of the target mapping 4Ym increases with m in the sense 
that more network mapping capabilities are required. 

6.4.4 Problem specific conditions 

The target mapping 4Ym is completely characterized by the posterior probabilities 

P{Ym = k I Xm =x} with k E ..Cm, or using Bayes' rule, by the prior probabilities 
P{Ym = k} and the conditional probability density functions /x,. (x I Ym = k) with 
k E ..Cm. The results presented in Section 5.2.3 imply that the characteristics of 
Ym, given by the prior probabili ties P{ Y m = k}, change with the data horizon length 
m. Consequently, the characteristics of 4Ym change with m, and we conjecture that, 

with these characteristics, the problem specific conditions for good generalization 
change. Below we investigate this conjecture. 

Prior probabilities. We reeall that the prior probability P{Ym = !} denotes the 
probability that the minimal m-optimal simple planning horizon is equal to !. For 
each value of m we estimate P{ Ym = !} by the fraction O:m (l) with I E ..Cm, where 

o:m(l) denotes the fraction of the 7,500 available learning examples with data hori
zon length m that have zero-one target vector e1. These estimates are presented in 
percentages in Table 6.2. The entries for m > 7 are omitted. Note that the order 
cycle, as obtained by substituting the average demand level 100 in (3.3), equals the 
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m am(l) CXm(2) CXm(3) CXm(4) Glm (5) CXm(6) Glm(7) 

2 29.13 70.87 - - - - -
3 20.45 55.09 24.45 - - - -
4 19.24 53.17 22.53 5.05 - - -

5 19.09 53.00 22.33 4.84 0.73 - -
6 19.05 52.97 22.32 4.84 0.73 0.08 -
7 19.05 52.97 22.32 4.84 0.73 0.08 0.00 

'---- - - - - - - --

Table 6.2. Estimates am (l) of the prior probabilities P{ Y m = /}. 

optimization horizon with the highest prior probability. We abserve that for l :::=: 6 
the fractions am (l) as function of m converge to fixed values. This behavior can be 

explained as follows. 
Proposition 5.1 implies that, if a finite upper bound M exists on the length 

of a subplan in an optima! production plan for the n-period problem that is inde
pendent of n, random variables Y M, Y M+I, . .. are identically distributed. So, if 
such an upper bound M exists, the prior probabilities become independent of m 
for m :::_ M. The observed behavior of am (l) as function of m can thus be ex
plained by the existence of such a bound M = 6. However, it is unlikely that such 
a bound really exists. To illustrate this, we refer to the proof of Corollary 3.1 in 
which we derived a bound on the lengthof a subplan in an optima! production plan 
for the Wagner-Whitin cost structure. Since our demand is uniformly distributed on 
[0, 200], positive demand in a period can be arbitrarily small, and we can construct 
examples of n-period problems with arbitrarily large optima! subplans. Neverthe
less, as can be concluded from the fractions am (l), the probabi lity that a subplan 
in an optima! production plan has a length greater than 6 is very smal!. In fact of 
all 7,500 learning examples there was no one having an m-optimal simple planning 
horizon greater than 6. Consequently, the empirica! distributions of Y m for m :::_ 6, 
which are represented by the fractions am (!), are identical. In our analysis of gen

eralization with zero-one target veetors it thus makes sense to distinguish between 
the cases 2 :::=: m < 6, in which the empirica! distribution of Ym changes with m, 
and m :::_ 6 in which the empirica! distributions of Y m are iden ti cal. 

Curse of dimensionality. To understand the deleriorating classification rates for 
m :::_ 6 as observed in Table 6.1 and Figure 6.3 we combine the outcome of the 
investigation of the prior probabilities with the results of Chapter 5. 

The analysis of the prior probabilities implies that the zero-one target veetors 
of the combined learning examples are independent of m for m :::_ 6. From this 
we deduce that the deteriorating classification rates for m :::_ 6 must be caused by 
the increased input vector dimensionality. At first sight this looks very counter-
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intuitive, since including more relevant demand information should enable better 
horizon-selection. However, we conjecture that a phenomenon occurred that is re
Jated to what Bellmann [ 1961] caBs the "curse of dimensionality". In the context 
of generalization, the curse of dimensionality can be understood as follows. Sup
pose we have some finite learning set. Then increasing the dimensionality of the 
inputspace by adding new features rapidly leads to the point where the data is very 
sparse and the learning examples provide a very poor representation of the target 
mapping. In such a case, good generalization is only possible if the target mapping 
is a smooth function of the input vectors, such that it is possible to infer the target 
values at intermediate points, where no data is available, by interpolation. 

Our conjecture is confirmed by Proposition 6.1, in which it was shown that, 
under the condition that a finite upper bound M exists on the Jength of a subplan in 
an optima! production plan for the n-period problem that is independent of n, the 
smoothness of the target mapping <l>m decreases with m for m :::: M. 

Apparently, the K -nearest-neighbors technique is more sensitive to the smooth
ness of <l>m than supervised Jearning with multi-layered perceptrons. To further 
investigate this, we plot the classification rate of p~NN as function of the Iearning 

set size for m = 5 and m = 10 in Figure 6.5. We take K = 20. In case m = 5, 
approximately ten times as many learning examples are needed to obtain a classifi
cation rate that is camparabie with the classification rate of p~LP. In case m = 10, 
using twenty times as many learning examples is not nearly sufficient. The num
ber of Jearning examples required for good generalization with p~NN seems to grow 
exponentially with m. We conclude that p~LP uses the available Jearning examples 
more efficiently than P!NN. 

It would be very interesting to investigate the effect of the number of Jearn
ing examples on the generalization capabilities of the MLP-based horizon-selection 
rules, but doing this thoroughly would take an enormous amount of computing time. 
Some preliminary steps in this direction were made by Zwietering, Van Kraaij, 
Aarts & Wessels [1991]. 

6.4.5 Discussion 

We investigated the generalization capabilities of the MLP-based horizon-selection 
rules for the classification rate objective as a function of the data horizon length. lt 
turned out that, when we enlarge the data horizon, these generalization capabilities 
diminish. By analyzing the necessary conditions for good generalization, we were 
able to point out the non-smoothness of the target mapping as the main souree of 
problems when learning with zero-one target vectors. We end this section with a 
summary of the conclusions on the basis of the following two typ ical cases. 
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Figure 6.5. Classification rate of horizon-selection rule p~NN with K = 20 as Junc
tion of the learning set size for m = 5 and m = 10. 

Large data horizons. In the case m is large, there is noclassoverlap and the tar
get mapping can be viewed as a binary classification function </Jm : Qm ~ {0, 1 }m. 
At each decision boundary </Jm is discontinuous. The degree of smoothness is de
termined by the number of decision boundaries and the more decision boundaries 
the less smooth </Jm. The functional complexity of the target mapping is typicall y 
high in the sense that many hidden units are required. In this ill-conditioned case, 
good generalization is d.iffi.cult and requires lots of learning examples. An example 
is the case m = 10, in which 2,500 learning examples turned out to be insuffi.cient 
for good generalization. 

Small data horizons. Due to the presence of class overlap, in the case of small 
m, there are no discontinuities in the target mapping and most of the underlying 
structure is smoothed out. As a result of that, the functional complexity of the 
target mapping is typically low in the sense that only few hidden units are required. 
In this case, good generalization is possible with relatively few learning examples. 
An example is the case m = 2, in which 2,500 learning examples was more than 
sufficient for good generalization. 

When we enlarge the data horizon from smal! to large, the smoothness of </Jm 
decreases, the functional complexity of </Jm increases, and generalization becomes 
more difficult requiring more learning examples. 
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!MLP 
rKNN m m 

m 

avg ind com 

2 8.79 8.64 8.75 9.55 
3 5.20 5.17 5.21 5.59 
4 2.14 2.04 1.91 2.05 
5 1.01 0.90 0.84 1.48 
6 0.81 0.65 0.80 1.17 
7 0.55 0.48 0.53 0.81 
8 0.39 0.33 0.37 0.64 
9 0.29 0.23 0.27 0.58 

10 0.28 0.22 0.19 0.54 

Table 6.3. Average excess cast on test setfor horizon-selection rules r:;:LP and r!NN. 

The entries for r,~LP represent averages of ten networks ( avg), best individual net
works ( ind), and cammiltees ( com). 

6.5 Generalization with cost target veetors 

This section addresses generalization with cost target vectors; its organization is 
as follows. Section 6.5.1 assesses the generalization capabilities of the horizon
selection rules r,~LP and r!NN. Model specific conditions and problem specific con
ditions for good generalization are studied in Sections 6.5.2 and 6.5.3, respectively. 
Finally, Section 6.5.5 gives some conclusions. 

6.5.1 Generalization assessment 

We assess the generalization capabilities of the horizon-selection rules r,~LP and 
r!NN for data horizon lengths m = 2, . . . , I 0, by calculating the corresponding 
average excess cost on the independent test set. Table 6.3 presents these results. 
The average excess costs for both r:;:LP and r!NN are strictly decreasing in m. The 
overall performance of the committees is better than the average performance of the 
individual networks. The performance of the committees compares wel! with the 
performance of the best individual networks. The overall performance of the MLP
based horizon-selection rules is superior to that ofthe KNN-based horizon-selection 
rules. In the remaioder of this section we further analyze these results. 

6.5.2 Model specific conditions 

We now investigate the model specific conditions for good generalization for the 
different approaches with respect to the learning set. Therefore, in Figure 6.6, we 
plot the generalization capabilities as a function of the model ftex.ibility. For dif-
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Figure 6.6. Average excess costas function of the model jiexibility. The horizontal 
axis represents the number of hidden units for multi-layered perceptrans and the 
value of K for K -nearest-neighbors. 

ferent data horizon lengths m, we plot the average excess costof r::f-P on the test 
set as function of the number of hidden units in (a) and the average excess cast of 
rn~N on the test set as function of K in (b). Looking at Figure 6.6 we conclude 
that the model specific conditions for good generalization are satisfied. The opti
mal number of hidden units N';. increases strictly with m indicating an increase of 
the functional complexity of the target mapping 1/fm. For K -nearest-neighbors, we 
abserve that small values of K lead topoor generalization due toa too high model 
flexibility. The generalization capabilities increases smoothly with K. The results 
in Figure 6.6 suggest that slightly better generalization capabilities can be obtained 
by using more hidden units or higher values of K. 

6.5.3 Problem specific conditions 

The target mapping 1/fm is completely characterized by the conditionat expectation 
of the excess cost E{ Cm (k) I Xm = x} with k E Lm. From the results presented 
in Section 5.3.3, we know that the characteristics of random variables Cm (k) with 
k E Lm change with the data horizon length m. Consequently, the characteristics of 
1/fm change with m . The effect of this change on the problem specific cond.itions for 
good generalization is determined by the cost structure (H, P). Below we exam
ine the characteristics of random variables Cm (k) by estimating their expectations 
E{Cm (k)}. 

The analogon of the prior probability P{Ym = k} for the excess cost objec
tive is the prior expectation E{Cm(k)} . In words, E{C,n(k)} denotes the expected 
excess cast of decomposing the off-line problem at period k. For each m we esti-
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m J'3m (1) !'3m (2) J'3m (3) /3m(4) J'3m (5) /3m (6) J'3m (7) 
2 58.45 17.21 - - - - -

3 66.52 33.34 42.11 - - -

4 67.74 35.79 45.79 42.45 - - -

5 67.89 36.08 46.23 43.03 43.81 - -
6 67.90 36.11 46.28 43.10 43.90 43.68 
7 67.90 36.11 46.28 43.10 43.90 43.68 43.79 

-- --

Table 6.4. Estimates !'3m (k) of the prior expectations E{ Cm (k) }. 

mate the prior expectations E{Cm (k)} with k E Lm by averaging over the 7, 500 
available cost target vectors. We denote the estimate of E{Cm(k)} by f3m(k). Ta
bie 6.4 presents these estimates. The entries for m > 7 were omitted. Note that 
the order cycle, as obtained by substituting the average demand level 100 in (3.3), 
corresponds with the optimization horizon with the lowest prior expectation. We 
observe that !'3m (k) as function of m converges to a fixed value for k E Lm. This 
behavior can be explained as follows. 

Proposiüon 5.3 implies that, if an upper bound M exists on the length of a 
subplan in an optima! production plan for the n-period problem that is independent 

of n, random variables CM(k), CM+I (k), . .. are identically distributed. So, ifsuch 
an upper bound M exists, the prior expectations become independent of m for m =::: 

M. The observed behavior of f3m(k) as function of m can thus be explained by the 
existence of such a bound M = 6. However, it is unlikely that such a bound really 
exists. Using similar arguments as put forwardinSection 6.4.4, in our analysis, we 
distinguish between the cases 2 _:::: m < 6, in which the empirica! distribution of 
Cm (k) changes with m, and m =::: 6 in which the empirica! distributions of Cm (k) 
are identical. 

6.5.4 Class overlap 

The analogon of the overlapping coefficient Àm for the excess cost objective with 
data horizon length m equals the Bayes cost c(r,;;). The following estimate is based 
on the observation that for any horizon-selection rule r we have c(r) =::: c (r,;; ). So 
the expected excess cost c( r) of any horizon-selection rule r provides an upper 
bound for the Bayes cost and can be estimated by calculating the average excess 
cost of r on the independent test set. Let UB(m) denote the average excess cost 
on the test set of the best horizon-selection rule we found for data horizon length 

m. In case m = I, the problem of selecting an optima! optimization horizon is 
trivia! and therefore it is obvious to de fine UB(l )=0. In Figure 6. 7 we plot the 
values of UB(m) for 1 _:::: m _:::: 10. The observed behavior of UB(m) as a function 
of m supports Theorem 5.4 and Conjecture 5.1 . These results state that c(r,~) is 
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Figure 6.7. Average excess coston test set for best horizon-selection rule. 

decreasing in m for m ::=:_ 6 and limm--->oo c(r,~) = 0 under the condition that an 
upper bound M = 6 exists. 

6.5.5 Discussion 

We studied the generalization capabilities of the MLP-based horizon-selection rule 
for the excess cost objective as a function ofthe data horizon length m. It turned out 
that good generalization is possible with cost target veetors for all m. We analyzed 
the necessary conditions for good generalization and observed that the number of 
hidden units required for good generalization increases strictly with m, indicating 
an increase of the functional complexity of the target mapping lfrm· Despite this 
increase in functional complexity, there was no noticeable effect on the conditions 
for good generalization. In all cases 2,500 learning examples was sufficient for 
good generalization. 

6.6 Condusion 

This chapter studied the generalization capabilities of the two MLP-based horizon
selection rules proposed in Chapter 5 for an on-line lot-sizing problem with Wagner
Whitin cost structure. Particularly, the effect of the length of the data horizon and 
the type of learning examples on the generalization capabilities were investigated. 
As a reference we developed two alternative horizon-selection rules based on K
nearest-neighbors estimation. Below, we give some conclusions. 
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MLP-based versus KNN-based. We conclude that, in case of generalization with 
zero-one target vectors, the use of rnulti-layered perceptroos is preferred to the K
nearest-neighbors technique; not only with respect to its generalization capabilities, 
but also with respect to its more efficient use of the available learning exarnples. 
In case of generalization with cost targets , rnulti-layered perceptroos were always 
slightly better. 

If we cornpare the cornputational efficiency of supervised learning with rnulti
layered perceptroos and the K -nearest-neighbors technique, a distinction can be 
made between (i) the arnount of effort that has to be put in before a good horizon
selection ruleis obtained and (i i) the on-line processing speed. With respect to (i), 
both rnulti-layered perceptroos and K -nearest-neighbors are rather time consurn
ing, since they require fine-tuning of the parameter controlling the model flexibility. 
The time to develop a rnulti-layered perceptren can be decreased by using irnproved 
learning algorithrns and parallel processing. With respect to (i i), MLP-based hori
zon selection rules are very fast on-line cornpared to KNN-based horizon-selection 
rules. The reason therefore is that, in a KNN-based horizon-selection rule, the 
distance frorn the give dernand vector to all learning exarnples in the learning set 
must be calculated. However, there also exist fast irnplernentations of K -nearest
neighbors algorithrns [Fukunaga & Narendra, 1975]. 

Zero-one targets versus cost targets. A possible disadvantage of using zero-one 
target veetors is that, although multiple sirnple planning horizons rnay exist within 
the data horizon, we only code the minimal one. In this way crucial inforrnation 
rnay be lost. One option is to allow multiple ones in the target vectors, however, in 
this way still no cost inforrnation is incorporated in the targets . These disadvantages 
can be overcorne by using cost target vectors. 

Generalization with zero-one target veetors turned out to be more difficult for 
large data horizons. The rnain souree of difficulties is the srnoothness of the eerre
sponding target rnapping. Due to the better conditions for good generalization, we 
expect that learning with cost target veetors requires less learning exarnples and can 
therefore be done faster. 

Discussion. Although the above conclusions are in favor of using an MLP-based 
horizon-selection rule with cost target vectors, a fair cornparison between the dif
ferent approaches and the different types of Jearning exarnples cannot be made yet. 
This is because generalization capabilities are rneasured differently for the two ob
jectives. For instance, a classification rate of 0.9 cannot be cornpared with an av
erage excess cost of 5. One option is to calculate the average excess cost for all 
horizon-selection rules. But the most appropriate way of cernparing the different 
horizon-selection rules is on the basis of the performance characteristics of their 
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conesponding variabie-horizon policies. In the next chapter we investigate these 
characteristics by means of an extensive empirica! study. 
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7 
Performance of variabie-horizon policies 

for on-line lot-sizing 

In Chapter 2 we introduced variabie-horizon policies as a salution approach for 

on-line lot-sizing problems. Such policies determine the lot-sizes by repeatedly 
optimizing over some optimization horizon and implementing the lot sizes of the 
first subplan. A variabie-horizon policy is completely determined by its horizon
selection rule, which determines the optimization horizon given the demands within 

the data horizon. In Chapter 5 we derived two horizon-selection rules based on su
pervised learning with multi-layered perceptrons. The purpose of this chapter is to 
investigate the performance characteristics of the variabie-horizon policies consti
tuted by these horizon-selection rules. Moreover, our intention is to give conclu 
sions and recommendations with respect to the use of these variabie-horizon poli

cies. To that end we perfarm an extensive empirica! studyin which the MLP-based 
variabie-horizon policies are compared with a benchmark of alternative variabie
horizon policies on a rolling-horizon basis . This study focuses on the three cost 
structures introduced and analyzed in Chapter 3. 

The chapter is outlined as follows . InSection 7.1 we discuss some related lit
erature. Section 7.2 gives an outline of the experiments. InSection 7.3 we discuss 
policy performance evaluation. Section 7.4 investigates the potential of variabie
horizon policies. In Section 7.5 we present the empirica! results . Finally, in Sec-

117 
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tion 7.6 we give some conclusions. 

7.1 Related literature 

The literature shows several studies that address the performance of variabiehorizon 
policies on a rolling-horizon basis. These studies address, without exception, the 
Wagner-Whitin cost structure. Our design of experiments is inspired by the studies 
of Baker [ 1977], Blackburn & Millen [ 1980], Carlson, Beekman & Kropp [ 1982], 
and Zwietering, Van Kraaij, Aarts & Wessels [1991]. Below we discuss the main 
conclusions of these studies. 

Baker [ 1977] investigated the impact of the length of the data horizon, the order 
cycle, and the demand characteristics on the performance of the fixed-horizon pol
icy. He concludes that fora good performance of this policy the data horizon must 
be at least as large as the order cycle. 

This work was extended by Carlson, Beekman & Kropp [1982], who included 
demand forecasting. They compare the fixed-horizon policy with three variabie
horizon policies, each consisting of a simple demand forecasting technique and a 
forward algorithm. Demand is forecasted for as many periods as needed by the 
forward algorithm to detect a planning horizon. They conclude that forecasting 
becomes more beneficia! as the variation in demand increases. Furthermore, they 
conclude that any reasonable extension of demand beyond the data horizon is fea
sible. They recommend, to let the length of the data horizon plus the number of 
forecasted demands exceed the order cycle. 

Blackburn & Millen [ 1980] designed a set of experiments to investigate the 
impact of the length of the data horizon, the order cycle, and the variation in de
mand on the performance of the fixed-horizon policy and three different aggregation 
heuristics. It appears that, independent of demand characteristics, the performance 
of the aggregation heuristics becomes poorer as the variation in demand increases, 
whereas for data horizons larger than two order cycles, increasing variation in de
mand tends to improve the performance of the fixed-horizon policy. For reasoos 
of cost effectiveness, they recommend the use of one of the aggregation heuris
tics when the information about future demand is limited. Typically, there is a data 
horizon length for which the fixed-horizon policy starts to dominate the aggregation 
heuristics. This value decreases when the demand variability increases. 

Zwietering, Van Kraaij, Aarts & Wessels [ 1991] performed some experiments 
with multi-layered perceptroos for the rolling horizon version of the single-item lot
sizing model with Wagner-Whitin cost structure. The authors showed that multi
layered perceptroos cao outperfarm the fixed-horizon policy and the aggregation 
heuristic of Silver & Meal [1973]. 
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7.2 Outline of the experiments 

This section outlines our experimental setup. The experiments evaluate the perfor
mance of a number of different variabie-horizon policies for instances of three types 

of on-line lot-sizing problems. We vary the length of the data horizon between 2 
and I 0. The organization of this sec ti on is as follows. First, we characterize the in
stances under consideration by summarizing the corresponding demand processes 
and cost structures. Next, we describe the details of the variabie-horizon policies 

we consoder. Finally, we describe how we evaluate policy performance. 

7.2.1 Demand processes 

We investigate the effect of the characteristics of the demand process on the perfor
mance of variabie-horizon policies by considering three types of demand processes, 
i.e., uniformly distributed demand, Erlang distributed demand, and seasonal de

mand. These demand processes are stationary, i.e., their characteristics are constant 
in time. 

Variability is on of the characteristic of the demand process that strongly effects 
the performance of a variabie-horizon policy [Blackburn & Millen, I980; Carlson, 

Beekman & Kropp, I982]. The variability of a positive random variabie X is mea
sured by its squared coefficient of variation ei defined by 

2 var{X} 
ex = E2{X} . (7.1) 

Moreover, there is a relationship between the variability of the demand process and 
the dis tribution of minimal planning and forecast horizons; see the work of Lundin 
[I973], Federgruen & Tzur [1994], Lundin & Morton [1975], and Morton [1981] . 
Since the MLP-based horizon-selection rules proposed in Chapter 5 depend on the 

distribution of minimal planning and forecast horizons, we expect that the perfor
mance of the variabie-horizon policies constituted by these horizon-selection rules 
depends on the variability of the demand process. Forthese reasons, we consider a 
number of coefficients of variation. Below we describe these demand processes in 
more detail. 

Uniformly distributed demand. Suppose the demand in period t is uniformly 

distributed with mean f.J.- and range R, i.e. , the demand d, is uniformly distributed 
on [f.J.- - ~ R, f.J.- + ~ R] . Then the corresponding squared coefficient of variation is 
given by 

R2 
2 - -- . 

cd, - 12tJ.-2 (7.2) 

We use uniformly distributed demands with mean f.J.- = I 00 and ranges R = 75, 
150, and 200. The corresponding squared coefficients of variation are equal. to 
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c~, = 0.05, 0.19, and 0.33, respectively. For notational reasons we label the three 
uniform distributions as U75, U150, and U200. 

Erlang distributed demand. Suppose the demand in period t is Erlang-k distrib
uted with parameter À. Then the mean and the squared coefficient of variatien are 
given by 

k 
E{dr} = À' 

1 
2-

cd,- k. 

(7.3) 

(7.4) 

We generate Erlang demands with (approximately) equal mean and variances as 
the abovementioned uniform distributions by substituting E{dr} = p, and (7.2) into 
(7.3) and (7.4) to obtain 

k = max 1 --+-{ l12p,2 1J} 
' R2 2 ' 

12kp, 
À= fi2· 

We label the three Erlang distributions as E75, E150, and E200. 

Seasonal demand. We generate seasonal demands using the formula 

1 (2rrt) d1 = (p,- lR) sin T + Ur, 

(7.5) 

(7.6) 

(7.7) 

where T denotes the cycle length, and u 1 is a uniformly distributed random variabie 
with mean p, = 100 and range R = 75. It is obvious that 

I (2rrt) E{dr} = p, + (p,- 2R) sin T . (7.8) 

Let Du+T denote the cumulative demand from period t up to period t + T- 1, i.e., 
the de mand during a cycle. Then one easily verifies that E{ D1 r+T} = p, T and the 
expected demand per period duringa cycle is p,. We use seasonal demand processes 
with cycle lengths T = 3 and 6. These are labeled as S3 and S6, respectively. 

7.2.2 Cost structures 

We study four cost structures, i.e., two Wagner-Whitin cost structures, one cost 
structure with overtime, and one cost structure with purchasing. All cost structures 
have the Iinear holding cost function (3.2). We normalize the holding cost h to 
1. The production cost functions for the Wagner-Whitin cost structure, the cost 
structure with overtime, and the cost structure with purchasing are defined by (3.1), 
(3.4), and (3.6), respectively. The Wagner-Whitin cost structures were selected to 
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yield order cycles n* of 2 and 4 periods as determined by (3.3) with D = f-L = 100. 
To obtain the appropriate order cycles, S was set equal to 200 and 800, respectively. 
For the two-source models with overtime and purchasing, constructing reasonable 
cost structures is less straightforward. Aftersome experimentation with these mod

els, we choose two cost structures that showed a reasonable number of lot sizes 
requiring overtime or purchasing; see also the work of Dixon, Elder, Rand & Silver 
[ 1983] and Suurmond [ 1996] . For the cost structure with overtime we set the over
time premium r, the setup cost S, and the regular time production capacity C equal 

to 1, 425, and 200, respectively. The corresponding order cycle, as determined by 
(3.5) with D = f-L = 100, is equal to 2. For the cost structure with purchasing we 
take the purchase premium r, the setup cost S, and the in-house production capac
ity C equal to 10, 100, and 125, respectively. The corresponding order cycle, as 

determined by (3.7) with D = f-L = 100, is equal to 1. 

7.2.3 Learning examples 

For all 8 x 4 x 9 = 288 combinations of demand processes, cost structures, and data 
horizon lengths, we generate two sets of 2,500 combined learning examples, i.e., 

one learning set and one validation set for monitoring the generalization capability 
during execution of the learning algorithm. These combined learning examples con
tain both zero-one target veetors and cost target veetors as described in Section 5.4. 
We remark that we generated demand for as many periods as necessary to compute 
5,000 learning examples, which is approximately 5,100 periods in all cases. The 
procedures for the computation of zero-one target veetors and cost target veetors 
have been described in Sections 5.2.4 and 5.3.4, respectively. These procedures use 
the forward algorithms developed in Chapter 2 in which the cost structure specific 
features derived in Chapter 3 have been included. 

There are two reasoos for taking the same number of learning examples in all 
288 cases. First, although we expect that in most cases the number of learning 
examples required for good generalization is smaller than 2,500, it takes too much 
time to investigate the required minimal number of learning examples for all 288 

cases; see also Chapter 6. Second, we want to rnaintaio as much as possible the 
same conditions for the 288 experiments. Note that, in practice, the availability of 
learning examples may be limited and one may be unable to afford the luxury of 
keeping aside a validation set. In such cases cross-validation can be used; see also 
Section 4.5. 

7.2.4 MLP-based variabie-horizon polides 

The procedure to obtain the variabie-horizon policies constituted by the MLP-based 
horizon-selection rules p~Lr and r~LP developed in Chapter 5 is, except forsome 
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minor differences, identical for each of the 288 combinations of different demand 
processes, cost structures, and data horizon lengths. Below, we describe this proce
dure and point out these differences. 

Preprocessing. A preprocessing step is included in which all elements of the in
put and target veetors are scaled between 0 and 1. Next, we remove the differ
ence in interpretation of network outputs between zero-one target veetors and cost 
target veetors by applying the transformation x ~ 1 - x to the elements of the 
scaled cost target vectors. In this way, all target mappings are mappings of the form 
g : [0, 1] ~ [0, 1]. This enables the use of sigmoidal units, identical weight ini
tialization procedures, and identical learning parameter values in all cases; see also 
Section 6.2. 

Next we describe the sealing procedure. For the sealing of the input veetors 
for uniformly distributed and seasonal demand, we use the property that these de
mand processes are bounded. We divide the input veetors for uniformly distributed 
demand by J.L + ~ R, and the input veetors for seasonal demand by 2J.L. Erlang dis
tributed demand is unbounded. In that case we scale by dividing the input veetors 
by the largest observed demand realization. The zero-one target veetors obviously 
need no further sealing. The sealing of the cost target veetors is less straightfor
ward. For the Wagner-Whitin cost structure we use the worst-caseresult presented 
in Proposition 3.2. This result states that 6.m (P) :::; S, where S denotes the setup 
cost and 6.m (p) denotes the excess cost (over infinite-horizon m-optimality) of de
composing the off-line problem at period p; see also Section 2.7 and Section 5.3. 
Consequently, the appropriate sealing is obtained by dividing the elements of all 
cost target veetors by S~ We were unable to derive such results for the other cost 
structures and therefore scale the elements of the cost target vector by the largest 
observed val ue of 6.m ( p). 

Learning algorithm. The initia! values of the weights of the multi-layered per
ceptron are drawn from a uniform distribution on [- 1, 1]. We u se the sequentia! 
version of gradient descent with momenturn term using the sum-of-squares error 
function (4.12) with learning rate 11 = 0.1 and momenturn term J.L = 0.9. The 
learning algorithm applies 2,500,000 iterations for each multi-layered perceptron. 
During execution the sum-of-squares error is monitored on the validation set and 
the network with the lowest error is kept. 

Network topology selection. Because of the size of our ex perimental setup, man

ual tuning of the neural network topology is simply infeasible. Therefore, in our 
experiments, we use a predetermined set of neural network topologies. The risk of 
such an approach is that we may end up with a suboptimal policy, since for instanee 
adding more hidden units would yield a better performance. On the other hand, it is 



7.2 Outline of the experiments 123 

interesting to see what results can be obtained in this way, since in practice there is 
often no time for fine tuning. Next we describe the network topologies we consider 
in our experiments. 

Suppose we have a data horizon of length m. Then we use multi-layered per
ceptroos with minputs and moutput units as implied by the structure ofthe learning 
examples. Furthermore, we take logistic sigmoid response functions ( 4.9). To de
termine a suitable network topology, we investigate five network topologies with 
increasing network mapping capabilities, i.e., with increasing number of hidden 
units. We expect that two-source models require more hidden units than single
souree models which we take into account as follows. For the single-souree models 
we investigate network topologies with 0, m, m + 2, m +4, and m + 6 hidden units; 
for the two-source models we investigate network topologies with 0, m, m + 3, 
m + 6, and m + 9 hidden units. Except for the topology with zero hidden units, 
which has no hidden layer, all network topologies have one hidden layer. For each 
of the five different network topologies we develop ten networks. These ten net
works are combined to form a committee by averaging over network outputs. For 
each committee we compute the sum-of-squares error on the validation set. Both 
the horizon-selection rules p~LP and r:;:LP are obtained by selecting the committee 
with the lowest sum-of-squares error. 

7.2.5 KNN-based variabie-horizon polides 

Next we describe the procedure to obtain the variabie-horizon policies constituted 
by the KNN-based horizon-selection rules p~NN and r!NN ; see Section 6.3. Suppose 
we have a data horizon of length m. Horizon-selection rule p~NN is obtained by 
computing the classification rate on the validation set for K = 1, . .. , 20, and by 
choosing the value of K with the highest classification rate. This is done using 
the zero-one target veetors of the combined learning examples. Horizon-selection 
rule r!NN is obtained by computing the average excess cost on the validation for 
K = 1, . .. , 20, and by choosing the value of K with the lowest average excess 
cost. This is done using the cost target veetors of the combined learning examp1es. 
Note that for both horizon-selection rules the procedure for determining K is taken 
independent of any cost structure, demand process, or data horizon length. 

7.2.6 More variabie-horizon polides 

This subsection summarizes the more conventional variabie-horizon policies that 
were proposed in Section 2.4.3 and that are used as a reference throughout this 
chapter. Furthermore, we introduce two variabie-horizon policies that include fore
casting and are basedon the workof Carlson, Beekman & Kropp [1982]. For rea
soos of convenience we distinguish between policies with forecasting and policies 
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without forecasting. 

Myopie policies. InSection 2.4.3 we derived the following four variabie-horizon 
policies from well-known heuristics for the Wagner-Wh i tin cost structure. 

1. Economie order quantity policies (EOQ) . 

2. The least cost per unit time policy (PUT). 

3. The least cost per unit product policy (PUP). 

4. The fixed-horizon policy (FIX). 

We remark that EOQ was derived for the three cost structures under consideration 
in Chapter 3. 

Polides with forecasting. Carlson, Beekman & Kropp [ 1982] investigated the 

use of forecasting to extend the data horizon for the Wagner-Wh i tin cost structure. 
Their approach was to forecast demand for as many periods in the future as neces
sary fora forward algorithm to detect a planning horizon. They investigated several 
forecasting techniques ranging from relatively simple techniques, like extension of 
last period's demand, to more sophisticated techniques, like exponential smoothing 
with trend and seasonality. From their experiments it appears that a simple 5-period 
rnaving average works as well as the more sophisticated forecasting techniques. 
Consequently, they concluded that any reasanabie extension of the data horizon 
will do as well as the more accurate ones. 

Based on the work of Carlson, Beekman & Kropp [ 1982] we can use a forecast
ing technique to extend the data horizon in combination with our forward algorithm 
to detect an m-optimal simple planning horizon. In this way we derive two variabie
horizon policies based on the following two simple forecasting techniques. 

1. Take the average demand p, = 100 as a forecast for the unk.nown future 
demands. 

2. Use a 5-period rnaving average to forecast the unk.nown future demands. 

We denote the corresponding policies by AVG and MYG, respectively. Both forecast
ing techniques generate a demand sequence with low variability. For such cases, we 
found that the forward algorithm often needs a large amount of demand information 
to stop. For that reason we terminate the forward algorithm af ter a maximum of 100 
iterations. If the forward a1gorithm terminates within 100 iterations, the optimiza
tion horizon is taken equal to the m-optimal simpte planning horizon. In case no 
m-optimal simple planning horizon is found, we select the smallest element from 
the m-optimal regeneration set.&:;! (1 00); see a lso Theorem 2. 9. AVG can also be ob
tained by exploiting that the demand beyond the data horizon is constant. This was 
shown by Van Nunen & Wessels [ 1978], who used the infinite-horizon lot-sizing 
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model with constant demand to derive an infinite-horizon optima! ending condition 
in case of a Wagner-Whitin cost structure; see Definition 2.5. Advantage of this 
approach is that, since no forward algorithm is required, it is computationally less 
demanding. 

7.3 Policy performance evaluation 

The performance of m-policies is usually evaluated empirically by applying them 
to different instances of on-line problems with a finite number of periods, called 

the problem horizon. A typical set-up is to consider 50 replications of 48-period 
problems [Baker, 1977; Carlson, Beekman & Kropp, 1982]. Such experiments are 
strongly effected by so-called end-of-horizon effects caused by the truncation of the 
infinite horizontoa finite horizon [Blackburn & Millen, 1980]. To minimize these 
effects in our experiments we use instances with large problem horizons. 

Suppose we apply some variabie-horizon policy TC to an instanee of an on-line 
lot-sizing problem with a data horizon of Iength m and a problem horizon of length 
n. Then, when the end of the problem horizon is reached, we have obtained lot
sizes for k periods of demand for some k with n - m < k ::::; n; the remaining 
n - k lot sizes are determined by choosing the final optimization horizon equal to 
n - k. We denote the corresponding total sum of production and holding cost by 
C~ (n). The performance of TC can be measured in a number of different ways. The 
most obvious way is to measure the absolute performance C~ (n) . Unfortunately, 
this is inappropriate for our purposes, because it does not allow for a comparison 

of the performance of variabie-horizon policies with different data horizon lengths, 
problem horizon Iengths, cost structures, and demand processes. To that end, a rel
ative performance measure is required, in which the performance of TC is expressed 
relative to some reference value. This section introduces two relaüve performance 

measures, i.e., off-line performance and on-line performance. 

7.3.1 Off-Iine performance 

We speak of off-line performance if we take the cost f(n ) of an optima! n-period 
plan as a reference. The corresponding off-Iine performance measure is the devia
tion from off-line optimality y; (n), defined by 

Jr c~ (n) 
Ym (n) = f(n) , (7.9) 

which can be computed using the recursion (2.4). We assume that f(n) > 0. It 
then is obvious that y; (n) ::=::. I. 

Based on the stationarity of the demand processes under consideration we ex
peet that y; (n) converges to a limit value as n goes to infinity. We denote this 
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Figure 7.1. Typ ie al behavior of y,: (n) as a function of n for variabie-horizon poli
cies PUT, AVG, AX, and PUP, using the Wagner- Whitin cast structure withorder 
cycle 4, a data horizon of length 4, and uniformly distributed demands ( U200). 
PUT perfarms best, foliowed by A VG, AX, and PUP. 

limit value by y,:. Figure 7.1 gives an example of the convergent behavior of y,: (n) 
for four variabie-horizon polkies as a function of n. In our experiments we assess 
policy performance by estimating these limit values. Apparently, good estimates 
of y,: can be obtained by taking a problem horizon of 2,000-4,000 periods. In our 
experiments a problem horizon of 4,000 periods is used. 

Discussion. The off-line performance characteristics of a variabie-horizon policy 
TC can be investigated by estimating y,: for different data horizon lengths, demand 
processes, and cost structures. For instance, one may determine how much per
formance could be gained by enlarging the data horizon, e.g., by improving the 
information system. In this way we may determine the value of demand informa
tion for a given policy. Furthermore, the performance characteristics of different 
variabie-horizon polides can be compared. For instance, if y,:1 < y,:1 for two poli
des TCJ and TC2, then TC! uses the available demand information more efficient than 
TCz for data horizon length m . But, since it is unknown how efficient these polides 
use the available demand information, it is impossible to decide upon the off-line 
policy performance whether it is useful to search for better polides fora given data 
horizon length. For such issues, off-line optimality is inappropriate as a reference. 
For examp1e, y,: = 4 can be optima1 for m = 2 in the sense that novariabie-horizon 
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policy exists that yields better results and y,;; = 2 can be oot optima! for m = 10 in 
the sense that another policy exists that yields better results. We call this alternative 
notion of optimality on-line optimality, which is introduced next. 

7.3.2 On-line performance 

In analogy with the definition of off-line performance, it would be obvious to ex
press the on-line performance of a variabie-horizon policy TC for an instanee of an 
on-line lot-sizing problem with data horizon length m and problem horizon length 
n relative to the best performance of any m-policy for that instanee by 

c;(n) 

min{ C~' (n) I TC' E J=lm I' 
(7.10) 

where J=>m denotes the set of all possible m-policies. Nevertheless we express the 
on-line performance of TC relative to the best performance of any variabie-horizon 
policy, because the policies under consideration in this thesis are variabie-horizon 
policies. 

We reeall that a variabie-horizon policy is completely specified by its horizon
selection rule, which, fora data horizon length m, can be written as a function g : 

IRm ---')- {1 , ... , mI of the m demands within the data horizon; see also Section 2.4.2. 
Let Hm denote the set of all possible horizon-selection rules that can be written as 
a function g : IRm ---')- { 1, ... , mI of the m demands within the data horizon. For 
reasoos of convenience we denote the variabie-horizon policy corresponding with a 
horizon-selection rule g by TC (g). The on-line performance measure is the deviation 
</>~ (n) from the best performance of any variabie-horizon policy, defined by 

C" (n) 
</>" (n) = m (7.11) 

m min{c;<g\n) I gE Hml 

Since we assumed that j(n) > 0, it is obvious that <t>;(n) 2: l. 
Based on the stationarity of the demand processes under consideration we ex

peet that <t>::, (n) converges to a limit val ue as n goes to infinity. We denote this 
limit value by </>::, . The on-line performance characteristics of a variabie-horizon 
policy TC can be investigated by estimating <t>; for instances of on-line lot-sizing 
probieros with different data horizon lengths m, demand processes, and cost struc
tures. Based on these characteristics we cao study the robustness of the different 
variabie-horizon policies. A variabie-horizon policy is called robust if it yields a 
good on-line performance, irrespective of the cost structure, the demand process, 

and the length of the data horizon. 
Unfortunately, computing </>~ (n) for instances with sufficiently large values of 

n, as in the off-line case, will not work because the best performance of any arbitrary 
variabie-horizon policy for an instanee of an on-line lot-sizing problem with data 
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horizon length m and problem horizon length n is in general unknown. Therefore, 
we next derive an upper and a lower bound on </>~ (n) that can be used to es ti mate 

</>~. 

An up per bound. Let~ (n) denote the deviation from off-line m-optimality de
fined by 

C"(n) (i? (n) = _m_. 
m fm (n) 

(7.12) 

The following result provides an upper bound on the on-line performance of a 

variabie-horizon policy and is immediate from the fact that C~ (n) is greater than or 
equal to the cost fm (n) of an m-optimal n-period plan. 

Proposition 7.1. </>~(g) (n) :=: ~(g) (n) for all g E Jfm. D 

Based on the stationarity of the demand processes under consideration, we again 
expect that "i':n (n) converges toa limit value as n goes to infinity. We denote this 
limit value by 1>:. It is obvious that </>~ ::: ~· The advantage is that ~ (n) can be 
easily computed using the recursion (2.11). 

A lower bound. The following result follows directly from the fact that any 
variabie-horizon policy provides an on-line performance lower bound. 

crr (g) ( ) 

P . . 7 2 ,+.rr (g ) ( ) m n fi ll ' 711 ropositiOn . . '~'m n :::: < ') or a g , g E Jl.m. 
c~ g (n) 

D 

We expect that these lower bounds converge when taking the limit of n to infinity. 
In our experiments we typically compare a number of different variabie-horizon 

policies. The above result canthen be used as follows. Suppose we have N variabie
horizon policies JT;, i= 1, . . . , N. Then for all i = 1, . .. , N the best lower bound 
for </>~; (n) is given by 

C"i(n) 
</>"; (n) = . m 

-m min{C;1 (n) Ij = 1, ... , N} 
(7.13) 

Note that a value of 1.01 for this lower bound implies that the performance of JT; 

deviates 1% from the best of these N policies. 

Discussion. Suppose we have a benchmark of N variabie-horizon policies JT; with 
i = 1, ... , N. Then we can investigate the on-line performance characteristics of 
variabie-horizon policy JT; by estimating the on-line performance bounds 1>: and 
</>"; for instances of on-line lot-sizing probierus with different data horizon lengths, 
-m 
demand processes, and cost structures. Good estimates are obtained for large prob-
lem horizons. The smaller the gap betwee n upper and lower bound, the better we 
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can estimate the on-line performance c/J':/ fora particular instance. Using the upper 
bound as estimate has the advantage that we can guarantee that the on-line perfor
mance is not worse than ëf'::, . This is nice if the gap between the upper bound and 
the lower bound is small, but of less u se if the gap is large. On the other hand, if one 
of the N variabie-horizon policies under consideration has a near-optimal on-line 
performance, it would be appropriate to use the lower bound as an estimate for cp~;. 
Preluding on the experiments, we only observed significant gaps for small values 
of the data horizon. Fortunately, i.t is especially in those cases that the conditions 
for good generalization are excellent, and near on-line optima) performance of our 
policies cao be expected. Forthese reasons, the lower bounds are used as estimates 
for the on-line performance. For the sake of completeness, we also give the upper 
bounds. 

7.3.3 Explanation of the tables 

Unless stated otherwise, the tables in this chapter present performance characteris
tics in percentages deviation. We add a background gray color to each table entry, 
whose level of darkness scales with the entry. In this way we can easily recognize 
patterns in the performance characteristics. The lighter the background gray level 
of a table entry, the betterits performance. Gray levels are in the range [0, 1], where 
0 and 1 denote black and white, respectively. Percentages deviation are mapped 
onto background gray levels using the function s : IR+ --+ [0, 1], defined by 

( 1
1 - ~ 

s x) = 
1 

s 
if 0.::: x.::: 5 

otherwise. 
(7 .14) 

In the range 0-5%, background gray levels change linearly as a function of the 
percentage deviation from white (0% deviation) to black (5% deviation). All table 
entries with a percentage deviation larger than five are assigned the background 
gray level black. 

7.4 The potential of variabie-horizon polides 

Before discussing the performance characteristics of specific variabie-horizon poli
cies, we focus on their potential. Let am (n) be the deviation of m-optimality over 
optimality for the n-period problem defined by 

fm (n) 
<Xm(n) = --. (7.15) 

f(n) 

From Proposition 2.6 it follows that <Xm (n) ::=: I. Let 7T = n(g) with g E Rm be 
a variabie-horizon policy. Then one easily verifies that <Xm (n), <;;" (n), and Yn~ (n) 

satisfy the relation 



I30 Performance of variabie-horizon policies for on-line lot-sizing 

r: (n) = ctm(n){jj:(n), (7.I6) 

which , using that ctm (n) ::::_ I and (jj: (n) ::::_ I , yields the following lower bound for 

the off-line performance of any variabie-horizon policy. 

Proposition 7.3. y;<gl (n) ::::_ ctm(n) for all g E :Hm. D 

Based on the stationarity of the demand processes under consideration we expect 
that ctm (n) converges to a limit value as n goes to infinity. We denote this limit 
value by ctm . The quantity ctm can be seen as an indication of the poten ti al of 
variabie-horizon policies with data horizon length m . For that reason we estimate 
ctm for the 288 considered combinations of cost structures, data horizon lengths, and 
demand processes, by applying the recursions (2.4) and (2.II) to the corresponding 
4,000-period problem . The eauesponding percentages deviation are presented in 
Table 7.1. The value of ctm decreases strictly with m to become equal to zero for 
sufficiently large values of m. This behavior can be explained using the following 
results that can be readily obtained from Proposition 2.7. 

Corollary 7.1. Suppose afinite upper bound M exists on the lengthof a subplan in 
an optima[ production plan for the n-period problem that is independent of n. Then 
ctm(t) = ctM(t) for all m ::::_ Mand t ::::_ I. Furthermore, ctm = ctM for all m ::::_ M. 
D 

Corollary 7.2. For alll ·::::_ m ::::_ I and t ::::_ I, ctt(t) :S: ctm (t) . Furthermore, ctt :S: ctm 
for all l ::::_ m ::::_ I. D 

For instance, for the cast structure with purchasing, applying Theorem 3.6 yields a 
finite upper bound M with a value of IJ. 

Camparing the value of ctm for uniformly and Erlang distributed demand, we 
abserve that the value of ctm does notdepend on the type of demand distribution but 
it increases for increasing demand variability. For seasonal demand, the value of 
ctm increases with the cycle length. Note that the variability increases with the cycle 
length. Because different cast structures have different cost parameters, conclusions 
with respect to the characteristics of ctm as a function of the cast structure are less 
obvious. A commonly used technique to campare different cast structures is to use 
the corresponding order cycles, based on the average demand level, as a reference. 
The idea is that, in the constant demand case, different cast structures with equal 
order cycles can be considered equivalent; see also Section 2.4.3. 

For instance, let us determine the minimal length of the data horizon such that 
the deviation is smaller than I% for all demand processes . Fr om Table 7 .I, we ob
tain that this length equals I.5 order cycles for both Wagner-Whitin cast structures, 
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Seasonal 

Cosl structure S3 S6 

2 

3 0.91 0.34 0.00 0.71 
Wagner- 4 0.00 0.09 0.00 0.00 0.02 0.00 0.00 
Whitin 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

h = I 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
s =200 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
n* = 2 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Wagner-

Whitin 5 0.01 0.52 1.03 0.00 0.35 0.8 1 0.06 1.40 
h = 1 6 0.00 0.07 0.25 0.00 0.03 0. 15 0.00 0.03 
s = 800 7 0.00 0.01 0.08 0.00 0.01 0.02 0.00 0.00 
n* = 4 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Overtime 4 0.00 0.03 0.19 0.00 0.02 0.12 0.00 0.00 
h = ] 5 0.00 0.00 0.01 000 0.00 0.01 0.00 0.00 
r = I 6 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 
s = 425 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
c = 200 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
n* = 2 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 
-
2 1.17 

3 0.29 
Purchase 4 0.09 

h = I 5 0.03 
r = 10 6 0.01 0.46 1.04 0.00 0.89 1.16 
s = 100 7 0.00 0.2 1 0.61 0.00 0.43 0.62 0.01 0.01 
c = 125 8 0.00 0.08 0.26 0.00 0.16 0.24 0.01 0.00 
n* = I 9 0.00 0.01 0.05 0.00 0.04 0.06 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 7.1. Estimates of am in percentages deviation for different combinations of 
cost structures, data horizon lengths m, and demand processes. 
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two order cycles for the cost structure with overtime, and seven order cycles for 
the cost structure with purchasing. These lengths can be viewed as an indication of 

the value of demand information for the corresponding on-line lot-sizing problem. 

Basedon the relative proportions between these lengths, the on-line lot-sizing prob

lem with purchasing requires relatively much demand information with respect to 
the order cycle in order to obtain a certain performance. From this viewpoint it can 

be considered as more difficult. 

7.5 Empirical results 

For all 2,880 combinations of variabie-horizon policies, data horizon lengths, cost 
structures, and demand processes, we compute the off-line performance and the 
on-line performance bounds on the corresponding 4,000 period demand sequences. 

In view of the size of the setup we need to arrange the results conveniently. This 
is done by means of aggregation. We aggregate over the eight demand processes 
included in the setup by presenting the average and the worst-case results for the 
off-line performance. Furthermore we present average and the worst-case results 

for the on-line performance bounds. 
The remainder of this section is organized as follows. We start with some pre

liminaries . After that, we discuss the performance characteristics of the variabie
horizon policies for the two Wagner-Whitin cost structures, the cost structure with 
overtime, and the cost structure with purchasing. Finally, we give some conclu

sions. 

7.5.1 Preliminaries 

Before we start our discussion of the empirica! results we introduce some notions 
that are central in the discussion of the performance characteristics. 

Off-Iine performance. From the work of Baker [1977], Blackburn & Millen 
[1980], and Carlson, Beekman & Kropp [1982], we know that the off-line perfor
mance of variabie-horizon policies like FIX, AYG, and MYG can be arbitrarily close 
to off-line optimality by taking the data horizon sufficiently large. This does not 

hold for the variabie-horizon policies basedon supervised learning, because in gen
eral the data horizon cannot be enlarged unlimited without running into the curse 
of dimensionality ; see also Section 6.4.4. Forthese reasons, there exists a length of 
the data horizon for which FIX, AYG, and MYG begin to exhibita consistently supe

rior average and worst-case off-line performance to that of the MLP-based and the 

KNN-based variabie-horizon policies . This data horizon length is called the switch
over point. The greatest potent ia! for the latter policies is observed for data horizons 
with a length smaller than the switch-over point. For all cost structures we deter-
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mine the switch-over point and we discuss the off-line performance characteristics 
of the different policies for data horizons smaller than this point. 

The efficiency of a variabie-horizon policy with respect to the available demand 
data can be investigated by determining the minimal length of the data horizon 
such that its worst-case off-line performance is smaller than 1%. Lundin & Mor
ton [1975] determined these minimallengths for the fixed-horizon policy. Intheir 
setup they considered a large number of instances of the on-line lot-sizing problem 
with Wagner-Whitin cast structure; the corresponding order cycles ranged from 1 

up to 150. Their main concl usion was that using FIx with a data horizon of five 
order cycles provides solutions within 1% of an infinite-horizon optima! solution, 
irrespective of the cast parameter va]ues. We investigate the data efficiency of the 
different variabie-horizon policies and determine these minimallengths for all cast 
structures under consideration. 

On-line performance. A variabie-horizon policy is said to be robust if, irrespec
tive of the cast structure, the demand process, and the Jength of the data horizon, 
it yields a good on-line performance. To investigate the robustness of the different 
variabie-horizon policies we use the on-line performance lower bound . Note that, 
unlike the off-line performance, it is fair to campare the on-line performance of dif
ferent variabie-horizon policies, not only for different demand processes, but also 
for different cast structures and data horizon lengths. 

In Section 6.4.4 we discussed the phenomenon curse of dimensionality, which 
occurs when generalizing on the basis of zero-one target vectors, and which caused 
a deterioration in the classification rate of KNN- and MLP-based horizon-selection 
rules for increasing lengths of the data horizon. Especially the K -nearest-neighbors 
technique turned out to be very sensitive to this phenomenon, which is related to 
the smoothness of the target mapping. It is to be expected that the variabie-horizon 
policies based on these horizon-selection rules also suffer from this phenomenon. 
The amount of deterioration is used as an indication of the complexity of the under
lying classification problem and will be investigated. 

7.5.2 Two Wagner-Whitin cost structures 

Table 7.2 presents the off-line performance characteristics of ten variabie-horizon 
policies for the Wagner-Wh i tin cast structures with order cycles 2 and 4, respec
tively. The corresponding on-line performance characteristics are given in TabJe 7.4 
for order cycle 2 and in TabJe 7.5 for order cycle 4. 

Off-line performance. Using Table 7.2, one easily verifies that the switch-over 
points for the Wagner-Whitin cast structures with order cycles n* = 2 and n* = 4 
are obtained for data horizon Jengths 4.5n* and 3n*, respectively. For data horizons 
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1.02 0.55 0.55 
0.55 0.28 0.41 0.32 

6 0.37 0.78 . 0.37 0.28 0.19 0.37 0.18 

7 0.23 0.76 . 0.19 0.15 0.14 0.48 0.10 
8 0.09 0.72 0.09 0.08 0.13 0.54 0.05 

9 0.03 0.75 0.04 0.02 0.13 0.68 0.03 
0.14 

• 2] 3 
1.55 0.71 0.77 

5 I 1.76 2.00 1.43 1.02 0.41 0.52 0.41 
6 0.86 1.74 
7 0.83 1.73 

8 0.27 1.69 
9 0.07 1. 1.73 

10 0.04 1.73 

Myopie 

0.84 0.65 0.27 0.60 0.27 
0.50 0.40 0.23 0.88 0.18 
0.27 0.26 0.25 1.00 0.13 
0.11 0.07 0.26 1.16 0.09 
0.04 0.03 0.27 1.46 0.06 

(a) Order cycle 2 

0.91 0.54 0.75 0.65 

0.57 0.43 0.68 0.48 
0.39 0.35 0.66 0.38 

1.50 1.38 
0.73 1.13 0.88 
0.55 1.05 0.61 

0.44 0.45 1.09 0.53 
0.42 0.53 1.06 0.36 

(b) Order cycle 4 

0.51 

0.46 ~ 

Table 7.2. Percentage deviation from off-line optimality for ten different variabie
horizon policies, using the Wagner- Whitin cost structures with two different order 
cycles and different data horizons m. The entries represent average and worst-case 
percentages of eight different demand processes. 



7.5 Empirica} results 

I n* 

I ~ 
m-OPT l!J_)( l AVG 

1.5n* l 3n* 1 3n* 
1.5n* 3n* 2n* 

135 

I 0-1 targets L Cost targets I 
MVG MLP KNN ML P KNN 

3n* 2n* 2n*l 2n* Tn*J 
2n* I. 75n* oo I. 75n* 2n* I 

Table 7.3. Minimal length of the data horizon such that the worst-case deviation 
from off-line optimality is smaller than 1% for Wagner- Whitin cost structures with 
order cycles n* = 2 and n* = 4. 

with lengths smaller than these switch-over points, MLP (0-1 targets), MLP (cost 
targets), and KNN (cost targets) provide an average and worst-case off-line perfor
mance that is consistently superior to that of the other variabie-horizon policies 
included in the benchmark. The off- line performance characteristics of KNN (0-1 
targets) deteriorate with the length of the data horizon . 

From Table 7.2 we delermine the minimal length of the data horizon such that 
the worst-case off-Iine performance is smaller than 1% for all 20 different combi
nations of Wagner-Whitin cost structures and variabie-horizon policies. These min
imal lengths are expressed in multiples of the order cycle in Tab1e 7.3. The entries 
of the variabie-horizon policies that do not yield such a performance are omitted. 
Furthermore, we include the minimal length of the data horizon such that the de
viation of off-Iine m-optimality over off-Iine optimality is smaller than 1% worst 
case. These lengths are denoted by m-OPT and were determined in Section 7.4. 
Proposition 7.3 implies that for any on-line lot-sizing problem, a variabie-horizon 
policy cannot obtain an off-line performance smaller than 1% with a data horizon 
smaller than m-0 PT. 

From Table 7.3 it appears that FIX, AVG and MVG require three order cycles of 
demand information to consistently yield a worst-case off-line performance that is 
smaller than 1%. Only two order cycles are needed for MLP (0-1 targets), MLP (cost 
targets), and KNN (cost targets). This is rather data efficient, because the smallest 
possible length of the data horizon for which a variabie-horizon policy may exist 
that obtains such a performance (m-OPT) equals 1.5 order cycles. 

On-line performance. Using Table 7.4 and Table 7.5, one easily verifies that the 
average gap between on-line performance upper and lower bounds decreases with 
m. The smaller this gap, the better we can estimate the average on-line performance. 
Significant gaps are only found for small data horizons, i.e., for data horizon lengths 
m = 2, 3. Due to excellent conditions for generalization, we expect that our poli
cies are near on-line optima[ in case of small data horizons. For these reasons, it 
makes sense to use the on-line performance Iower bound to estimate the on-line 
performance. 

From Table 7.4 and Table 7.5 it is clear that MLP (0-1 targets) , MLP (cost tar-
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Myopie 

AX PUT 

2 1.06 1.06 

3 ! 2.63 0.80 1.44 0.81 0.13 0.11 0.13 

4 1.01 0.67 1.01 0.54 0.07 0.07 0.11 

5 0.62 0.63 0.59 0.29 0.02 0.14 0.05 

6 0.21 0.62 0.21 0.12 0.03 0.21 0.02 

7 0.15 0.68 0.12 0.07 0.06 0.40 0.02 

8 0.05 0.68 0.05 0.03 0.08 0.49 O.ûl 0.02 

9 0.01 0.73 0.02 0.00 0.11 0.66 0.01 0.02 

10 0.00 . 0.76 0.00 0.00 0.13 0.78 0.01 0.02 
- -2 1.85 1.85 1.85 1.56 0.62 0.46 0.69 0.20 

3 - 2.35 2.15 J.90 0.42 0.33 0.35 0.35 
4 1.41 2.17 1.42 0.95 0.20 0.17 0.21 

5 !.46 1.87 1.10 0.63 0.11 0.28 0.11 

6 0.62 1.67 0.60 0.41 0.11 0.48 0.09 

7 0.70 1.70 0.37 0.27 0.18 ·0.83 0.07 

8 0.15 1.68 0.15 0.14 0.23 0.98 0.02 0.04 

9 0.03 1 1.73 0.05 O.ûl 0.25 1.15 0.02 0.04 
10 0.01 L73' 0.01 0.00 0.27 1.46 0.04 0.04 

(a) Lower bound 

Myopie 

EOQ l AVG MVGL~ KNN I MLP PUP KNN 

2,09 2.13 1.94 · 
1.24 . 1.26 1.21 

1.01 0.53 0.54 0.58 

0.55 0.28 0.41 0.32 

0.37 on. o37 0.28 0.19 0.37 0.18 

7 0.23 0~6 019 0.15 0.14 0.48 0.10 

8 0.09 0.72 . . 0.09 0.08 0.13 0.54 0.05 

9 0.03 0.75 0.04 0.02 0.13 0.68 0.03 

L55 0.68 0.74 

1.02 0.41 0.52 0.41 

0.65 0.27 0.60 0.27 

7 0.83 1.73 0.50 0.40 0.23 0.88 0.18 

8 0.27 1.69 0.27 0.26 0.25 1.00 0.13 

9 0.07 1.73 0.11 0.07 0.26 1.16 0.09 
10 0.04 1.73 0.04 0.03 0.27 1.46 0.06 0.07 

(b) Upper bound 

Table 7.4. Bounds on the percentage deviation from on-line optimality forten dif
ferent variabie-horizon policies, using the Wagner- Whitin cast structure withorder 
cycle 2 and different data horizons m. The entries represent average and worst~case 
percentages of eight different demand processes. 
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Myopie 

PUT PUP EOQ 

0.06 0.06 0.06 
0.13 0.28 0.27 0.14 0.22 0.09 

1.04 0.15 0.11 0.12 

0.75 0.07 0.12 0.08 

0.49 0.04 0.10 0.11 

0.38 0.01 0.21 0.12 

8 .0.87 0.50 0.19 0.16 0.01 0.26 0.06 0.13 

9 0.88 0.46 0.16 0.05 0.02 0.33 0.05 0.08 

10 0.69 0.46 0.07 0.04 0.05 0.37 0.03 0.11 

0.27 0.27 0.27 0.27 0.26 0.26 0.27 0.06 0.27 0.01 

I o.s3 0.71 0.29 0.28 

1.46 0.61 0.31 0.35 0.19 

2.27 0.26 0.29 0.28 0.27 

1.40 1.43 0.15 0.45 0.34 0.16 
1.12 0.08 0.39 0.33 0.30 

0.25 0.07 0.56 0.22 0.26 

0.11 0.14 0.78 0.20 0.18 
0.11 0.26 0.80 0.12 0.18 

(a) Lower bound 

Myopie 

PUT PUP EOQ 

0.23 0.23 0.23 

- 0.99 1.07 
2.25 1.35 1.31 1.32 

1.84 1.85 Ll6 1.20 1.17 

1.26 1.26 0.81 o:86 · o.87 

0.90 0.53 0.73 0.64 

0.57 0.43 0.68 0.48 0.55 
0.39 0.35 0.66 0.38 0.41 

0.32 0.63 0.30 0.38 

0.55 0.33 0.55 0.33 

2.47 2.47 2.:23 .· 2.22 

2.10 2.42 2.10 2.24 

1.~ 1.98 1.68 1.95 
1.08 1.27 1.23 UI 

1.43 0.65 1.04 0.85 0.94 
0.62 0.55 1.05 0.61 0.65 

0.44 0.45 1.09 0.53 0.51 

0.42 0.53 1.06 0.36 0.46 

(b) Upper bound 

Table 7.5. Bounds on the percentage deviation from on-line optimality for ten dif
ferent variabie-horizon policies, using the Wagner- Whitin cost structure with order 
cycle 4 and different data horizons m. The entries represent average and worst-case 
percentages of eight different demand processes. 
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gets), and KNN (cost targets) are robust, because their deviation from the on-line 
performance lower bound of the best variabie-horizon policy is less than 0.3% on 
average and less than 0.7% worst case. Blackbum & Millen [1980] recommended 
the use of PUT for situations with small data horizons. Although the average devia

tion of PUT is less than 1%, it is not a robust policy, because its worst-case deviation 
is 4.32%. 

In Table 7.4 and Table 7.S we abserve that the performance of KNN (0-1 targets) 
deteriorates with the length of the data horizon. To a lesser extend this also holds 

for MLP (0-1 targets). This deterioration is caused by the curse of dimensionality 
and the length of the data horizon for which K NN (0-1 targets) starts to deteriorate 
is approximately two order cycles. 

7.5.3 The cost structure with overtime 

Table 7.6 presents the off-line performance characteristics of ten variabie-horizon 
policies for the cost structures with overtime. The corresponding on-line perfor
mance characteristics are given in Table 7.8. 

Off-line performance. The off-line performance characteristics of the variabie
horizon policies for the cost structures with overtime are similar to the off-line 
performance characteristics of the Wagner-Whitin cost structure with order cycle 

2 presented in Table 7.2(a). The switch-over point is obtained for a data horizon 
of length Sn* . For data horizons smaller than Sn* periods, MLP (0-1 targets), MLP 

(cost targets), and KNN (cost targets) dominate all other policies. 
The data efficiency of the different variabie-horizon policies is presented in Ta

bie 7.7. Both FIX and PUT require four order cycles to obtain a worst-case off-line 
performance smaller than 1%. The other policies that come within 1% need 2.S 
order cycles of demand information, which is rather efficient, because a data hori
zon of at least two order cycles is necessary to obtain such a performance with a 
variabie-horizon policy (m-OPT). The ratios between the minimal lengths in Ta
bie 7.7 are similar to those for the Wagner-Whitin cost structure in Table 7.3. 

On-line performance. The on-line performance characteristics are similar to the 
on-line performance characteristics of the Wagner-Wh i tin cost structure with order 
cycle 2 presented in Table 7.4. Again we use the on-line performance lower bound 
as an estimate for the on-line performance. From Table 7.8 it is clear that only MLP 

(0-1 targets), MLP (cost targets), and KNN (cost targets) are robust, because their 

deviation from the on-line performance lower bound of the best variabie-horizon 
policy is less than 0.2% on average and less than 0.4% worst case. 

In Table 7.8 the effect of the curse of dimensionality on the performance of 
the variabie-horizon policies based on supervised learning can be clearly observed. 
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Myopie 
PUP EOQ I AVG 

7 1.00 0.97 - 0.47 
8 0.50 . 0.96 0.30 

MVG I MLP 

1.20 0.79 
0.78 0.51 
0.55 0.35 
0.31 0.28 
0.25 0.27 

0.25 

0.74 0.47 
0.40 0.39 
0.34 0.47 

KNN I MLP 

2.04 
0.85 
0.63 
0.50 
0.47 
0.52 
0.54 

0.95 
0.84 
0.79 
0.99 

1.99 
0.83 
0.51 
0.34 
0.22 
0.16 
0.13 

0~70 

0.43 
0.28 
0.24 

9 0.32 0.80 0.19 0.20 0.47 1.11 0.16 0.17 
10 0.18 0.82 0.09 0.09 0.43 1.25 0.13 0.14 
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Table 7.6. Percentage deviation from off-line optimality for ten different variabie
horizon policies, using the cost structure with overtime and different data horizons 
m. The entries represent average and worst-case percentages of eight different 
demand processes. 

0-1 targets Cost targets 
AVG MVG I MLP KNN I MLP KNN 

I 2n* I 4n* I 4n* I 2.5n* 2.5n* I 2.5n* oo I 2.5n* 2.5n* 

Table 7.7. Minimal length of the data horizon such that the worst-case deviation 
from off-line optimality is smaller than 1% for the cost structure with overtime. 
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Myopie 

FIX PUT PUP EOQ 

2 0.12 0.15 0.15 

3114Jl 0.90 0.34 0.69 0.01 0.12 
4 2.25 0.46 0.33 0.42 0.01 0.07 0.04 
5 1.19 0.41 0.26 0.31 0.03 0.16 0.04 

6 0.62 0.38 0.09 0.25 0.05 0.19 0.03 
7 0.41 0.37 0.10 0.11 0.08 0.26 0.01 

8 0.25 0.38 0.05 0.10 0.12 0.38 0.02 0.05 
9 0.10 0.37 0.02 0.05 0.14 0.43 0.02 0.05 

0.00 0.01 0.19 0.58 0.04 0.04 

0.31 0.38 0.24 0.21 0.33 o.r8 
0.81 1.01 0.05 0.21 0.23 0.1'4 
0.54 0.62 0.03 0.20 0.18 
0.42 0.36 0.11 0.31 0.13 
0.23 0.42 0.18 0.43 0.08 0.11 

7 0.77 0.75 0.25 0.20 0.17 0.58 0.05 

8 0.39 0.74 0.13 0.19 0.33 0.83 0.03 

9 0.22 0.66 0.06 0.07 0.38 1.02 0.05 

10 0.12 0.75 0.00 0.02 0.38 1.20 0.06 

(a) Lower bound 

MVG 

0.95 0.98 
1.53 1.88 1.20 1.30 1.25 

'13.01 ' .,., • • .., 1.16 0.74 0.81 0.78 
5 1.67 0.88 0.73 0.78 0.50 0.63 0.51 

6 0,93 0.69 0.40 0.55 0.35 0.50 0.34 
7 0.62 0.58 0.31 0.31 0.28 0.47 0.22 
8 0.39 0.53 . 0.19 0.25 0.27 0.52 0.16 
9 0.21 0.48 0.14 0.16 0.25 0.54 0.13 

1.55 1.27 1.3~ 1.34 

0.95 0.78 0.94 0.70 
0.74 0.47 0.84 0.43 

7 1.00 0.97 0.47 0.40 0.39 0.79 0.28 

8 0.50 0.96 0.30 0.34 0.47 0.99 0.24 

9 0.32 0.80 0.19 0.20 0.47 1.11 0.16 0.17 

10 0.18 0.82 0.09 0.09 0.43 1.25 0.13 0.14 

(b) Upper bound 

Table 7.8. Bounds on the percentage deviation from on-line optimality forten dif
ferent variabie-horizon policies, using the cast structure with overtime and different 
data horizons m. The entries rep re sent average and worst-case percentages of eight 
different demand processes. 
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Table 7.9. Percentage deviation from off-line optimality for ten different variabie
horizon policies, using the cost structure with purchasing and different data hori
zons m. The entries represent average and worst-case percentages of eight different 
demand processes. 

The strongest deterioration as a function of the data horizon length occurs for KNN 

(0-1 targets) and toa lesser extend for MLP (0-1 targets). For the policies KNN (cost 
targets) and MLP (cost targets) we observe some deterioration, but it is an order of 
magnitude smaller than for the policies basedon supervised learning with zero-one 
target vectors. 

7.5.4 The cost structure with purchasing 

Table 7.9 presents the off-line performance characteristics of ten variabie-horizon 
policies for the cost structures with purchasing. The corresponding on-line perfor
mance characteristics are given in Table 7.10. 

Examination of these tables leads to two remarkable observations. First, MLP 

(cost targets) is consistently outperformed by KNN (cost targets), indicating that the 
model specific conditions for good generalization are not satisfied. Apparently, the 
network topologies that were considered during the construction of the horizon
selection rule had too little functional complexity, i.e., too few hidden units; see 
Chapter 6. This is supported by the second observation, which is the relatively 
strong deterioration of KNN (0-1 targets) and MLP (0-1 targets), which indicates that 
the target mapping underlying the learning examples with zero-one target veetors 
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4 

5 
6 
7 

8 
9 

7 
8 
9 

10 

4 

5 
6 
7 

8 
9 

9 
10 
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0.31 0.42 

0.17 0.66 

0.11 

0.05 

(a) Lower bound 

2.58 0.93 

1.44 0.84 

0.69 0.80 

0.44 0.93 

0.34 

(b) Upper bound 

0.44 

0.60 

1.01 

1.67 

1.16 

L30 
1.50 
2.06 

0.39 

0.24 

0.71 

0.52 

1.11 

0.94 

1.19 

0.90 

0.10 

0.17 

0.22 

0.03 

0.08 

1.54 0.65 

1.3:Z 0.77 

Table 7.10. Bounds on the percentage deviation from on-line optimality forten dif
ferent variabie-horizon policies, using the cast structure with purchasing and dif
ferent data horizons m. The entries represent average and worst-case percentages 
of eight different demand processes. 
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I n* I m-OPT I FlX I AVG I MVG I KNN I 
1 1 1 7n* 1 sn* 1 sn* 1 sn* 1 sn* 1 
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Table 7.11. Minimal length of the data horizon such that the worst-case deviation 
from off-line optimality is smaller than 1% for the cast structure with purchasing. 

has a reiativeiy high functionai compiexity; see aiso Section 6.1. 
We predicted that the functionai complexity of the target mappings of the two

source models wouid be higher than that of the single-souree models. This was 
taken into account when predetermining the set of network topoiogies by taking 
more hidden units in these cases. However, as we may conclude know, still more 
hidden units are required. As a result of that we end up with suboptimal MLP
based variabie-horizon poiicies. The off-Iine performance characteristics of KNN 

(cost targets) are an indication of the performance that can be obtained by adding 
more hidden units. Forthese reasons we oniy address KNN (cost targets) in our 
discussion of the performance characteristics. 

Off-line performance. The switch-over point is obtained for data horizon Iength 
Sn*. For data horizons smaller than 8n* periods, KNN (cost targets) dominates the 
other policies. In contrast with the other cost structures, FIx can be hardiy improved 
by using a variabie-horizon policy with forecasting. 

The data efficiency of the different variabie-horizon policies is presented in Ta
bie 7.11. The poiicies that obtain a worst-case off-line performance smaller than 1% 
all need eight order cycles of demand information. This is rather effi.cient, because 
any variabie-horizon policy requires a data horizon of at least seven order cycles to 
obtain such a performance with a variabie-horizon policy (m-OPT). 

On-line performance. We use the on-line performance Iower bound as an esti
mate for the on-line performance. From Table 7.10 it is ciear that KNN (cost targets) 
is robust, because the deviation from the on-line performance lower bound of the 
best variabie-horizon policy is less than 0.3% on average and less than 0.7% worst 
case. The other poiicies all have worst-case deviations up to 8%. 

7.6 Condusion 

This chapter investigated the lot-sizing performance of the MLP-based variabie
horizon policies by means of an extensive empirica! study using a benchmark of 
different variabie-horizon policies. 

InSection 7.5.1 we postulated the existence of a switch-over point with respect 
to the performance of the variabie-horizon policies based on supervised Iearning. 
For all cost structures we determined this switch-over point. We conclude that 
for data horizons with a length smaller than the switch-over point the MLP-based 
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variabie-horizon policies have superior performance characteristics. For data hori
zons with a length larger than this switch-over point, these policies are outper
formed by FIX, AVG. and MVG. lt appeared that the switch-over point is mainly 
determined by the cost structure, and, we cao conclude from the experimental re

sults that it is larger than the length of the data horizon needed by FIX to obtain a 
worst-case off-line performance smaller than 1%. 

For data horizons with a length smaller than the switch-over point, we investi
gated both the data efficiency and the robustness of the different variabie-horizon 
policies. We conclude that, irrespective of cost structure and demand process, the 
MLP-based variabie-horizon policies yield excellent performance which is obtained 
using only little demand information. 

We end this chapter with some conclusions concerning the applicability of 
MLP-based variabie-horizon policies for on-line lot-sizing problems. To that end 
we distinguish between two typical cases, i.e., small data horizon and large data 
horizon. Note that the notions 'small' and 'large' are relative and depend on the 
cost structure. Such a distinction was also made in Chapter 1 and Chapter 6. 

Small data horizons. In case the data horizon is small, demand uncertainty is 
large, and it is important to determine a good ending condition, i.e ., a suitable op
timization horizon. We investigated variabie-horizon policies with three different 
types of horizon-selection rules. The first type of rule employed a simple myopie 
heuristic (FIX, PUT, PUP, EOQ). The second type of rule used a simple forecast
ing method as proposed by Carlson, Beekman & Kropp [ 1982] to extend the data 
horizon in combination with a forward algorithm (AVG, MVG). The third type of 
rule employed a horizon-selection rule based on supervised learning (MLP, KNN). 

From the results presented in this chapter we conclude that the MLP-based variabie
horizon policies dominate all other variabie-horizon policies through good perfor
mance characteristics, great data efficiency, and robustness. 

Large data horizons. In case the data horizon is large, the demand uncertainty 
is small, and there is hardly any benefit from determining a suitable optimization 
horizon by using either forecasting, multi-layered perceptrons, or the K -nearest
neighbors technique. The best policy that cao be used in this case is the fixed
horizon policy FIX. 



8 
Conclusion 

In this thesis we investigated the potential of supervised learning with multi-layered 
perceptroos for on-line lot-sizing problems. The starting point of our study is a 
general single-item on-line lot-sizing problem. We propose a class of hierarchical 
solution approaches that we call variabie-horizon policies. In such policies, lot sizes 
are determined by repeatedly optimizing over a variabie optimization horizon that is 
chosen by some horizon-selection rule that takes the available demand information 
into account. 

We formulated the problem of finding an optima! horizon-selection rule as a 
classification problem, which we analyzed in a statisticaJ framework. We consid
ered two objectives, i.e., maximization of expected classification rate and minimiza
tion of expected excess cost. For these objectives we can give explic it expressions 
for the optima! horizon-selection rules. Supervised learning with multi-layered per
ceptroos is used to estimate the unknown parameters of these expressions. Next 
we derived so-called MLP-based horizon-selection rules from the developed multi
layered perceptrons. To facilitate the off-line computation of learning examples, we 
developed forward algorithms. 

We have analyzed the conditions for good generalization and their effect on the 
generalization capabilities of the MLP-based horizon-selection rul es. Numerical re
sults show that these conditions deteriorate if the number of known future demands 
increases. By means of an extensive empirica! study, we compared the perfor
mance characteristics of the variabie-horizon policies constituted by the MLP-based 
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horizon-selection rules with those of a benchmark of variabie-horizon policies. This 
study showed that, in situations with large demand uncertainty, the MLP-based 
variabie-horizon policies dominate all other variabie-horizon policies with respect 
to robustness, performance, and data efficiency. In situations with small demand 

uncertainty, using multi-layered perceptroos is not beneficia!. 
The remaioder of this chapter is organized as follows. First, we formulate cri

teria that justify a supervised learning approach, Next, we comment on the models 
and techniques presented in this thesis. Finally, we give some suggestions for future 
research. 

Criteria for supervised learning. We conclude that an approach basedon super
vised learning may contribute significantly to the performance of on-line lot-sizing 
systems if the following criteria are satisfied. 

1. There is no efficient solution approach for the particular problem at hand . 
. This may be, for instance, because modeling is (too) difficult or the problem 
is characterized by incomplete data. 

2. There is suftleient relevant input data available to construct a sufficiently large 
set of learning examples. In most applications this will be plain historica! 
data. Incasethere is only limited data available or historica! data is no Jonger 
up to date or relevant, one option is to model relevant cases and construct 
learning examples for them. 

3. It is possible to provide target data for input data in an efficient way. This can 
be by means of an algorithm or by means of a human expert. 

Success, however, is not assured, since good generalization is only possible if 
the conditions for generalization are satisfied; see Section 4.5. For instance, the 
problem of learning the inverse of a one-way function used in user authentication 
[Tilborg, 1988] does satisfy the abovementioned criteria, but does not satisfy the 
conditions for good generalization. Furthermore, we conclude that choosing an ap
propriate problem representation is of the utmost importance; for instance, we refer 
to the differences in generalization capabilities between the approaches based on 
different target veetors observed in Chapter 6. 

We stated before that the nature of an on-line lot-sizing problem is character
ized by two components, i.e., a combinatorial component involving the timing and 
sizing of the production quantities, and an uncertainty component representing the 
incomplete demand information; see also Section 1.3. We developed a hierarchi

cal approach which exploits the strong points of multi-layered perceptroos for the 
uncertainty component and which builds upon the numerous results and techniques 
from off-line lot-sizing for the combinatorial component. In this way we combine 
the best of both fields. We conclude that such a two-stage approach may contribute 
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significantly to the performance of on-line lot-sizing systems if the learning prob

lem of the first stage satisfies the above criteria and the combinatorial problem of 
the second stage can be computed efficiently. 

General comments. In this thesis we focussed on on-line lot-sizing problems. 

Nevertheless, the ideas and techniques presented in this thesis are more generaL 
This can be argued as follows. The backbone of our approach is the off-line com
putation of planning and forecast horizons by means of a forward algorithm with 
a stop criterion. In fact the techniques presented in this thesis can be directly ap
plied to on-line versionsof any problem that fits within the regeneration set frame

work [Lundin, 1973; Lundin & Morton, 1975]. Examples of such probieros are 
cash balancing [Mensching, Garstka & Morton, 1978], capacity expansion [Ra
jagopalan, 1994; Udayabhanu & Morton, 1988], equipment reptacement [Bylka, 
Sethi & Sorger, 1992; Sethi & Chand, 1979], and facility location [Bastian & Volk

roer, 1992; Daskin, Hopp & Medina, 1992]. 
An important step in our approach is the observation that the problem of select

ing an appropriate optimization horizon can be viewed as a classification problem. 
This viewpoint enabled a practicabie definition of on-line optimality. It is important 
to note that other classification approaches than multi-layered perceptrans can be 

applied. Actually, this was illustrated by the application of the K -nearest-neighbors 
technique in Chapter 6 and Chapter 7. 

An interesting subject, not addressed in this thesis, is the effect of the number 
of Jearning examples on the performance of the MLP-based variabie-horizon poli

cies. Van Kraaij [ 1991] did some preliminary experiments for an on-line lot-sizing 
problem with Wagner-Wh i tin cost structure. In these experiments, only 50 Jearning 
examples we re suftleient to outperfarm the beuristic of Silver & Meal { 1973]. More 
experiments are needed to reach convincing conclusions. We can conclude from our 
experiments that the number of learning examples required for good generalization 
increases with the length of the data horizon; see Chapter 6. 

In this thesis we considered so-called uncapacitated lot-sizing roodels in the 
sense that the total production capacity in each period, which may stem from dif
ferent sources, is infinite. In practice, however, the total amount of production in 
a period may be bounded. Additionally, there may be finite bounds on the amount 
of product kept in inventory from one period to the next. The latter extension is 
rather straightforward, since planning horizon results exist [Sandbothe & Thomp
son, 1993]. The former extension, however, is more difficult since no planning 

horizon results exist for capacitated problems. One option is to relax the capacity 
constraint and to introduce an uncapacitated model with penalty cost for exceeding 
capacity as we considered in this thesis. An additional problem with capacitated 
probieros is that some of the possible optimization horizons may be infeasible. 
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This problem can be overcome by taking the feasible optimization horizon with 
the highest estimated posterior probability, for instance. 

Suggestions for future research. An interesting subject for future research is to 
investigate if the ideas and techniques presented in this thesis can be applied to on
line versions of decision problems that do not fit in the regeneration set framework. 
A possible starting point is the infinite-horizon dynamic programming framework 
proposed by Morton [1979], who introducing the concept of T -re generation sets, 
which applies to a reasonably general form of the dynamic programming problem. 
Another option is to proceed from the planning horizon framework introduced by 
Federgruen & Tzur [ 1995] and Federgruen & Tzur [ 1996], which handles the c\ass 
of problems that can be formulated as shortest path problems in acyclic graphs. 

Promising is the study of techniques for the incorporation of problem-specific 
knowledge into neural networks. Such knowledge can take a variety of forms, but 
usually consists of some general information about the form which the target map
ping should take or some constraint which it should satisfy. Th is kind of know led ge 
is referred to as prior knowledge. Since any information that is build directly into 
the network reduces the complexity of the learning problem invol ved, this may lead 
to substantial improvements in data requirements, leaming efficiency, and general
ization. For examples we refer to the workof Barnard & Botha [1993], Joerding & 
Meador [ 1991], and Low & Webb [ 1990]; see also the textbooks by Bishop [ 1995] 
and Honavar [1994]. We mention two possibilities for incorporating prior knowl
edge when designing MJ;.,P-based horizon-selection rules. A first possibility occurs 
in the case that the demand process is seasonal with a cycle length larger than the 
data horizon. Then we can exploit this foreknowledge by including an extra demand 
lag such that the number of inputs equals the cycle length. A second possibility is 
the incorporation of prior knowledge about one or more of the relevant decision 
boundaries of the underlying classification problem. Such decision boundaries can 
for instanee be derived for the on-line lot-sizing problems with overtime and pur
chasing by rewriting Theorem 3.3 and Theorem 3.5, respectively. These decision 
boundaries can be directly hardwired into the network or can be given as extra in
puts to the network. Numerical experiments are needed to examine the impact of 
incorporating such knowledge on the generalization capabilities of the MLP-based 
horizon selection rules and the on-line lot-sizing performance of the conesponding 
variabie-horizon policies . 
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Samenvatting 

Dit proefschrift beschouwt situaties waarin de productie van één eindproduct moet 
worden gepland voor opeenvolgende perioden in de tijd. We nemen aan dat de 
vraag naar product een vast aantal perioden vooruit bekend is. Dit aantal wordt de 
data horizon genoemd. Er moet altijd aan de vraag naar product in een bepaalde 
periode worden voldaan. Er worden productie- en voorraadkosten beschouwd, en 
het is zaak een zo goedkoop mogelijk productieplan te vinden waarin op tijd aan 
alle vraag naar product wordt voldaan. Dit soort problemen worden ook wel se
riegroottebepalingsproblemen genoemd. Gezien de manier waarop de vraag naar 
product bekend wordt spreken we van on-line seriegroottebepaling. 

De klassiek wiskundige aanpak voor dit soort problemen is de onzekerheid in 
toekomstige vraag naar product te modelleren en het zo ontstane model te analyse
ren. Zulke analyses zijn vaak lastig en vergen kennis en begrip van het vraagproces. 
Mede hierdoor worden in de praktijk vaak eenvoudige heuristieken gebruikt waar
van de prestatie vaak te wensen overlaat. Dit onderzoek kijkt in hoeverre neurale 
netwerken voor verbetering kunnen zorgen. In het bijzonder kijken we naar het 
gebruik van meerlaags perceptrons. 

In Hoofdstuk 2 formuleren we het on-line seriegroottebepalingsprobleem met 
een willekeurige kostenstructuur. Verder introduceren we een klasse van oplos

singsstrategieën die we variabele-horizon strategieën noemen. Zulke strategieën 
bepalen de seriegroottes door herhaaldelijk te optimaliseren over een variabele ho
rizon. Een horizon-selectie regel kiest zo'n horizon op basis van de beschikbare 
vraaggegevens. Bovendien worden voorwaartse algoritmen afgeleid die gebruikt 
worden voor het berekenen van leervoorbeelden. Deze algoritmen zijn gedeelte
lijk generiek, zodat er voor toepassing op een specifieke kostenstructuur nog extra 
analyse nodig is. In Hoofdstuk 3 geven we deze analyse voor drie elementaire 
kostenstructuren. Deze kostenstructuren worden voor testdoeleinden gebruikt in de 
experimenten in Hoofdstuk 6 en Hoofdstuk 7. 

Hoofdstuk 4 introduceert meerlaags perceptroos en bespreekt hun nut voor sta
tistische classificatie. In het bijzonder kijken we naar de vermogens van meerlaags 
perceptroos om te leren en te generaliseren op basis van leervoorbeelden. 

In Hoofdstuk 5 beschouwen we het probleem om een optimale horizon-selectie 
regel te vinden. Dit probleem kunnen we formuleren en analyseren als een classi-

165 



166 Samenvatting 

ficatieprobleem. We beschouwen twee doelstellingen: maximalisatie van classifi
catiegraad en minimalisatie van verwachte kosten. Voor deze doelstellingen geven 
we expliciete uitdrukkingen voor de optimale horizon-selectie regels. Deze regels 
bevatten nog onbekende grootheden, zoals bijvoorbeeld a posteriori kansen. Meer
laags perceptrans worden gebruikt om deze grootheden te schatten. Door deze 
schattingen te substitueren in de expressies voor de optimale regels krijgen we op 
meerlaags perceptroos gebaseerde horizon-selectie regels. 

Hoofdstuk 6 onderzoekt de generaliserende vermogens van de op meerlaags 
perceptrans gebaseerde horizon-selectie regels voor een on-line seriegroottebepa
lingsproblemen met Wagner-Whitin kostenstructuur. We bediscussiëren de nood
zakelijke condities voor goede generalisatie en onderzoeken het effect van de lengte 
van de data horizons op deze vermogens. Het blijkt dat de condities voor goede ge
neralisatie verslechteren als de hoeveelheid informatie over de toekomst toeneemt. 

In Hoofdstuk 7 onderzoeken we de prestaties van de op meerlaags perceptroos 
gebaseerde horizon-selectie regels wanneer ze gebruikt worden in een variabele
horizon strategie. Dit doen we door middel van een omvangrijke empirische studie 
waarin de prestaties van deze strategieën worden vergeleken met die van andere 
strategieën. Deze studie laat zien dat, in situaties met grote vraagonzekerheid, de op 
meerlaags perceptroos gebaseerde strategieën beter presteren dan alle andere strate
gieën met betrekking tot robuustheid, data efficiëntie en kosten. Als er daarentegen 
weinig onzekerheid is met betrekking tot de toekomstige vraag naar product heeft 
het weinig zin meerlaags perceptroos te gebruiken. 

Hoofdstuk 8 sluit het proefschrift af met een discussie van de bereikte resultaten 
en suggesties voor verder onderzoek. 
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I 

Beschouw een handelsreizigersprobleem met stedenverzameling S = {s 1, .•. , sn}. Zij voor elk 
paar steden sp, sq hun onderlinge afstand gegeven door ~(sp, sq). Beschouw tevens een graaf g, 
met puntenverzameling V ={vi, ... , vn}, waarbij g, een cykel is. Definieer voor elk paar punten 
Vs, v1 hun onderlinge afstand ~g,(v5 , vr) als de lengte van het kortste pad van v5 naar v1 in g,. 
Een afbeelding f : V -+ S heet topologie behoudend als 

Vvp,vq,vrEV: ~g,(vp, Vq) < ~g,(vp, Vr) =} ~(f(vp), f(vq)) < ~(f(vp), f(v,.)). 

Zij f : V -+ S een bijectieve topologie behoudende afbeelding. Dan is de tour die g, induceert 
door middel van f optimaal. 

[ 1] H.P. Stehouwer (1993), Self organizing feature maps and the travelling salesman problem: a 
theoretical study, Master's thesis, Eindhoven University of Technology. 

II 

Bowman [ 1] gebruikt in zijn Management Coefficients Theory voorbeelden van het beslissings
gedrag van managers in het verleden ter verbetering van hun beslissingsgedrag in het heden. 
Neurale netwerken kunnen uitstekend gebruikt worden bij de implementatie van deze theorie in 
beslissingsondersteunende systemen. 

[1] E.H. Bowman (1963), Consistency and optimality in managerial decision making, Manage
ment Science 9, 310-321. 

III 

On-line beslissingsproblemen lenen zich voor een hybride aanpak op basis van neurale netwerken 
en deterministische technieken. Hierbij is het zaak de puzzlekwaliteiten van deterministische 
technieken te combineren met het vermogen van neurale netwerken om met onzekerheid om te 
gaan. 

[ 1] H.P. Stehouwer ( 1997), dit proefschrift. 

IV 

In [ 1] wordt bewezen dat in veelleeralgoritmen voor feedforward netwerken het veranderen van 
de steilheid van de responsefunctie equivalent is aan het veranderen van de stapgrootte van het 
leeralgoritme en de initiele gewichten. Dit resultaat elimineert de noodzaak om de steilheid van 
de responsefunctie te bepalen. 

[ 1] G. Thimm, P. Moerland en E. Fiesler ( 1996), The interchangeability of learning rate and gain 
in backpropagation neural networks, Neural Computation 8, 451-460. 



v 

Het meerdere malen publiceren van exact hetzelfde artikel [1,2] kan een gunstige uitwerking 
hebben op het aantal keren dater naar dit artikel verwezen wordt [3]. 

[1] V.S. Badami en C.M. Parks (1991), A classifier based approach to flow shop scheduling, 
Computers and Industrial Engineering 21, 329-333. 

[2] V.S. Badami en C.M. Parks (1991), A classifier based approach to flow shop scheduling, 
Computers and Industrial Engineering 21, 401-405. 

[3] C.H. Dagli (1994), Artificial Neural Networks for Intelligent Manufacturing, Chapman & 
Hall, London. 

VI 

De benaming milleniumprobleem voor het gegeven dat men in vee! computerprogrammatuur 
slechts twee numerieke posities voor een jaartal heeft gereserveerd is onjuist. Het gaat om een 
eeuwprobleem. 

VII 

Het feit dat gedogen als juridisch fenomeen uitsluitend voorkomt in het Nederlandse recht zou 
de overheid te denken moeten geven. 

VIII 

Gezien de toenemende ongedisciplineerdheid van de weggebruikers zou het veiliger zijn om bij 
bewaakte spoorwegovergangen pas de spoorbomen te openen als de rode lichten gedoofd zijn. 

IX 

Een van de voorwaarden voor het slagen van een milieubeleid is de algemene bewustwording 
van het feit dat de aarde niet van de mens maar de mens van de aarde is. 

X 

De kans op vormfouten neemt toe met het "kaliber" van de misdadiger. 

XI 

Deze stelling is onwaar indien goedgekeurd door de rector. 

XII 

Een onderzoeker vindt het in zijn bovenkamer. 
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