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Abstract

The Inventory Routing Problem (IRP) is an extension of the vehicle rout-

ing problem (VRP) that couples inventory control and routing decisions.

This thesis studies an IRP where a warehouse replenishes several cus-

tomers using a finite fleet of capacitated vehicles. Each customer faces

a deterministic demand over a finite planning horizon, and has a finite

capacity to keep local inventory. The goal is to minimize system-wide

transportation costs over the planning horizon. Our main contribution

lies in transforming this problem into an equivalent VRP with fixed size

orders, in which split deliveries are allowed and orders must reach the

customer between specified days. The transformation allows us to design

a constructive heuristic inspired by the VRP literature. This heuristic

was run on small instances, and provided solutions with a cost no more

than 5.33% above optimum on average. On bigger instances, where no

information is available on the optimum, our heuristic outperformed a

myopic heuristic by 13% in average cost.
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Chapter 1

Introduction

1.1 Description of the IRP

The inventory routing problem (IRP) is a very challenging problem that arises in

various distribution systems. It involves managing simultaneously inventory control

and vehicle routing in organizations where one or several warehouses are responsible

for the replenishment of a set of geographically dispersed customers. These cus-

tomers face a demand for products spread over time, and are entitled to keep local

inventory. Deliveries are made using a fleet of capacitated trucks.

The IRP is a much more complex problem than the usual capacitated vehicle

routing problem (CVRP). In the VRP, routing decisions are made to fulfill, by the

end of the day, fixed orders placed by the customers. In the IRP, there are no

customer orders, and the routing decisions are dictated by the inventory behavior

of the customers, which is itself driven by their daily demand patterns. Given the

customers’ inventory data and information on the customers’ demand, the manager

must consequently make several decisions over a given planning horizon:

• Which customers to visit on each day of the planning horizon

1



1.2 Industrial motivation

• What quantities to deliver to each customer

• How to combine these deliveries into routes.

The objective is to minimize the distribution costs in the system, over the plan-

ning horizon. The costs considered vary from one study to another. For example,

transportation costs are always taken into account, but inventory holding costs are

not often considered. In studies where the customer’s demand is stochastic, expected

shortage costs are included as well.

It is important to note that the IRP is NP -Hard. Indeed, with a planning

horizon of one day, infinite truck capacities and infinite customer capacities, this

problem reduces to a Traveling Salesman Problem(TSP). The TSP was shown to be

NP -hard in Karp (1972).

1.2 Industrial motivation

In the industry, the IRP can be applied to various distribution systems. Tradi-

tionally, researchers and practitioners have focused on the distribution of industrial

gases. The reason for that lies in the business practices of these industries. Indeed,

in the sector of heating oil or industrial gases, replenishment and inventory control

were managed by the supplier very early. Note, however, that the generalization

of vendor-managed inventory (VMI) policies as a business practice drove the need

to extend the study of the IRP to different distribution structures. Several studies

found in the literature are reviewed in Chapter 2.

2



1.3 Focus, motivation and contribution

1.3 Focus, motivation and contribution

In this paper, we focus on the finite-horizon case, where the customer’s demand

is known (deterministic) and day-dependent(dynamic). Only transportation costs

will be considered, and the customer’s inventory will have a finite capacity. These

assumptions are mainly motivated by the above-mentioned industrial gas industry.

This model can however find application in various sectors, such as the soft drinks

industry, supermarket chains, and department stores.

As previously highlighted, the complexity of the IRP comes from the absence

of fixed customer orders, which prevents us from building good feasible solutions

to the IRP with VRP heuristics. This shows in the IRP literature, as no simple

constructive heuristic can be found, with the noticeable exception of Bertazzi et al.

(2002). Our motivation is therefore to fill this gap and try to propose a procedure

that will allow us to design an efficient construction-improvement heuristic for the

IRP, using the tools available from the VRP literature.

Our contribution can be summed up as follows: we show how we can transform

our IRP, with the previously mentioned characteristics, into an equivalent problem.

This latter problem will be referred to as the “Multi period VRP with due dates and

split demand”(MVRPD), and is much closer to the classical VRP than our IRP. The

goal of this transformation is inherent to the nature of the MVRPD: this problem

explicitly considers independent, fixed, volumes of products that must be delivered

to customer locations between two given days. This transformation will therefore

allow us to use classic constructive heuristics found in the VRP and the split-delivery

VRP literatures to build a good feasible solution to our original problem.

This thesis is organized in the following way: Chapter 2 is a literature review

composed of two distinct parts: an extensive review of IRP approaches is first con-

ducted, followed by a description of several existing VRP solution methods that will

3



1.3 Focus, motivation and contribution

be useful to our study. Chapter 3 gives a formal description of the IRP that we wish

to tackle, and proposes an IP formulation. The core of our contribution is found

in Chapter 4, which describes how the IRP can be transformed into an equivalent

Multi period VRP with due dates. This result is then exploited in Chapter 5, to

design a constructive heuristic for our IRP. The computational results obtained with

this heuristic are finally presented and analyzed in Chapter 6. An overall conclusion

of our study is given in Chapter 7.

4



Chapter 2

Literature review

This literature review will tackle two different topics: Firstly, we will review existing

studies of Inventory Routing Problems, which will allow us to understand that this

designation can encompass a wide panel of situations, that call for various solution

methods. Secondly, we will give an overview of the wide VRP and Split-Delivery

VRP literature. We will more specifically focus on studies proposing constructive

heuristic algorithms that will help us design our own solution method.

2.1 Inventory Routing Problem studies

2.1.1 Classifications

We will start by introducing two articles which aim to define the IRP and classify

the different approaches undertaken.

First of all, Federgruen & Simchi-Levi (1995) discussed the motivations for the

IRP and introduced a framework that distinguishes two variants of the IRP: the

single period model, with stochastic demand, and the infinite horizon model, with

deterministic demand rate. Two articles, namely Federgruen & Zipkin (1984) and

5



2.1 Inventory Routing Problem studies

Anily & Federgruen (1990) illustrated these categories. Though this classification

gave an initial overview of the different aspects of the IRP, it overlooked several

approaches that did not fit this description, such as single period models with deter-

ministic demand, multi period models, and infinite horizon models with stochastic

demand.

A second attempt to classify the IRP can be found in Baita et al. (1998). In this

review, the authors started by defining the IRP as a class of problems having the

following aspects in common: routing (necessity to organize a movement of goods

between different sites), inventory (relevance of the volume and value of the goods

moved), and dynamic behavior(repeated decisions have to be made). Within this

class of problems, a classification framework was proposed that took into account all

the characteristics of the different approaches encountered in the literature: topology

of the problem, number of items considered, type of demand considered, type of

decision to be taken, constraints considered, objective sought, costs considered and

solution approach proposed. Different articles were then presented, regrouped by

the type of decision to be taken: frequency-based or time-domain based.

2.1.2 Infinite horizon, deterministic demand approaches

The following is a review of infinite horizon deterministic demand approaches. All

the papers described in this section consider the same type of systems: a warehouse

replenishes geographically dispersed customers. These customers face a constant,

deterministic demand rate. The objective is to find long-term replenishment strate-

gies that minimize system-wide costs. A strategy consists of the construction of

delivery routes, and the computation of the optimal replenishment frequency for

each route. Note however that, though all these papers represent a very important

part of the IRP literature, the problem they tackle and the tools they use are very

different from the problem we focus on.

6



2.1 Inventory Routing Problem studies

Anily & Federgruen (1990) considered only a specific class of strategies: fixed

partition policies (FPP). This class can be described as follows: the customers are

partitioned into regions and their demands are allowed to be split between several

regions. The FPP is then a set of replenishment strategies where, whenever a cus-

tomer is visited in a region, all the customers of this region are visited as well. This

allowed the authors to transform this problem into a general partitioning problem,

and to obtain several interesting results: two lower bounds over all the policies were

proposed, as well as an asymptotically optimal heuristic, using a modified circular

partitioning scheme. A discussion of this approach can be found in Hall (1991) and

Anily & Federgruen (1991).

Several studies following similar ideas can be found in the literature. Anily &

Federgruen (1993) extended the above model to a system where the central ware-

house is explicitly considered as a stock-keeping location: holding costs are charged,

and the warehouse has a limited capacity. The warehouse must therefore be periodi-

cally replenished, and fixed ordering costs are incurred. Here also, lower bounds were

computed, and an upper bound falling within 6% of the lower bound was proposed.

Gallego & Simchi-Levi (1990) characterized the effectiveness of direct shipping

strategies in these one-warehouse multiple retailers systems. The authors started

by computing a lower bound of the system-wide cost over all inventory-routing

strategies. Using this bound, they showed that, when the Economic Lot Size of

all the retailers is at least 71% of the truck capacity, the effectiveness of the direct

shipping strategies is at least 94%.

Using the same fixed-partition-policy as in Anily & Federgruen (1990), Bramel

& Simchi-Levi (1995) developed a location-based heuristic that splits the customers

into replenishment regions. This partition was found by solving a capacity-concentrator

problem (CCP) derived from the original IRP. Indeed, even though the CCP is NP-

7



2.1 Inventory Routing Problem studies

hard, existing techniques are known to be able to find good solutions within a

reasonable time frame.

Chan et al. (1998) studied Zero Inventory Policies and Fixed Partition Policies

in one-warehouse, multiple-retailers systems. They computed a lower bound, built a

FPP solution and gave a probabilistic analysis of the optimality gap for this solution.

Finally, we find it necessary to mention here the approach developed by Bertazzi

et al. (1997), which tackled the same issue, but with additional characteristics:

a warehouse supplies several products to geographically dispersed customers who

face a constant demand rate for each product. The specificity of this article was

that replenishment is made using a finite set of replenishment frequencies. The

authors proposed a heuristic construction to decide the replenishment strategies.

Computational results were shown.

2.1.3 Finite horizon, stochastic IRP

We now describe a series of articles that share several characteristics. They are

all motivated by the air products industry. Traditionally, in this industry, a plant

supplies a region of customers who keep local inventory in a tank with finite ca-

pacity, and the supplier is responsible for designing the schedule and the routes

of the deliveries. The objective is to minimize the operating costs, while avoiding

customers’ stockouts. Moreover, in all those studies, the demand is generally con-

sidered unknown or stochastic, and is often equated with the available capacity in

the customer’s tank. This means that many of these studies implicitly choose a

delivery policy where the customers are replenished to full capacity whenever they

are visited.

Golden et al. (1984) described an empirical solution approach to this problem.

They developed a heuristic that aimed to minimize the daily operational costs,

8



2.1 Inventory Routing Problem studies

while attempting to ensure a sufficient level of product at each customer location.

Their approach was as follows: for each customer, an “emergency level” equal to

the ratio of his current inventory level to his tank capacity is computed. All the

customers whose emergency levels are higher than a chosen critical level are chosen

as “potential” customers. Customers are then ranked using the ratio of emergency

to delivery cost, and a TSP is then iteratively built: the ranked customers are added

one at a time to the itinerary, until the total tour duration exceeds a pre-established

maximum duration TMAX . The tour is then split into routes. If no feasible solution

is found, TMAX is decreased, and the procedure is repeated.

Dror & Ball (1987) built replenishment routes for a similar system in a more

sophisticated way, by taking into account the probability distribution function(PDF)

of the customers’ demands. In this study, the authors used results from a one-

customer, deterministic demand system to compute “incremental costs” incurred

on the year-long planning whenever a customer is replenished in the coming week

before his inventory drops to zero. Using these incremental costs, as well as the costs

charged for stockouts and the demand PDF of each customer the authors computed

the expected cost Ei(t) for replenishing a specific customer i on any day t. Under

some assumptions, they showed the existence of t∗, the optimal replenishment day,

that minimizes Ei(t). A four-step heuristic was then developed: firstly, customers to

be included in the coming week’s schedule are selected based on their t∗. Secondly, a

generalized assignment problem is solved to assign these customers to delivery days.

Thirdly, efficient routes are built using a Clarke and Wright algorithm. Finally,

local improvements are made on the obtained solution. Computational details of

this approach can be found in Dror et al. (1985).

Trudeau & Dror (1992) developed several improvements to this approach. First

of all, they refined the computation of Ei(t) using conditional probabilities which

enabled them to obtain a more accurate value of t∗. Then, they modified the cus-

9



2.1 Inventory Routing Problem studies

tomer selection in the first step of the algorithm, thus adding more flexibility to

the assignment procedure. Finally, they computed a costing procedure that takes

into account the route failures. Bard et al. (1998) discussed a similar approach, but

combined with a rolling horizon framework: a 2-week schedule was computed, but

only the first week was actually implemented. The authors adapted the customer

selection, customer assignment and route designing steps to the case where several

satellites allow the truck to refill during his tour. The incremental costs used in the

computation of the best replenishment day differed from the ones proposed in Dror

& Ball (1987) and can be found in Jaillet et al. (2002).

2.1.4 Finite Horizon, mixed-integer programming models

In the following section, we will describe another category of articles tackling the

IRP. The situations dealt with here are similar to the ones in the previous section: a

central warehouse replenishes several customers, and seeks to design a replenishment

schedule for the next planning period. Demand is generally deterministic, but can be

stochastic. Unlike the studies presented in the previous section, the following articles

present mixed-integer programming (MIP) optimization models that describe the

system considered, and design solutions based on this optimization model.

Federgruen & Zipkin (1984) considered a system where the supply at the central

warehouse is limited, and the demand at the different customers is considered as a

random variable. The objective was therefore to minimize the total transportation,

and expected inventory and shortage costs. This problem was modeled as a nonlinear

integer program. Capitalizing many ideas from the Vehicle Routing problem, the

authors then proposed two solution methods. First of all, they developed a modified

interchange heuristic based on the“r-opt”methods of the VRP. Then, they described

an exact algorithm, using a general Bender’s decomposition inspired by the method

of Fisher & Jaikumar (1978) on deterministic VRP’s.

10



2.1 Inventory Routing Problem studies

Chien et al. (1989) also tackled the problem of limited supply, in a study taking

into consideration a deterministic customer demand. Their objective was there-

fore to distribute this limited amount of products so as to maximize profits. They

considered a single day approach, but, by passing information from one day to

another, their model simulated multiple periods. A MIP model was proposed to

optimally allocate the inventory among the customers. This MIP was solved, using

a Lagrangian-based heuristic and computational results were exhibited.

Bertazzi et al. (2002) studied a problem similar to the one we will focus on in

this paper, in which customers face a deterministic and dynamic demand, and have

a finite capacity for holding local inventory. Holding costs are however considered at

the central warehouse, as well as at the different retailers. The authors investigated

a replenishment policy where, whenever a customer is visited, it is replenished to full

capacity. A heuristic was presented, that makes good use of a graph representing the

delivery schedules to build feasible solutions. Exhaustive computational results were

exhibited, where different combinations of costs accounted for different distribution

structures.

Campbell et al. (2002) developed a finite horizon, deterministic demand model

of the IRP. They considered a system where the customers face a constant demand

rate, and have a finite local inventory capacity. The first phase of the solution

method is an interesting IP model that aims to optimize the deliveries over a two-

week rolling horizon. In this model, the complexity of the routing computations

is reduced. Indeed, only a given set of routes with known characteristics (such

as duration or cost) are considered for the deliveries. Trucks are allowed to serve

multiple trips per day, and maximum route duration is enforced. Several techniques

are proposed to allow tractability of the model, such as considering only a given

set of allowed routes, aggregating several time periods at the end of the planning

horizon, or relaxing some integrality constraints. The solution to this IP indicates

11
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quantities to be delivered to each customer on each day. Using these quantities as

indications, the second phase then builds an actual delivery schedule for the next

two days, using more accurate demand information, and taking into account the

proper timing of this demand. The computational results were interesting, as they

showed different performance measures of the solution method.

2.1.5 Related studies

We find it necessary to describe two approaches that deal with different aspects of

the IRP.

Firstly, Webb & Larson (1995) studied an IRP at the strategic level: their goal

was to determine the size of the fleet needed to operate a one-warehouse, multiple-

retailers distribution system. In this prospect, all possible realizations of the tactical

IRP need to be considered. A heuristic was proposed, that estimates the fleet size

by dividing customers into a set of clusters.

Secondly, Berman & Larson (2001) considered the IRP at an operational level,

by trying to optimize the deliveries within a given, fixed route, where the driver

has the responsibility to decide the quantities delivered to each customer visited.

Incremental costs for early and late deliveries were computed, on the basis of the

customer’s inventory level (real or estimated). These costs were then used in a

dynamic programming framework to compute the optimal delivery policy.

2.2 Vehicle Routing Problem studies

The following section will give an overview of the VRP and split-delivery VRP liter-

ature, and will highlight some solution approaches that inspired us when designing

the heuristic described in Chapter 5.
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2.2.1 VRP solution methods

A wide range of studies of the VRP can be found in the literature, but we will

restrict ourselves to the description of classic VRP approaches that do not consider

additional constraints or specific features. Readers wishing a broader description of

the VRP can refer to the early work of Bodin et al. (1983). A more recent review of

exact and approximate solution methods can be found in Laporte (1992). Finally,

the book by Toth & Vigo (2002) studies extensively the different aspects of the

VRP: a complete overview of the different formulations of the problem, and a wide

spectrum of solution methods are detailed. In order to familiarize the reader with

the different alternatives, we will list the mainstream approaches encountered in the

literature.

2.2.1.1 Exact solution methods

In the VRP literature, the most widely described exact solution method is based

on branch-and-bound algorithms. An extensive description of these branch-and-

bound techniques can be found in Laporte & Nobert (1987). It is shown that basic

lower bounds can be obtained by relaxing some VRP constraints, which amounts

to replacing the VRP by simpler problems, such as assignment problem or finding

spanning trees. Better lower bounds can be obtained with more elaborate methods:

for example, Fisher (1994) proposed a strengthened VRP relaxation obtained by

including some of the relaxed constraints in the objective function in a Lagrangian

way, while E. Hadjiconstantinou (1995) used a lower bound computed by finding a

feasible solution to the dual of a set-partitioning VRP formulation.

Branch-and-cut is another less investigated exact solution method. In this

approach, the linear relaxation of the VRP is considered. Because of the non-

polynomial number of constraints, this relaxation cannot be fed into an LP solver.
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A great number of constraints are therefore dropped, and valid inequalities(cutting

planes) are progressively added. The amount of research published in that area is

more limited than in branch-and bound techniques, and publications are often fo-

cused on specific aspects of the procedure, such as finding valid inequalities. The

reader can however refer to Ralphs et al. (2003) for a complete implementation of

this approach.

Finally, we found several studies that consider the set-covering formulation of

the VRP: all the feasible routes are implicitly included in the IP formulation, which

therefore contains a great number of columns. Exact algorithms using this formu-

lation have been described by Agarwal et al. (1989) or the more recent papers by

E. Hadjiconstantinou (1995) and Desrochers et al. (1992).

2.2.1.2 Constructive heuristics

The methods discussed in the previous paragraphs have a high theoretical value.

However, they are seldom used in practice, as they can only solve instances of

modest size, and require a lot of computing time. This highlights the need for

simple, fast-running and robust heuristics that produce solutions of a reasonable

quality.

The most commonly used heuristic is the Clarke & Wright (1964) algorithm.

This constructive method is based on the notion of savings. The savings obtained

by merging routes (0, ..., i, 0) and(0, j, ..., 0) is sij = ci0+c0j−cij. A first routing plan

is initiated with n (0, i, 0) routes and the routes are progressively merged, starting

from the highest feasible savings. The procedure stops when no positive savings can

be achieved. Several enhancements to this savings algorithms can be found in the

literature. Baskell (1967) and Yellow (1970) for example, included a route shape

parameter λ in the savings computation sij = ci0 + c0j − λcij, while Desrochers
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& Verhoog (1989) or Altinkemer & Gavish (1989) implemented a matching-based

approach using the savings computation.

Another constructive method to obtain a feasible routing plan is the iterative in-

sertion. Starting from an empty plan, routes are grown by iteratively inserting visits

that will incur the smallest additional cost. Mole & Jameson (1976) implemented

a sequential version of this algorithm, while Christofides et al. (1979) developed a

more sophisticated method using both sequential and parallel route constructions.

2.2.1.3 Improvement heuristics

In the approaches presented in the previous paragraphs, the method described gives

an initial feasible solution. Routing plans with lower costs can then be obtained using

improvement heuristics that try to apply elementary modifications to the current

solution.

The most common improvement heuristic is the λ-opt technique, initiated in

the TSP literature (See Lin (1965)). This method removes λ arcs from the current

solution and examines the ways to reconnect them. If a cost-saving combination is

found, it is implemented. The procedure is repeated until no improvement is found.

Or (1976) described a method, the Or-Opt, commonly used in practice: 3, 2 or 1

consecutive arcs are displaced to a cheaper location, until no improvement is found.

Breedam (1994) described 3 other multi-route improvements: the crossing, the

exchange, and the relocation. These operators will be described later on, as we will

be using them in our heuristic.
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2.2.1.4 Metaheuristics

The previous paragraph described basic neighborhood operators that defined a range

of “neighbors” of a given solution, by modifying one or several of its arcs. This

opens the way to a deeper exploration of the search space using metaheuristics.

These techniques, whose general framework is common to several combinatorial

optimization problems, have produced several best-so-far results to “hard” VRP

instances. In these metaheuristics, the search is conducted by going from one feasible

solution to another in its neighborhood, while allowing cost increasing moves, which

increases the chances for the algorithm to escape from local minimum. This in

general requires more computational time than the classic heuristics. Here are, very

briefly, some successful studies: good implementations of simulated annealing can

be found in Osman (1993) and in Golden et al. (1998), while Gendreau & Laporte

(1994) and Taillard (1993) developed interesting tabu search frameworks. We do

not wish to elaborate on the details of their approaches, as it is beyond the scope of

our study here.

2.2.2 The Split-delivery VRP

The split-delivery VRP (SDVRP) is a problem very similar to the VRP: a fleet of

capacitated vehicles has to deliver orders from a depot to a set of customers over

a single period. The goal is to minimize the distance traveled. The specificity of

the SDVRP is that no restriction is made on the number of visits a customer may

receive: a customer’s order can be split between two or more deliveries.

The studies available in the literature on the SDVRP are not as numerous as

the ones focusing on the VRP.

The problem was first introduced by Dror & Trudeau (1989). In that article,
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the SDVRP is formally described, and formulated. Using an example, the authors

showed how cost savings can be achieved when split-deliveries are allowed. Several

properties of the optimal solution were exhibited, and a heuristic was proposed:

it starts from a feasible VRP solution, and looks for cost-saving opportunities by

splitting deliveries. The computational experiments showed that, when average

demand is at least 10% of vehicle capacity, the savings achieved by splitting deliveries

are significant.

Dror et al. (1994) refined the previous formulation and proposed several valid

inequalities. These inequalities were derived from the analysis of the subtour elim-

ination constraints, as well as from other observations made on the model. The

inequalities were used as cuts in a constraint-relaxation algorithm: a lower bound

is first obtained using the inequalities in a LP relaxation of the problem; then a

branch-and bound procedure seeks the optimum. A 10-customer instance was solved

to optimality, and the lower bound obtained showed that the heuristic proposed by

Dror & Trudeau (1990) produced solutions within 9% of optimum.

A more technical set of valid inequalities can be found in Belenguer et al. (2000).

The authors showed that the convex hull of the set of feasible solutions is a polyhe-

dron. Several facet-defining inequalities were derived, and were used in a cutting-

plane algorithm, as in Dror et al. (1994). The algorithm was successful in finding

the optimal solution for a 50-customer SDVRP.

Frizzel & Giffing (1992) studied a different SDVRP where the nodes are located

on a grid network distance, which does not guarantee the triangular inequality.

Additionally, the authors investigated the possibility of limiting the size and the

number of splits allowed. A heuristic and computational results were presented. In

Frizzel & Giffing (1995), time windows were added to the model.

Mullaseril et al. (1997) gave a real-world application to the SDVRP. They fo-
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cused on an arc-routing problem (Capacitated Rural Postman Problem, CRPP)

encountered in a cattle-feeding ranch. The heuristic proposed in Dror & Trudeau

(1990) was adapted to their model, and good computational results were presented.

Another real-life application can be found in Sierksma & Tijssen (1998). This

article dealt with routing helicopters between off-shore platforms for crew exchanges.

The problem is identical to the SDVRP but imposes a maximum route length. Sev-

eral new properties of the optimal solution were derived and two different heuristics

were proposed. The first one is a column generation procedure that starts from a

fractional lower bound, and rounds it up to a feasible solution. The second one

is a two-step constructive algorithm entitled “cluster-and-route procedure”. Sev-

eral improvement heuristics were also proposed, and the computational results were

compared with traditional VRP heuristics.

Several interesting theoretical results on the SDVRP were derived in Archetti

et al. (2004). Some properties of the optimal solution were exhibited, and a bound

on the savings that can be done by allowing split deliveries was given: the value

of the optimal solution of the SDVRP cannot be less than half the optimal value

obtained in the corresponding VRP. This bound is tight, as examples were exhibited.

Finally, Archetti et al. (2003) developed a tabu search, where a simple initial so-

lution is first built, then the tabu procedure is run, and the final solution is improved

by deleting cycles and re-optimizing each route. The tabu search provided solutions

of better quality than the algorithm proposed by Dror & Trudeau (1989)(5% on

average), but required more computational time.
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Chapter 3

Problem description and model

formulation

As shown in the previous chapter, the designation “Inventory Routing Problem”

can refer to a wide variety of situations, depending on the assumptions made and

the industrial problem considered. This chapter will therefore formally describe the

problem this thesis will focus on. A definition of our problem will first be given in

Section 3.1, together with the motivations behind this definition. Section 3.2 then

gives an exhaustive list of our assumptions, which will allow the reader to get a clear

picture of the problem tackled. A mathematical program is proposed in Section 3.3.

Finally, Section 3.4 refines the latter formulation by tightening some constraints.

3.1 Problem definition and motivations

The problem we will focus on is a finite-horizon inventory-routing problem, where

the demand of the customers is both deterministic and dynamic, and where trans-

portation costs are solely considered, that is holding costs are overlooked: the depot

manages the replenishment of the customers using a fixed fleet over the planning

horizon, and aims to minimize total transportation costs while preventing stockouts.
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Note that, among the reviewed IRP approaches in Section 2.1.4 , Campbell

et al. (2002) considered a problem very similar to ours, but did not consider dy-

namic demand. Bertazzi et al. (2002) considered dynamic demand, but their study

considered a cost structure where holding costs represented a large part of the total

costs. Furthermore the industrial problem tackled in our approach is similar to the

studies focusing on industrial gases described in Section 2.1.3. The latter however

considered stochastic demand, included the expected stockout cost, and generally

allowed customers to be visited only once in the planning horizon.

We chose to model the demand as deterministic because we feel that, even

though uncertainty is present, customers’ usage or demand can be quite predictable

for planning horizon of medium size (one or two weeks). Furthermore, by embed-

ding our study in a rolling horizon framework, where, for example, two weeks are

computed and only one is implemented, we are able to update the demand data

regularly.

3.2 Assumptions

Below are the different assumptions our model is based on.

Planning Horizon We will consider a finite planning horizon (Typically 14 days).

Customers The location of the customers are known. They have a finite capacity

for keeping local inventory.

Costs No holding costs will be considered in this study. The costs will therefore

only consist of the transportation costs which are deterministic and known.

Deliveries The products will be shipped from the central warehouse to the different

customers using a homogeneous fleet of vehicles of known capacity. No addi-

tional constraints will be imposed on the route, such as maximum duration.
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3.3 Model

Furthermore we will not restrict a customer to be visited at most once during

a given day which means that split deliveries are allowed.

Inventory Stockouts will not be allowed, and both demand and deliveries of the

current day will be taken into account when computing the inventory.

Demand The amount of product consumed at each customer location is known,

and day-dependent. We will assume that the highest demand is smaller than

the vehicle capacity.

Supply No limit will be imposed on the amount of supply available at the central

warehouse.

Operating modes and delivery times We will make the hypothesis that a de-

livery made on a given day can be used to meet the demand required on that

day. This means that we will not consider any operating modes and delivery

times within a given day.

Objective The objective is to build a delivery schedule so as to

Minimize transportation costs while

• avoiding stockouts

• not exceeding vehicle capacity

• not exceeding customers’ capacity

3.3 Model

We can now state our model as a mathematical program, using the following nota-

tions:

A set N of customers is served by a depot denoted as 0. During each day

t ∈ H = {1, 2, ..., T} of the planning period, a known quantity dt
i, called demand of
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3.3 Model

customer i on day t is absorbed at the local inventory of customer i. The level of this

inventory, denoted as I t
i cannot exceed the customer’s capacity Ci. The quantity I0

i

will denote the initial inventory, and we will assume it is known. The traveling costs

cij, with i, j ∈ N
⋃
{0} are all known as well. On each day of the planning period,

we dispose of a fleet of K vehicles indexed by k ∈ K = {1, ..., K}. Each vehicle can

carry up to a volume W of products to accomplish the deliveries.

Our decision variables are the following:

xkt
ij =


undefined, if i = j

1, if arc (i, j) is visited on day t by vehicle k

0, otherwise

qkt
i is the quantity delivered on day t to customer i by vehicle k

ykt
i =

{
1, if customer i is visited on day t by vehicle k

0, otherwise

With these notations, the inventory of a customer i at the end of a given day t

is given by:

I t
i = I t−1

i +
∑
k∈K

qkt
i − dt

i

that is

I t
i = I0

i +
t∑

t′=1

∑
k∈K

qkt′

i −
t∑

t′=1

dt′

i

Let us define the cumulated demand of customer i:

Dt(i) =
t∑

t′=1

dt′

i

With this notation we can write:

I t
i = I0

i −Dt(i) +
t∑

t′=1

∑
k∈K

qkt′

i (3.1)

Our problem can now be stated as follows:

Minimize
T∑

t=1

∑
k∈K

∑
i,j∈N∪{0}

cijx
kt
ij (3.2)
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Subject to:

∑
i∈N∪{0}

xkt
il −

∑
j∈N∪{0}

xkt
lj = 0 ∀l ∈ N ∪ {0},∀k ∈ K,∀t ∈ H (3.3)

∑
i∈N∪{0}

qkt
i ≤ W ∀k ∈ K,∀t ∈ H (3.4)

∑
j∈N∪{0}

xkt
ij = ykt

i ∀i ∈ N,∀k ∈ K,∀t ∈ H (3.5)

qkt
i ≤ ykt

i W ∀i ∈ N,∀k ∈ K,∀t ∈ H (3.6)∑
i,j∈S

xkt
ij ≤ |S| − 1 ∀S ⊆ N/|S| ≥ 2,∀k ∈ K,∀t ∈ H (3.7)

Dt(i)− I0
i ≤

t∑
t′=1

∑
k∈K

qkt′

i ∀i ∈ N,∀t ∈ H (3.8)

t∑
t′=1

∑
k∈K

qkt′

i ≤ Dt(i) + Ci − I0
i , ∀i ∈ N,∀t ∈ H (3.9)

ykt
i ∈ {0, 1} ∀i ∈ N, ∀k ∈ K,∀t ∈ H (3.10)

xkt
ij ∈ {0, 1} ∀i, j ∈ N ∪ {0},∀k ∈ K,∀t ∈ H (3.11)

qkt
i ≥ 0 ∀i ∈ N, ∀k ∈ K,∀t ∈ H (3.12)

The objective function (3.2) aims at minimizing the total transportation costs.

Constraints (3.3) to (3.7) guarantee the consistency of the routing plan: constraint

set (3.3) ensures flow conservation, constraint set (3.4) imposes the total load on

each vehicle not to exceed the vehicle capacity and constraint sets (3.5) and (3.6)

guarantee a customer is visited when receiving a positive delivery volume. Finally,

constraints (3.7) forbid subtours disconnected from the depot. The constraints that

will need special attention in our study are the constraints defined by (3.8) and (3.9).

They ensure that:

• No stockouts occur

• The capacities of all the customers are not exceeded
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To understand the formulation of (3.8) and (3.9), note that it is obtained by

ensuring that the inventory defined in (3.1) stays non-negative(no stockouts) and

below customer capacity. The left-hand side of (3.8) is then obtained by noticing

that all the delivered quantities must be positive.

In our formulation, there is no limitation on the number of deliveries a customer

can receive on a given day: split deliveries are therefore allowed.

3.4 Property of the optimal solution

It is important for our study to point out the following property of the optimal

solution:

Lemma 1. There exists an optimal solution to the IRP where the final inventory of

all the customers is empty, that is:

IT
i = 0,∀i ∈ N

Proof. The proof is quite straightforward. Consider an optimal solution of the IRP

where a set of customers F ⊂ N has inventory left on day T . An optimal solution

with empty final inventory can be obtained by simply removing excess delivery

volumes to this set of customers without changing the routing sets and itineraries.

No constraints are violated, since vehicle occupation is reduced and the routing

is not modified. Moreover, only the final inventory level is affected and drops to

zero in the new solution. Applying this treatment to all customers in F will leave

the value of the objective function unchanged, and all the customers will have an

empty final inventory.
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3.4 Property of the optimal solution

This property will help us tighten the constraint of our IRP formulation, by

setting the total delivery quantity
∑T

t′=1

∑
k∈K qkt′

i to a value that leaves the final

inventory empty.

Let us define, for notational convenience the cumulated deliveries made to cus-

tomer i:

Qt(i) =
t∑

t′=1

∑
k∈K

qkt′

i

With these notations, Qt(i) is the total volume that reaches the customer up to day

t, and we can reformulate the inventory constraints:

Corrolary 1. The set of constraints (3.8) and (3.9) can be replaced by the set

Dt(i)− I0
i ≤ Qt(i) ∀i ∈ N,∀t ∈ {1, ..., T − 1} (3.13)

Qt(i) ≤ Dt(i) + Ci − I0
i ∀i ∈ N, ∀t ∈ {1, ..., T − 1} (3.14)

QT (i) = DT (i)− I0
i (3.15)

This modified formulation will be used in the next chapter to show that, when

forcing the final inventory to be empty, our IRP is equivalent to a multiple-period

VRP with fixed-size order.

25



Chapter 4

Transposition of the IRP into a

rich VRP

In this section, we will show how the above-defined IRP can be transformed into a

multiple-period VRP with due dates, and with split-deliveries allowed. This new,

transformed problem will be referred to as the MVRPD.

4.1 Motivation

The main problem with the formulation of the IRP written in Section 3.3 lies in the

very nature of the constraint sets (3.8)-(3.9). These constraints, which ensure that

no stockouts occur and that capacity is not exceeded, proceed by always considering

cumulated demand Dt(i) and cumulated delivered quantities Qt(i). Although the

formulation is quite compact, it has major drawbacks that prevent us from using it

to design constructive heuristic. Indeed, the high level of interaction between the

different constraints

• makes it difficult to identify and individualize constrained deliveries.
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4.2 Description of the MVRPD

• induces a heavy constraint propagation in constructive heuristics.

A good illustration of these issues can be found in the heuristic proposed by Bertazzi

et al. (2002). In the article, the authors used a constructive insertion algorithm to

build a feasible solution. Their construction required all the deliveries of a given

customer to be inserted in the current solution together, to ensure that all the

inventory constraints are satisfied.

Our reformulation of the problem will therefore aim to individualize, as much

as possible, all the constraints induced by the inventory behavior of a given client.

This will be attained by shifting from the current time-driven formulation of the

IRP, where each day of the planning period induces two inventory constraints, to

a demand -driven formulation(MVRPD), where the demand is split into loads that

have to be delivered to the customer location between two specific days.

Before detailing our procedure, we will provide a formal description and a linear

IP formulation of the MVRPD:

4.2 Description of the MVRPD

The MVRPD can be described as follows. During a horizon of T days, a set R of

geographically dispersed demand points needs to be replenished in a given product by

a depot denoted as 0. Each demand point r ∈ R needs a volume δr of product, that

has to reach the customer between an earliest and a latest delivery date Er, Lr ∈ H.

The costs crs of traveling between any two nodes r, s ∈ R ∪ {0} are known. There

is infinite supply at the depot. On each day of the horizon, the deliveries are made

using a fleet of K vehicles of capacity W , indexed by k ∈ K = {1, ..., K}. We allow

the demand of a customer to be split among vehicles or days, as long as
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the totality of the loads is delivered within the specified days. An important feature

for our problem is that several demand points will share the same geographical

location, but will have different demand volumes required between different delivery

dates. The objective is to minimize the transportation costs.

We can formulate a mathematical program for our problem, starting with the

decision variables:

xkt
rs =


undefined, if r = s

1, if arc (r, s) is visited on day t by vehicle k

0, otherwise

ϕkt
r is the quantity delivered by vehicle k on day t to demand point r

ykt
r =

{
1, if demand point r is visited by vehicle k on day t

0, otherwise

The MVRPD can therefore be stated as

Minimize
T∑

t=1

∑
k∈K

∑
r,s∈R∪{0}

crsx
kt
rs (4.1)
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4.3 Underlying concept, Procedure undertaken

Subject to∑
r∈R∪{0}

xkt
rl −

∑
s∈R∪{0}

xkt
ls = 0 ∀l ∈ R ∪ {0},∀k ∈ K,∀t ∈ H (4.2)

∑
r∈R∪{0}

ϕkt
r ≤ W ∀k ∈ K,∀t ∈ H (4.3)

∑
s∈R∪{0}

xkt
rs = ykt

r ∀r ∈ R,∀k ∈ K,∀t ∈ H (4.4)

ϕkt
r ≤ ykt

r W ∀r ∈ R,∀k ∈ K,∀t ∈ H (4.5)∑
r,s∈S

xkt
rs ≤ |S| − 1 ∀S ⊆ R/|S| ≥ 2,∀k ∈ K,∀t ∈ H (4.6)

∑
k∈K

Lr∑
t=Er

ϕkt
r = δr ∀r ∈ R (4.7)

ykt
r ∈ {0, 1} ∀r ∈ R,∀k ∈ K,∀t ∈ H (4.8)

xkt
rs ∈ {0, 1} ∀r, s ∈ R ∪ {0},∀k ∈ K,∀t ∈ H (4.9)

ϕkt
r ≥ 0 ∀r ∈ R,∀k ∈ K,∀t ∈ H (4.10)

The sets of constraints (4.3) to (4.6) guarantee, like their IRP equivalents (3.4) to

(3.7) in Section 3.3, the consistency of the routing plan. The demand fulfillment

constraints (4.7) replace the IRP set of constraints driving the inventory behavior

(3.8) and (3.9). They ensure the loads are fully delivered within the specified window

[Er, Lr].

4.3 Underlying concept, Procedure undertaken

Our goal is now to show that, given a valid IRP (as described in section 3.3) one

can build a MVRPD with the characteristics above, such that the two problems will

be equivalent.

Note that the time horizon H, the number of available vehicles K and the

vehicle capacity W are common to the two formulations, and will be used

without alteration when transposing our problems.
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The MVRPD will therefore be completely defined once the set R is known,

together with the delivery dates Er, Lr corresponding to every demand point.

The main idea behind our procedure subsequently lies in establishing a relation-

ship between the distinct demand fulfilment constraints in the two problems. In the

IRP, constraint set (3.8) ensures no stockouts occur, while constraints (3.9) forbid

the inventory level to exceed capacity Ci. We will show that with a proper definition

of the MVRPD data, as well as a consistent transposition of the feasible solutions

from one problem to another, the constraints can be parallelized with, respectively,

the latest and earliest delivery dates constraint (4.7).

Indeed, each IRP customer i will be replaced with a set of MVRPD demand

points Ri ⊆ R located at the same geographical location. Therefore, from now on,

our focus will be on one fixed IRP customer i.

We will proceed as follows:

• Set up, in Section 4.4 a consistent panel of notations that will help us describe

the two problems and interrelate them in the rest of the study.

• Explain the procedure that builds up a valid MVRPD, using the data of an

existing IRP, in Section 4.5. We will highlight in Theorem 1 two properties

of the MVRPD generated in that procedure, which will allow us to relate our

two problems.

• Section 4.6 will then discuss how a feasible IRP solution should be handled to

build a feasible MVRPD solution, and vice versa. Again, compact properties

will be derived in Theorem 2, to account for the relationship between the

feasible solutions.
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• These two theorems will allow us to formally show in Section 4.7 that, when

building up the MVRPD as explained in Section 4.5 and transposing the de-

cisions of feasible solutions as described in Section 4.6, any feasible solution of

one problem is indeed feasible for another.

• Finally, Section 4.8 will illustrate our procedure with a simple example.

4.4 Notations

Before starting any formal description of our approach, it is important to properly

introduce some notations used in the following sections.

Omission of customer index i

As explained in Section 4.3, the focus of the next few sections will be on a given

customer i. For clarity, the index i will subsequently be omitted when referring to

the characteristics of an IRP customer. Only the set Ri ⊆ R will keep that index

in order to remind the reader that it refers to a set of MVRPD demand points that

emanate from the same IRP customer i and that all share the same geographical

location.

Cumulated quantities

Given the nature of the inventory constraints (3.8) and (3.9), cumulated quantities

such as demand, delivered quantities or loads will be often referred to. For clarity,

these quantities will be denoted with the CAPITAL letter of the original variable,

and a superscript indicating the last term on the summation. For example, the

cumulated demand of the customer will be denoted as Dt =
∑t

t′=1 dt′ (Note that,
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4.5 Formal transposition of the data

IRP:One customer i ∈ N

Designation Notation

Data

Capacity C

Initial inventory I0

Daily demand dt

Cumulated demand Dt =
∑t

t′=1 dt′

Decisions

Vol. delivered on day t by a vehicle k qkt

Cumulated deliveries Qt =
∑

k∈K

∑t
t′=1 qkt′

Table 4.1: Notations relative to the original IRP

MVRPD:Set of loads Ri ⊂ R

Designation Notation

Data

Earliest, latest delivery dates of r ∈ Ri Lr and Er

Volume of a load r δr

Cumulated loads ∆r =
∑r

r′=1 δr′

Decisions
Quantity delivered by a vehicle k

ϕkt
ron day t to demand point r

Table 4.2: Notations relative to the destination problem MVRPD

as already indicated, the index i is omitted). Likewise, the cumulated deliveries

will be referred to as Qt =
∑

k∈K

∑t
t′=1 qkt′ . Moreover, once the set Ri is defined,

we will consider the cumulated loads themselves: ∆r =
∑r

r′=1 δr′ , where the sum is

conducted on the ordered set. Tables 4.1 and 4.2 sum up all the notations that will

be used subsequently and should be used as reference, while Figure 4.1 describes

our approach using these notations.

4.5 Formal transposition of the data

The following description will formalize our transposition procedure. This procedure

considers an IRP customer with a finite capacity C, any demand pattern (dt)t∈{1,...,T},
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4.5 Formal transposition of the data

Problem IRP:One customer i ∈ N  MVRPD: Set Ri ⊆ R

Data I0, C, and (dt and Dt)t∈H  Ri and {(Er, Lr, δr), r ∈ Ri}
Decisions qkt and Qt  ϕkt

r

Constraints

Dt − I0 ≤ Qt ≤ Dt − I0 + C

(∀t < T ) and ⇐⇒
∑

k

∑Lr

t=Er
ϕkt

r = δr

QT = DT − I0 ∀r ∈ Ri

Figure 4.1: Description of the transposing approach

where max{dt, t ∈ {1, ..., T}} ≤ C and an initial inventory I0 ≤ C, and outputs a

set Ri of MVRPD loads. We will assume that all the notations introduced in Section

4.4 and summed up in Tables 4.1 and 4.2 are known.

The idea behind our transposition procedure is very simple. It consists of break-

ing up the total delivery volume QT = DT − I0 into an ordered set of loads. Each

load r in this set will have a volume δr, a latest delivery date Lr reflecting the “no

stockouts” constraint, and an earliest delivery date, accounting for the customer ca-

pacity restriction. As explained in the next section 4.6, the validity of this procedure

will rely on the fact that the ordered loads will be delivered in that specific order to

the IRP customer considered.

The procedure makes great use of the cumulated demand and is therefore very

graphical in description. We will consequently make great use of figures to describe

it, and derive analytical properties later on, that will be summed up in Theorem 1

on page 38.

4.5.1 Step 1 - Total delivery volume DT − I0

To visualize the cumulated demand(Dt)t≤T on a unified scale, the daily demand

volumes (dt) are arranged one after another. Initial inventory is accounted for on

this scale by removing I0 units from the lower part of the diagram. Figure 4.2
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4.5 Formal transposition of the data

illustrates how, once this is done, one can clearly visualize the total delivery volume

QT = DT − I0.

Moreover, this figure shows that we can identify graphically the first day whose

demand is not totally covered by the initial inventory: t0 = min{t ∈ H : Dt > I0}.

That means that stockouts will not occur if no deliveries are made before t0. Our

Daily demand Cumulated demand

… …

… …

… …

Initial Inventory

1
tD 1

TD

0I

0td

1d

td
Td

1d 0td td

1 0
TD I−

Td

t 0 : First day not covered by 
initial inventory: remaining 
volume is 0

1 0
tD I−

The "Loads" will be an 
ordered partition of this 
total delivery volume.

00I− Total delivery volume

Figure 4.2: Defining t0 and the total delivery volume

task is now to extract “loads”, by partitioning this total delivery volume DT − I0.

This volume can be represented by the interval [0, Dt − I0] of an x axis. This axis

will be used to define the latest delivery date L(x) and the earliest delivery date

E(x) of a given part of the delivery volume.

The partition will be realized in two steps. Firstly, the “no stockouts” constraint

will impose latest delivery dates and therefore give a first division of the total delivery

volume. Secondly, the customer capacity constraint will impose earliest delivery

dates, that will further split this volume. The loads will then be simply obtained by

merging these two partitions.
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4.5 Formal transposition of the data

4.5.2 Step 2 - Latest delivery dates

The first partition is the most straightforward. The “no stockouts” constraints will

require that the volume of a given day’s demand dt is delivered before or on that

specific day t, unless the initial inventory can cover this demand volume. Hence,

any load corresponding to the volume of dt will be assigned a latest delivery date of

t, as illustrated in Figure 4.3. More formally, we have created “blocks” in the total

delivery volume such that:

t = t0 : {x ∈ (0, Dt0 − I0]} ⇔ {L(x) = t0}

∀t > t0 {x ∈ (Dt−1 − I0, D
t − I0]} ⇔ {L(x) = t}

which implies

max{x : L(x) ≤ t} = Dt − I0 ∀t ≥ t0 (4.11)

The next section shows how the capacity constraint may break these blocks into

pieces that do not have the same earliest delivery date.

Cumulated demand

Volume partition

tD

1d 0td td

0
TD I−

Td

00I−
Latest delivery dates

0t T

x

( )L x t=

1tD −

0tD

1td − 1td +

1t − 1t +

Figure 4.3: Finding the latest delivery dates
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4.5 Formal transposition of the data

4.5.3 Step 3 - Earliest delivery date

In the same fashion, we will now identify “blocks” of the total delivery volume that

share the same earliest delivery date E. In this prospect, the capacity constraint

Qt ≤ Dt + C − I0 is visualized on the same scale by shifting the cumulated demand

by C units and reporting it in the total delivery volume. In that way, one can

graphically identify the volume that can fit in the customer’s capacity on a given

day. Thus, for any day θ ∈ H, any part of [0, DT − I0] facing dθ on the “shifted”

scale will be assigned an earliest delivery date E = θ, as shown in Figure 4.4.

"Shifted "Cumulated demand

Volume partition

…

D Cθ +

1d dθ

0
TD I−

Td

00I−
Earliest delivery dates

x

( )E x θ=

1D Cθ − +
C

1
C

1dθ − 1dθ +

0 1θ +1θ −

Figure 4.4: Finding the earliest delivery dates

We have created here a different set of “blocks” such that:

∀θ ∈ H {x ∈ (Dθ−1 + C − I0, D
θ + C − I0]} ⇔ {E(x) = θ}

which implies :

∀x ∈ [0, DT − I0], ∀θ ∈ H, {E(x) > θ} ⇔ {x > Dθ + C − I0} (4.12)
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4.5 Formal transposition of the data

4.5.4 Step 4 - Merging of the two partitions

The loads are now obtained by merging the two partitions defined in the previous

two sections, and by noting that a given load r must have a unique latest delivery

Lr and a unique earliest delivery date Er as shown in Figure 4.5. The loads are then

simply numbered from 1 to R=|Ri|, starting from the left side of the axis, as shown

in Figure 4.6. The set Ri is now fully defined, and we can therefore use the load

volumes δr as well as the cumulative loads ∆r =
∑

r′≤r δr′ .

… …

E … …
L … …

… …

( )E x θ= 1θ +

1θ −

0
TD I−0

( )L x t=

0
TD I−0 0D C Iθ + −1

0D C Iθ − + −

1t − 1t +

1θ −

θ θ 1θ +
1t − t t 1t + 1t +

1
0

tD I− − 0
tD I−

Earliest
delivery date

Latest delivery
date partition

Loads obtained
by merging the 2
partitions

Figure 4.5: Creating the loads by combining the two partitions

…

0
TD I−0

1E

0t

1 r
rE

rL

R
RE

RL

r∆

rδ1δ RδLoad Volume

Load No

Earliest Delivery Date

Latest Delivery Date

Cumulated Volume

Figure 4.6: The set of loads obtained
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4.6 Formal transposition of the decisions

4.5.5 Analytical properties of the loads

It is now possible to derive analytical properties on the loads defined. We will first

identify rmax(t) as the last load with its latest delivery date on day t

∀t > t0, rmax(t) = max{r ∈ Ri : Lr = t}

We therefore have

rmax(t) = max{x : L(x) ≤ t}

And relation (4.11) allows us to conclude that

∀t ≥ t0, rmax(t) = Dt − I0 (4.13)

Another property, relative to the latest delivery dates, can be derived by simply

applying relation (4.12) to x = ∆r:

∀r ∈ Ri, (Er > t) ⇔ (∆r > Dt + C − I0) (4.14)

Finally, it is important to note that, by applying the two partitionings, we cannot

generate more than T + T = 2× T loads.

These three properties can be grouped together for further use:

Theorem 1. At the end of our constructive procedure, the loads built have the

following properties:

∆rmax(t) = Dt − I0 ∀t ≥ t0 (4.15)

∀r ∈ Ri, (Er > t) ⇔ (∆r > Dt + C − I0) ∀t ∈ H (4.16)

|Ri| = R ≤ 2× T (4.17)

4.6 Formal transposition of the decisions

Our proof of the equivalence of the two formulations will be based on the following

simple concept: we will consider a feasible IRP solution, and show how it can be used

38



4.6 Formal transposition of the decisions

to generate a feasible MVRPD solution with the same cost, and vice versa. Before

actually showing the equivalence, we will explain how feasible solutions should be

transposed from one problem to another.

a - MVRPD to IRP The transposition of the MVRPD decisions ϕkt
r to IRP

decisions qkt is simple and straightforward : the decisions are obtained by simply

cumulating all the loads delivered on a given day on a given truck: qkt =
∑

r∈Ri
ϕkt

r .

Transposing the solution from the IRP to the MVRPD will require a more technical

procedure.

b - IRP to MVRPD A feasible IRP solution will be described by the set of

delivery quantities qkt that satisfy the inventory constraints(3.8) and (3.9). We

therefore wish to distribute those quantities among loads to obtain the MVRPD

deliveries ϕkt
r .

For clarity, this will be done by aggregating all the trucks first. Our goal is then

to assign the volume distributed in the IRP during a given day
∑

k qkt to loads, to

obtain the volumes distributed on a given day to a given load
∑

k ϕkt
r . This is done

by serving the loads in the order defined in section 4.5.

The idea is quite similar to the work done on cumulated deliveries in the previous

section, and is therefore very graphical in description. The IRP delivery volumes qkt

are first aggregated by day
∑

k∈K qkt. These volumes are then accumulated one after

another to visualize the cumulated deliveries Qt =
∑

t′≤t

∑
k∈K qkt′ . Given the IRP

constraint, the total delivery volume is QT = DT − I0, and the cumulated deliveries

consequently define a partition of [0, Dt − I0], as shown in Figure 4.7.

We have seen in the previous paragraphs that the loads themselves (r)1≤r≤R

induced another partition of [0, Dt − I0]. We will merge these two partitions (load
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4.6 Formal transposition of the decisions

IRP  deliveries Aggregated deliveries

Day
1
… … …
t
… … …
T

Cumulated deliveries

Total Daily  Volume

kt

k
q∑( )kt

kq

1( )k
kq

( )kT
kq

kT

k
q∑

1k

k
q∑

Individual trucks k

1k

k

q∑ kt

k

q∑ kT

k
q∑

0
T TQ D I= −0 1tQ − tQ1Q

Aggregation

Cumulation

Figure 4.7: Aggregating and cumulating the IRP deliveries to partition [0, DT − I0]

definition and IRP deliveries) as shown in Figure 4.8, to define the daily MVRPD

delivery volumes
∑

k ϕkt
r . The merging can be formally described as follows:

∑
k∈K

ϕkt
r 6= 0 ⇒


∆r > Qt−1 The load did not “fit” in the previous day

and

∆r−1 < Qt The previous load did not “fill” the current day

and ∑
k

∑
r∈Ri

ϕkt
r =

∑
k

qkt

∑
k,t

ϕkt
r = δr

Assigning loads to trucks In the previous paragraph, we have assigned the

different loads to delivery days, such that
∑

k

∑
r∈Ri

ϕkt
r =

∑
k qkt is verified. We

have not explained, however, how these loads should be dispatched to different

trucks. This can be done in any way satisfying
∑

r ϕkt
r = qkt. All the loads of a

given IRP customer being located at the same location, this assignment will have
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4.6 Formal transposition of the decisions

MVRPD loads: r-1 r r+1

MVRPD Deliveries

 IRP deliveries: t-1 t t+1

0kt
rϕ ≠∑

1tQ − tQ

1r−∆ r∆

1
kt
rϕ +∑1

kt
rϕ −∑ , 1

1
k t
rϕ

+
+∑, 1

1
k t
rϕ

−
−∑

0
TD I−

0
TD I−

0

0

Figure 4.8: Creating the MVRPD deliveries

no impact on the routing itself. We will therefore have additionally:∑
r

ϕkt
r = qkt, ∀k, t

All these properties can be grouped in a theorem for later use:

Theorem 2.

∑
k∈K

ϕkt
r 6= 0 ⇒


∆r > Qt−1 The load did not “fit” in the previous day

and

∆r−1 < Qt The previous load did not “fill” the current day

(4.18)

∑
r

ϕkt
r = qkt, ∀k, t (4.19)

∑
k,t

ϕkt
r = δr (4.20)

We have shown, in Section 4.5, how to build a MVRPD problem from the data of

an IRP. Theorem 1 summed up the properties of the MVRPD data obtained. Then

we have described the procedure undertaken to transpose a feasible solution of one

problem to the other. Theorem 2 gave the properties of the MVRPD decisions

obtained when applying this transposition. We will now show that, with these

properties, any solution feasible for one problem is also feasible for the other.
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4.7 Equivalence of the formulations

4.7 Equivalence of the formulations

In this subsection, we will show that, given any IRP problem, the MVRPD defined

by

R =
⋃
i∈N

Ri

is fully equivalent to the IRP. We therefore consider a given IRP, and the MVRPD

defined by the procedures described in the previous sections.

4.7.1 IRP to MVRPD

Consider a feasible IRP solution, and consider the set of MVRPD decisions ϕkt
r

defined in section 4.6. We want to check that

• The two solutions have the same cost

• The vehicle capacity restriction (4.3) is respected

• Constraint (4.7), that requires the loads to be delivered within [Er, Lr] is re-

spected in the MVRPD solution

Note, first of all, that the routing plan defined in the two problems are the same.

Indeed property (4.19) ensures that the visits to demand points are the same, given

that we located all the loads generated from a given IRP customer at the same

geographical location. Therefore, the two feasible solutions will have the same cost .

Furthermore, given property (4.19), and since the IRP solution respects vehicle

capacity, the capacity restriction is respected in the MVRPD.
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4.7 Equivalence of the formulations

Consequently, we only have to check whether the constraints (4.7) are all re-

spected.

∑
k∈K

Lr∑
t=Er

ϕkt
r = δr ∀r ∈ R

Suppose this constraint is violated for a given load r. Given property (4.20),

that ensures that the whole volume of a load is delivered during the planning period,

this means that either

1. (∃t < Er : ϕkt
r 6= 0): a delivery reaches load r before its earliest day or

2. (∃t > Lr : ϕkt
r 6= 0) : a delivery reaches load r after its last day

Case 1: (∃t < Er : ϕkt
r 6= 0)

(t < Er) ⇒ Dt + C − I0 < ∆r (Given t < Er and Theorem 1)

Suppose now that we have ∆r−1 < Dt + C − I0, that is ∆r−1 < Dt + C − I0 < ∆r.

This would imply that there is a load r′ between r−1 and r, with an earliest delivery

date Er′ > Er−1, as described in Paragraph 4.5.3. This contradicts the fact that, by

construction, load r − 1 precedes load r. We therefore have ∆r−1 ≥ Dt + C − I0.

Additionally:

(ϕkt
r 6= 0) ⇒ ∆r−1 < Qt (See Theorem 2)

⇒ Dt + C − I0 < Qt (Given ∆r−1 ≥ Dt + C − I0)

This is impossible, given that our feasible IRP solution respects the customer ca-

pacity constraint: Case 1 is impossible.
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4.7 Equivalence of the formulations

Case 2: (∃t > Lr : ϕkt
r 6= 0)

(∃t > Lr : ϕkt
r 6= 0) ⇒Qt−1 < ∆r (See Theorem 2)

⇒Qt−1 < ∆rmax(Lr) (rmax(Lr) ≥ r by definition of rmax)

⇒Qt−1 < DLr − I0 (See Theorem 1)

⇒Qt−1 < Dt−1 − I0 Given(Lr < t) ⇒ (Lr ≤ t− 1)

This is impossible, given that our feasible IRP solution respects the “no stockouts”

constraint: Case 2 is impossible.

We have therefore shown that any feasible IRP solution satisfies the MVRPD

constraints.

4.7.2 MVRPD to IRP

Consider a feasible MVRPD solution, and consider the IRP data obtained by ag-

gregating the deliveries to different loads qkt =
∑

r∈Ri
ϕkt

r . For the same reasons

explained in the previous paragraph, this IRP data does not violate the vehicle ca-

pacity constraint, and has the same total cost as that of the MVRPD solution.

Let us first show that no stockouts will occur,∀t ∈ H:

Qt =
∑
k∈K

t∑
t′=1

∑
r∈Ri

ϕkt
r ≥

∑
k∈K

t∑
t′=1

∑
r:Lr≤t

ϕkt
r

=
∑

r:Lr≤t

δr given
∑
k∈K

Lr∑
t′=Er

ϕkt
r = δr

= ∆rmax(t) by definition

= Dt − I0 (Given Theorem 1)

And the “no stockouts” constraint is therefore respected every day.
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4.8 Working on an example

Now, we have to check that customer capacity is not exceeded.

Qt =
∑
k∈K

t∑
t′=1

∑
r∈Ri

ϕkt
r =

∑
k∈K

t∑
t′=1

∑
r:Er≤t

ϕkt
r Because ϕkt

r = 0 if t < Er

≤
∑

r∈Ri:Er≤t

δr

= ∆r1 Where r1 is a load such that Er1 ≤ t

≤ Dt + C − I0 (Given Theorem 1 and given Er1 ≤ t)

Consequently, the customer capacity constraint is respected.

We have shown that any feasible IRP solution is feasible for the MVRPD, and

vice-versa: these two formulations are thus EQUIVALENT.

An example illustrating this equivalence is given in the next section, and will

help the reader familiarize with our approach.

4.8 Working on an example

Section 4.8.1 will start by describing the data of a small IRP and we will apply the

different steps explained in the previous sections to this example. In Section 4.8.2,

the latest delivery dates will apply a first partition of the total delivery volume.

Then, in Section 4.8.3, the earliest delivery dates will define another partition that

accounts for the customer’s limited capacity and Section 4.8.4 will merge these two

partitions to obtain loads. Finally in Section 4.8.5, we will consider an IRP solution

and show how we build a MVRPD solution from it.

4.8.1 Data of an IRP example

For clarity, we chose to apply our procedure to an example of small size: we will

consider a planning horizon of 4 days and an IRP customer with the following
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4.8 Working on an example

demand pattern, capacity and initial inventory level:

Capacity C = 4

Initital inventory I0 = 2

Demand d1 = 1 d2 = 2 d3 = 3 d4 = 4

Cumulated D1 = 1 D2 = 3 D3 = 6 D4 = 10

With this data, the “no stockouts” inventory constraints (3.8) can be written:

0 ≤ Q1 3− 2 ≤ Q2 6− 2 ≤ Q3 Q4 = 10− 2

That is: 0 ≤ Q1 1 ≤ Q2 4 ≤ Q3 Q4 = 8

And the constraints enforcing customer capacity (3.9) are simply:

Q1 ≤ 5− 2 Q2 ≤ 7− 2 Q3 ≤ 10− 2 Q4 = 10− 2

That is: Q1 ≤ 3 Q2 ≤ 5 Q3 ≤ 8 Q4 = 8

This numerical IRP instance will be now transposed to a MVRPD

4.8.2 Latest delivery dates

We will proceed here with the first steps of the method explained in Section 4.5,

that define the total delivery volume DT − I0, and apply latest delivery dates to

some segment of this volume.

The first day which demand is not covered by the initial inventory t0 = min{t :

Dt > I0} = 2 here, since D2 = 3 > 2 = I0, and D1 = 1 ≤ 2 = I0. Furthermore, the

total delivery volume is D4 − I0 = 10− 2 = 8.

As illustrated in Figure 4.9, this volume will be partitioned in 3 segments with

distinct latest delivery dates.

L = t0 = 2 ∀x ∈ [0, Dt0 − I0] = [0, 1]

L = 3 ∀x ∈ (D2 − I0, D
3 − I0] = (1, 4]

L = 4 ∀x ∈ (D3 − I0, D
4 − I0] = (4, 8]

We have now to define a different partition of the volume with earliest delivery

dates.
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4.8 Working on an example

IRP Demand: d 1 d 2 d 3 d 4

Initial inventory

Latest d. dates 2 3 4

Delivery Volume

0I

4
0 8D I− =0 2

0 1D I− = 3
0 4D I− =

Figure 4.9: Latest delivery dates of the example

4.8.3 Earliest delivery dates

In this section, the total delivery volume is partitioned differently to account for

customer capacity. This is done graphically, as described in Figure 4.10, by using

the “shifted” cumulated demand to visualize which parts of the delivery volume fit

in a given day’s inventory. The total delivery volume was partitioned into 4 zones

Cumulated volume:

IRP Demand: d 1 d 2 d 3 d 4

Delivery Volume

Earliest d. Date 1 30 2

0I

C

3
0 8D C I+ − =0 0 2C I− =

1
0 3D C I+ − =

2
0 5D C I+ − =

Figure 4.10: Earliest delivery dates of the example
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4.8 Working on an example

with distinct earliest delivery dates:

E = 0 ∀x ∈ [0, C − I0] = (0, 2]

E = 1 ∀x ∈ (C − I0, D
1 + C − I0] = (2, 3]

E = 2 ∀x ∈ (D1 + C − I0, D
2 + C − I0] = (3, 5]

E = 3 ∀x ∈ (D2 + C − I0, D
3 + C − I0] = (5, 8]

4.8.4 Merging of the partitions

The loads will now be defined by merging the two partitions previously presented,

and by numbering the loads, as shown on Figure 4.11. As the figure shows, a total

Delivery Volume

Latest d. dates 2 3 4

Loads
Load Number
Latest delivery date
Earliest delivery date

Earliest d. Date 1 3

Delivery Volume

4
3

6
2
0

3
0

3
1

3
2

4

0 2

1 2 3 4 5

2

4
0 8D I− =0 2

0 1D I− =
3

0 4D I− =

3
0 8D C I+ − =0 0 2C I− =

1
0 3D C I+ − =

2
0 5D C I+ − =

r
rL
rE

Figure 4.11: Merging of the partition and load numbering

of 6 loads were obtained:

Load 1 δ1 = 1 E1 = 0 L1 = 2

Load 2 δ2 = 1 E2 = 0 L2 = 3

Load 3 δ3 = 1 E3 = 1 L3 = 3

Load 4 δ4 = 1 E4 = 2 L4 = 3

Load 5 δ5 = 1 E5 = 2 L5 = 4

Load 6 δ6 = 3 E6 = 3 L6 = 4

So far, we have used our example to illustrate how the IRP data of a given

customer should be used to generate a consistent set of MVRPD loads. We will now
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4.8 Working on an example

show how, starting with a feasible IRP solution, one is supposed to build a feasible

MVRPD solution.

4.8.5 Transposing the decisions

IRP to MVRPD To illustrate how decisions are transposed from the IRP to

the MVRPD, we will pick a given delivery policy that is feasible for the demand

parameters of the IRP customer we study in this example. The daily delivery quan-

tities are listed hereafter, and one can verify, using the constraints listed in Section

4.8.1, that such a delivery schedule respects all the IRP constraints. Without loss of

generality, and for simplicity, we assumed that only one vehicle was available, and

therefore omit the index k of the vehicle.

Deliveries q1 = 2 q2 = 2 q3 = 2 q4 = 2

Cumulated Q1 = 2 , Q2 = 4 Q3 = 6 Q4 = 8

We wish to build a feasible MVRPD solution using these IRP decisions. This

is done, as described in Section 4.6, by going through the deliveries in the order

they appear, and by assigning the delivery volumes to the different loads, in the

order that these loads appear in. Figure 4.12 illustrates the result obtained for our

numerical example. This gives a total of seven deliveries:

Day 1: 1 unit goes to load 1 and 1 unit to load 2 → total of 2 = q1 units

Day 2: 1 unit goes to load 3 and 1 unit to load 4 → total of 2 = q2 units

Day 3: 1 unit goes to load 5 and 1 unit to load 6 → total of 2 = q3 units

Day 4: 2 units go to load 6 → total of 2 = q4 units

The deliveries ϕkt
r defined in this way obviously respect the MVRPD constraints

(4.7), that is
∑

t ϕ
t
r = δr.
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MVRPD to IRP The inverse transformation is straightforward: a feasible MVRPD

solution (ϕkt
r )r,k,t can easily be transformed into a feasible IRP solution, by simply

choosing qkt =
∑

r ϕkt
r , that is by aggregating the deliveries made on day t to all

demand points r. Given the definition of the loads, no stockouts will occur, and the

customer capacity won’t be exceeded.

0 1 2 3 4 5 6 7 8
Delivery Volume

IRP Deliveries: q 1 q 2 q 3 q 4

MVRPD Deliveries

MVRPD Loads 1 4 5 62 3

1
1ϕ 1

2ϕ
2
3ϕ

2
4ϕ

3
5ϕ 3

6ϕ
4
6ϕ

Figure 4.12: Assigning delivery volumes to specific loads

This was the last step we wanted to illustrate in our example. Starting from

the data of an IRP customer, we generated MVRPD loads with latest and earliest

delivery dates. Then, we showed how to transpose a feasible IRP solution (set of

deliveries) to a feasible MVRPD and vice versa.

4.9 Conclusion

We can now summarize and conclude this chapter, that represented the core of

our contribution. We started by formulating a variant of the VRP, the multiple-

period vehicle routing problem with delivery dates and split demand (MVRPD),

where a set of demand points must receive a given delivery volume between two

specified dates [Er, Lr], and where split-deliveries are allowed. We then showed a

relationship of equivalence between the IRP and the MVRPD: we explained how a

given IRP customer would generate several MVRPD demand points, and how the
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latest and earliest delivery dates of those demand points were dictated by the “no

stockouts” constraint and customer capacity constraint respectively. A formal proof

of the equivalence of the two problems was given in Section 4.7. Finally, Section 4.8

exhibited an example that illustrated how one should build the equivalent problem,

and how feasible solutions of the problems should be transposed. The next chapter

will make use of this transformation to design a simple, constructive heuristic using

techniques from the VRP literature.

51



Chapter 5

A constructive heuristic

5.1 Introduction

In the previous chapter, we showed how, for any IRP, we could build an equivalent

MVRPD. The goal of this transformation is, as already highlighted, to reduce the in-

teractions between the different inventory constraints, and to obtain a problem that

is easier to manipulate. Indeed, starting from a time-driven IRP, we are now con-

sidering a rich, but still order-driven VRP: the MVRPD with split deliveries. This

chapter will focus on proposing a heuristic to find good solutions to this equivalent

problem.

The transposition allows us to use a great number of tools that can be found in

the exhaustive VRP literature available. Our MVRPD has however, two specificities

that require us to develop a customized procedure. Firstly, allowing split-deliveries

restricts us to a less-studied category of VRP solutions: the Split-Delivery VRP

(SDVRP). Secondly, we will have to include specific constraints to account for the

due-dates and earliest delivery dates requirements.
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5.2 Description of the heuristic

5.2 Description of the heuristic

We will now describe the constructive heuristic we designed to fit the structure of

our problem, the MVRPD. We will start by some general facts about our heuristic,

followed by a description of the different modules that compose it.

5.2.1 Generalities

The MVRPD It is useful to quickly remind the reader of the description of the

MVRPD given in Section 4.2 : during a horizon of T days, a set N ′ of demand points

are served by a depot 0. Each demand point r ∈ N ′ has a demand δr of product,

that must be delivered between days Er and Lr. The travel costs between 2 nodes

crs are known.

We will assume from now on that these costs are proportional to the euclidian

distance, with a proportionality factor of one: crs =
√

(xr − xs)2 + (yr − ys)2. Our

problem is therefore, from now on, a symmetrical routing problem.

K vehicles of capacity W are available everyday. We allow the demand of

a customer to be split among vehicles or days. The objective is to minimize

the transportation costs.

Motivation As already developed in the previous chapter, an IRP problem with a

set of n customers and a planning horizon of T days will become a MVRPD problem

with n×T to 2×n×T demand points after transformation. Hence, with as little as

10 nodes and a planning horizon of 10 days, we could end up considering a MVRPD

with up to 200 demand points. Consequently, it is difficult to try to find an optimal

solution to our instances. Indeed, one must keep in mind that the very elaborate
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cutting-plane technique developed by Belenguer et al. (2000) was able to find an

optimal solution to one instance of a SDVRP with 50 nodes, and that our problem

has a structure very similar to this SDVRP, but with additional constraints.

Heuristic structure: 5 independent modules We will therefore focus on de-

signing a fast-running constructive heuristic inspired by earlier studies in the liter-

ature. This very simple algorithm works with 5 different “modules”.

• Module 0 - REDUCE : Reduces the problem to consider only demand points

with a volume that fits into the vehicle δi ≤ W

• Module 1 - INITIAL: Construction of a first, feasible solution using a cus-

tomized savings algorithm.

• Module 2 - IMPROVE : Improvement of the solution using the 2-Opt, Or-Opt,

exchange, cross and relocate operators.

• Module 3 - IMPROVE SPLIT : Improvement of the solution using k-split in-

terchange and route addition.

• Module 4 - VOLUME OPT : Optimizes the vehicle occupation by adding extra

volume to some deliveries.

INITIAL and IMPROVE are run once, then a loop iterates K SPLIT,ROUTE ADD

and IMPROVE until no improvement is found. VOLUME OPT is run on the final

routing plan.

Notations We will now set up a few simple notations that will help us describe

the different modules contained in our heuristic.
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In a routing plan, a route r will be a tour starting from and ending at the

depot, executed by a vehicle kr on day tr, and serving a set Sr of customers. The

total load on that route will be Wr =
∑

i∈Sr
qkrtr
i . The spare capacity will then be

sr = W −Wr. On a partial or complete routing plan, the set of unused vehicles will

be denoted as V . A “vehicle” in V will be denoted by (k, t), k being the index of the

physical vehicle, and t being its operating day.

Now that these general facts have been explained, we can describe the different

modules of our heuristic.

5.2.2 Module 0 – REDUCE: Reduction of the problem

As no restricting hypotheses have been made on this matter, we have to explicitly

consider the situation where a demand point can have a demand volume exceeding

the vehicle capacity. This is done, as in Archetti et al. (2003), by creating b δi

W
c direct

trips with fully loaded vehicles to any such demand point. The vehicle and day used

to serve a direct delivery are randomly chosen in the set Vi = {(k, t)/Ei ≤ t ≤ Li},

that is the set of vehicles with operating days compatible with the delivery dates

of load i. Once all the direct deliveries are created for a given customer, only the

remaining demand δi − b δi

W
c is considered when examining the demand point for

routing. This procedure is repeated for all the customers, which gives us a reduced

instance. We will work with this reduced instance from now on.

It has been shown in Archetti et al. (2004) that, when solving to optimality,

considering the above-described reduced instance gives a worst-case error of 3/2

when distances in the network satisfy the triangle inequality.
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5.2.3 Module 1– INITIAL

The first module, INITIAL, builds up a feasible solution using a custom made se-

quential savings algorithm, described hereafter. If the savings algorithm could find

a feasible solution, a greedy algorithm is then applied to the problem to build a

feasible initial plan, regardless of the cost.

We say that an arc (i, j) is compatible with a partially scheduled vehicle k on

day t if it satisfies the delivery dates constraints: Ei ≤ t ≤ Li and Ej ≤ t ≤ Lj. The

module can be written as follows:

1. Initialization: Compute the savings sij = ci0 + c0j − cij for i, j = 1, ..., n and

i 6= j and rank them in a non-increasing fashion in a list L. Initialize the set

of available vehicles V , by removing the vehicles used in the previous module

REDUCE.

2. Choice of the vehicle: If V is empty go to step 5. Else randomly pick up a

vehicle (k, t) in V .

3. Route initialization: Starting from the top, scan L for an arc (i, j) compatible

with vehicle (k, t), and that satisfies δi + δj ≤ W . If no such arc is found,

remove the vehicle from V and go to step 2. Else, create the route (0, i, j, 0)

with the chosen vehicle, and remove arc (i, j) from L.

4. Route Merge: Scan L to find an arc (i, j) compatible with vehicle (k, t) on day

t, that can be feasibly added to the start or end of the vehicle route. If no

such arc is found, remove the vehicle (k, t) from V , and go to step 2. If such

an arc is found, append the arc to the route and repeat step 4.

5. Termination of savings procedure: If all demand points are on a route, the

algorithm is successful: stop. Otherwise, it could not build a feasible solution:

go to step 6.
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6. Greedy algorithm: assigns loads to vehicles regardless of cost considerations.

(a) Initialize the set of unassigned loads as U = {δr}1≤r≤N ′ and the current

day as t = 1.

(b) If t = T + 1 terminate: a feasible assignment of the loads was found only

if U = {}. Else initialize the current vehicle as k = 1.

(c) If k = K + 1 set t = t + 1 and go to (b). Else initialize the available

capacity of the current vehicle to W free
kt = W . Let Ukt = {r ∈ U : Er ≤ t}

the set of unassigned loads that can be delivered before t.

(d) If Ukt = {} then set k=k+1 and go to (c). Else let rkt = arg(min{Lr : r ∈

Ukt}) the load with the most constrained delivery date that has not been

considered for current vehicle yet and set Ukt = Ukt − {rkt}. If Lrkt
< t

then terminate: no feasible solution could be built. Else if δr > Qfree
kt

then go to (d): the load does not fit in the current vehicle. Else assign

load rkt to vehicle k on day t, set U = U−{rkt}, set W free
kt = W free

kt −δrkt

and go to 4.

If the greedy procedure finds a feasible vehicle-load assignment, route each

truck using a classic savings algorithm.

Note that, in step 2 of INITIAL, a vehicle (k, t) is chosen randomly. Several

other methods(start from the first day, start from the last day, start from the busiest

day, start from the least busy day, iterate through the planning period etc.) were

experimented but none gave significantly better results. We therefore adopted the

randomization method. Moreover, we believe that this randomization allows us to

overcome cases of infeasibility, by building the schedule in a different order. The

reader might have noticed that, in the solution built by INITIAL, no split deliveries

were performed. This will be examined later.
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5.2.4 Module 2–IMPROVE

This section describes a procedure that takes as input a feasible solution and tries

to improve it by applying elementary modifications to the routing plan. Our local

improvement procedure uses 5 different operators that are described hereafter:

Intra-Route improvement: the 2-Opt Operator In a 2-Opt neighborhood,

2 arcs on the same route are removed and reconnected to improve the total cost of

the route, as illustrated in Figure 5.1:

1. If all routes have been examined, go to step 3. Choose a route r.

2. If all combinations of 2 arcs have been examined on r, go to step 1. Else, choose

two arcs from the vehicle route, and try the other possible reconnection of the

remaining parts of the route. If the move reduces total cost, implement it.

Repeat step 2.

3. End.

Figure 5.1: A basic arc interchange in the 2-opt procedure
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Intra-Route improvement: the Or-Opt Operators This procedure, sug-

gested by Or (1976) tries to relocate consecutive visits within a given route(see

Figure 5.2):

1. If all routes have been examined, go to step 5. Choose an existing route r.

2. If all single visits have been examined go to step 3. Else, choose one visit

from the vehicle route, and try to relocate it elsewhere in the route. If the

move reduces total cost, implement it. Repeat step 2.

3. If all of two consecutive visits have been examined go to step 4. Else,

choose two consecutive visits from the vehicle route, and try to relocate

them elsewhere in the route. If the move reduces total cost, implement it.

Repeat step 3.

4. If all three consecutive visits have been examined go to step 1. Else, choose

three consecutive visits from the vehicle route, and try to relocate them

elsewhere in the route. If the move reduces total cost, implement it. Repeat

step 4.

5. End.

Note that, when implementing the 2-Opt and Or-Opt operators, there is no

need to check for feasibility, since the arcs are moved within given routes, and both

capacity constraints and delivery dates are known to be compatible.

Inter-route improvement: the relocate operator This operator removes a

visit from a given route and tries to reinsert it in another route, as illustrated in

Figure 5.3:

1. If all routes have been examined, go to step 3. Else, choose a route r.
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Figure 5.2: Relocation of 2 consecutive visits in the Or-Opt procedure

2. If all visits have been examined go to step 1. Else, choose a visit from r, and

try to relocate it in another route. If the move reduces total cost, and if it is

feasible, implement it. Repeat step 2.

3. End.

Note that, for this operator, feasibility has to be checked when transferring a

visit from one vehicle to another. We have to check whether the delivery dates of

demand point i are compatible with the new vehicle route r′ executed on day tr′

(Ei ≤ tr′ ≤ Li) and whether the new vehicle has enough free capacity to carry the

new load (δi ≤ sr′).

Inter-route improvement: the exchange operator This operator swaps visits

belonging to different routes, as shown in Figure 5.4:

1. If all pairs of existing routes have been examined, go to step 3. Choose two

routes r and r′.
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Figure 5.3: Relocate operator: Relocation of a visit to another vehicle

2. If all pairs of visits have been examined go to step 1. Else, choose one visit

in each of the vehicle route, and try to swap them. If the move reduces

total cost, and if it is feasible, implement it. Repeat step 2.

3. End.

Again, for this operator, feasibility has to be checked when swapping visits.

When exchanging visit i on route r with visit i′ on route r′, delivery dates must be

compatible with the new vehicle: Ei ≤ tr′ ≤ Li and Ei′ ≤ tr ≤ Li′ . Capacity has to

be checked as well: δi′ ≤ sr + δi and δi ≤ sr′ + δi′ .

Inter-route improvement: the cross operator The cross operator looks for

cost improvements by exchanging the end-parts of two routes. See the illustration

in Figure 5.5.

1. If all pairs of routes have been examined, go to step 3. Choose two routes r

and r′

61



5.2 Description of the heuristic

Figure 5.4: The exchange operator

2. If all pairs of visits have been examined go to step 1. Else, choose two visits:

i in r and i′ in r′. Try to swap all the visits following i with all the visits

following i′. If the move reduces total cost, and if it is feasible, implement it.

Repeat step 2.

3. End.

Feasibility check is more complicated in this case. If Sr,i is the set of visits

following i in r and Sr′,i is the set of visits following i′ in r′, we must have:


Delivery dates: Ej ≤ tr′ ≤ Lj ∀j ∈ Sr,i

Ej′ ≤ tr ≤ Lj′ ∀j′ ∈ Sr′,i′

Capacity constraint:
∑

j∈Sr,i
δj ≤ sr′ +

∑
j′∈Sr′,i′

δj′∑
j′∈Sr′,i′

δj′ ≤ sr +
∑

j∈Sr,i
δj
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Figure 5.5: The cross operator

Structure of Module 2 - IMPROVE Now that all the operators are defined

clearly, the description of our module IMPROVE is straightforward: it consists

in executing the 2-opt, Or-opt, relocate, exchange and cross procedures, in that

order. If any improvement is found, the 5 procedures are repeated, until no more

improvements are found.

The reader should take note that, for the five operators introduced in the pre-

vious paragraphs, a first-accept strategy was adopted. That is, whenever a move

reduces total cost, it is implemented. We tested another strategy, the best-accept

strategy, that looks for the move that will produce the biggest cost reduction to

implement it, in each operator. This strategy turned out to be very time-consuming,

and did not deliver significantly better results.

5.2.5 Module 3– IMPROVE SPLIT

Both the INITIAL and IMPROVE modules, inherited from the classic CVRP liter-

ature deal with a routing problem where demand points are allowed to be visited
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only once. In other words, the demand volume cannot be split between several

trucks. We will now develop how, starting from such a feasible solution, we can seek

cost improvement by allowing split demand. This procedure is an adaptation of the

work of Dror & Trudeau (1989) on the SDVRP, that simply takes into account the

multiple-period aspect of our problem.

We therefore consider a feasible routing plan where, again, each route r, served

by a vehicle k on day t has a spare capacity of sr = W −
∑

i∈N ′ qkt
i ykt

i

Two subroutines are going to be applied to this solution to reduce cost by

considering split deliveries: the k-split interchange and the route addition.

5.2.5.1 The k-split interchange

This first subroutine examines the current solution for potential split deliveries.

We will start by describing a specific case of the k-split interchange, the 2-split

interchange, that will be extended later for k ≥ 3.

Consider 3 routes that are numbered 1, 2 and 3, and served respectively by

vehicles (k1, t1), (k2, t2) and (k3, t3). Suppose we have s1,s2>0, and let p be a node

served by route 3 satisfying:{
Delivery dates: Ep ≤ t1, t2 ≤ Lp

Capacity constraint: s1 + s2 ≥ qk3t3
p

Let i1, j1 and i2, j2 be consecutive points on routes 1 and 2 respectively. Let bp

and ap be the nodes served immediately before p and after p on route 3. The cost

savings obtained by splitting the delivery volume qk3t3
p between routes 1 and 2, and

by removing the delivery to node p from route 3 can therefore be written as:

SAV2(p) = ci1j1 + ci2j2 + cbpp + cpap − cpj1 − ci1p − ci2p − cpj2 − cbpap
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This formulation can easily be understood by noting that, in order to split demand

of p between routes 1 and 2, 4 arcs needed to be removed, and 5 other added, as

shown in Figure 5.6.
 

p 

ap 

bp 

i1 j1

i2 j2

Route 1

Route 2 

Route 3 p 

ap

bp

i1 j1

i2 j2

Route 1 

Route 2 

Route 3

Figure 5.6: Splitting a delivery across two routes

It is straightforward to extend the 2-split interchange to a r-split interchange.

A demand point p served by a vehicle (k, t) can be split among r routes 1, · · · , r if :

Delivery dates: Ep ≤ tl ≤ Lp,∀l ∈ {1, · · · , r}

Capacity constraint:
r∑

l=1

sl ≥ qkt
p

And the cost savings induced is:

SAVk(p) =
r∑

l=1

(citjt − cpjt − citp) + cbpp + cpap − cbpap

Three technical issues need to be raised to fully describe the k-split interchange:

firstly, when examining a potential k-split where the customer p is already split

between 2 or more routes, the procedure examines all split configurations for demand

point p, and not only the additional splits that leave existing splits unchanged.

Point p is therefore removed from all the routes serving it, before examining all

the combinations involving vehicles with sufficient spare capacity and compatible

delivery days.
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Secondly, it is necessary to explain how the demand volume of node p is shared

among the k routes. This is done by ordering those routes in a list, in non-decreasing

order of their spare capacity sr. Starting at the top of the list, each route is “filled

up”, which means it will deliver a volume sr to p. This is repeated until the whole

volume is dispatched.

Thirdly, our k-split interchange procedure was implemented in a best-accept

framework: all potential splits are examined, and the move leading to the highest

cost savings is implemented. While this strategy may require more computational

time than the first-accept strategy, it provided significantly better computational

results.

5.2.5.2 Route addition

This second subroutine was also adapted from the work of Dror & Trudeau (1989),

to take into account the delivery date constraints of our problem. It arises from the

fact that in some cases, the addition of a new route that regroups split deliveries

may reduce total cost. An example is shown in Figure 5.7, where, when demand

point 2 is split between two routes, the total cost is c01 + c12 + c20 + c02 + c23 + c30.

When node 2 is routed alone, the total cost is c01 + c10 + c02 + c20 + c03 + c30, which

makes a difference of c12 + c23 − c10 − c30.

Figure 5.7: The route addition procedure
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In their procedure, Dror & Trudeau (1989) described how to implement the

route addition procedure to regroup k-splits, with k ≥ 2. In our experiments,

we did not find any route addition achieving positive savings with k > 2. To save

computational time we restricted ourselves to regrouping 2-splits when implementing

this route addition procedure.

When considering a node p in which demand is split among two routes 1 and

2, we have to check nine (9) possible configurations for the composition of the new

route: these are all the possible combinations that can result from adding a new

route containing the node p, and possibly one or two other nodes, taken among the

immediate successor and predecessor of p in routes 1 and 2. All the combinations

are listed in Table 5.1. In that table, aip and bip are used to name, respectively, the

visits immediately after and before p on route i, i = 1, 2.

Feasibility has to be checked as follows: for any combination, let Snew be the

set of nodes served by the route newly added, as listed in the column New Route

of Table 5.1. Define LSnew = min{Li, i ∈ Snew} and ESnew = max{Ei, i ∈ Snew},

the most constraining earliest and latest delivery dates. If ESnew > LSnew , or if∑
i∈Snew

δi > W , the configuration is infeasible. Else, define V (Snew) = {(k, t) ∈

V, ESnew ≤ t ≤ LSnew} the set of unused vehicles with an operating day compatible

with all the visits in Snew. If V (Snew) is empty, the configuration is infeasible. Else

randomly choose a vehicle in V (Snew) and build the new route as in the chosen

configuration. The route addition moves are executed, like the k-split interchange,

on a best-accept basis: all potential moves are examined, and the move producing

the highest cost decrease is implemented.
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Route Configurations

No. Route 1 Route 2 New Route

1 0, b1p, a1p, 0 0, b2p, a2p, 0 0, p, 0

2 0, a1p, 0 0, b2p, a2p, 0 0, b1p, p, 0

3 0, b1p, 0 0, b2p, a2p, 0 0, p, a1p, 0

4 0, b1p, a1p, 0 0, a2p, 0 0, b2p, p, 0

5 0, b1p, a1p, 0 0, b2p, 0 0, p, a2p, 0

6 0, b1p, 0 0, b2p, 0 0, a1p, p, a2p, 0

7 0, a1p, 0 0, a2p, 0 0, b1p, p, b2p, 0

8 0, a1p, 0 0, b2p, 0 0, b1p, p, a2p, 0

9 0, b1p, 0 0, a2p, 0 0, a1p, p, b2p, 0

Table 5.1: Route addition configurations, for 2-split deliveries

5.2.6 Module 4– VOLUME OPT

This last module concerns only the vehicle occupation and the customer’s inven-

tory level. It will leave the routing plan, and therefore the total cost, unchanged.

Remember that, in Section 3.4, we restricted our search to solutions that leave all

customers with empty inventory. If this is optimal when solely considering the rout-

ing cost, it can penalize alternative performance measures that will be used later.

We will therefore apply the following procedure to our solution. It increases the

volume delivered to customers when customer and truck capacities allow it. This is

done as follows:

1. Initialize t = T − 1 (start from the end of the planning period)

2. If t < 0 STOP. Else let V be the set of non-idle vehicles operating on day t.

3. If V is empty set t = t− 1 and go to step 2. Else pick up a vehicle k ∈ V , and

let Sk be the set of customers visited by k on day t

4. If Sk is empty, remove k from V and goto step 3. Else pick a customer i ∈ Sk.
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5. Let Qfree(k) be the available capacity on the vehicle. If Qfree(k) = 0, re-

move k from V and go to step 3. Let Qmax
i (t) = mint′≤t(Ci − I t′

i ), the max-

imum additional volume that can be delivered to i without affecting its ca-

pacity constraint during the planning horizon. Deliver an additional volume

of min(Qfree(k), Qmax
i (t)) to customer i using vehicle k on day t. Update the

inventory of customer i and truck occupation of vehicle k on day t, remove i

from Sk and go to step 4.

5.2.7 Discussion on the empty inventory assumption

The previous module highlights the fact that, in Chapter 3, we restricted our search

to solutions where the final inventory is empty at the end of the planning period.

The Module 4– VOLUME OPT tries to compensate this, by delivering as much

product as possible, without altering the routing costs. We should point out that

this assumption still makes it difficult to buffer slight surges in demand. We believe

that this difficulty can be overcome by implementing a rolling horizon framework

when planning longer periods. More specifically, we recommend to use the technique

implemented in Jaillet et al. (2002). Every week, solve the IRP on a 2-week horizon,

and implement the first week only. In this fashion, the inventory won’t run empty at

the end of the first week, and the routing plan for the following period is anticipated.

Moreover, this allows the planner to update the demand forecast on shorter term,

which will lead to more accuracy.

5.3 Summary

This chapter focused on designing a heuristic that builds good feasible MVRPD,

and therefore IRP solutions, given the equivalence of the two problems. The heuris-

tic proposed is an adaptation of existing VRP techniques and Split-delivery VRP
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improvement methods: an initial schedule is generated using a modified savings

algorithm and then improved, using several neighborhood operators. Cost-saving

moves splitting the demand of customers between vehicles are then sought and im-

plemented. This heuristic was run on a wide range of instances, and compared with

different benchmarks, as described in the next chapter.
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Chapter 6

Computational results

In order to assess the quality of the heuristic described in Chapter 5, we carried out a

series of computational experiments, which are reported in the following paragraphs.

We start in Section 6.1 by introducing the hardware and software used to implement

the heuristic, as well as the framework used to generate our instances. Two sets of

experiments are then presented, which give two complementary pieces of information

on our heuristic’s performance. Section 6.2 starts by comparing our heuristic with

the optimal solution, obtained with a commercial LP/IP solver. This comparison

is carried out on a set of small instances only. We subsequently present, in Section

6.3 a myopic heuristic, that allows us to study instances of bigger size. In the

various tables and analyses that follow, our heuristic will be referred as CONST, for

“constructive” heuristic.

6.1 Generalities

6.1.1 Hardware and software

All the computations were made on the same desktop computer, with a Pentium 4

processor running at 2.6 GHz, and 512 MB of RAM. Our heuristic was implemented
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using ILOG Optimization Suite tools: the constraint programming module ILOG

Solver 6.0 helped us implement our local search strategy, as it integrates powerful

constraint propagation methods. Moreover, the ILOG Dispatcher 4.0 simplified

our description of the routing heuristics, given that it includes several constraints

inherent to routing problems, such as route connectivity, capacity constraints, and

flow conservation. Finally, our heuristic was coded in a C++ program that called

these two modules using the C++ based ILOG Concert Technology 2.0.

6.1.2 Generation of the instances

The instances we studied were of various sizes, described by the length of their

planning horizon T and the number of IRP customers considered n. For a given

problem size, the instances were randomly generated as follows.

• Distances : All our instances are euclidian, that is the transportation costs are

cij =
√

(xi − xj)2 + (yi − yj)2, where the (xi, yj) coordinates were randomly

generated in the interval [−500, 500].

• Vehicle Capacity : The vehicle capacity W = 10, 000 was fixed, and all the

other data was defined as fractions of that quantity.

• Tank Sizes : The set Ci of customer tank sizes was randomly generated in 2

distinct ranges, [5, 100] and [5, 200]. These ranges are expressed as percentages

of W . For example, the customers of an instance where the range [5, 100] was

used will have their capacities Ci in [5%W, 100%W ] = [500, 10, 000];

• Daily demand : For each day of the planning period t and each customer i, the

daily demand dt
i was randomly generated in [0, Ci].

• Fleet size: Finally, to avoid infeasibility, we allocated an important daily fleet

to each instance. Indeed, on each day of the planning period, K = n vehicles
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6.2 Comparison of the results with a commercial solver

are available, that is, there are as many vehicles as demand nodes. We will

see later in our computational experiments that far less vehicles were needed.

6.1.3 Infeasibility

It is important to highlight that, by choosing an important fleet size, infeasibility

problems were overlooked. Remember that, in the heuristic developed in Chapter

5, this infeasibility could be encountered at the end of “Module 1– INITIAL”. Our

focus is on the cost performance of our heuristic, and those feasibility issues were

not tackled, and would therefore be interesting numerical extensions to this study.

Before describing our two sets of computational experiments, we wish to high-

light the fact that, for all the instances studied, the solution provided by our

MVRPD heuristic transposed into a feasible IRP solution, which empirically val-

idates the procedure described in Chapter 4.

6.2 Comparison of the results with a commercial

solver

In this section we describe the comparative experiments we made between CONST

and the results obtained by a commercial IP solver, ILOG CPLEX 9.0. The original

IP formulation presented in section 3.3 of the IRP was fed into the solver, and the

comparison was drawn using several instances of reduced size: we considered time

horizons T ∈ [3, 5] and problem sizes n ∈ [4, 10]. As already explained, for each

problem size, two runs were done: the instances in SET 1 have customer tank sizes

drawn in [5%, 200%]W while the capacities were drawn in [5%, 100%]W only for the

instances of SET 2.
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6.2 Comparison of the results with a commercial solver

SET 1 SET2

OPT CONST OPT CONST

n (CPU) % gap to OPT (CPU) % gap to OPT

4 4216.83 4217.23 3914.02 3914.02

(1 s.) 0.01% (3 s.) 0.00%

5 3599.31 3599.31 3116.07 3116.07

(5 s.) 0.00% (4 s.) 0.00%

6 2525.45 2525.45 12787.1 13432.7

(4 s.) 0.00% (2 s.) 5.05%

7 11083.1 11436.2 5884.99 6003.6

(15 s.) 3.19% (1 s.) 2.02%

8 4293.56 4445.2 21045 22138.7

(8 s.) 3.53% (2500 s.) 5.20%

9 6728.64 7360.96 15420.1 15646.3

(1131 s.) 9.40% (40 s.) 1.47%

10 10836 11315.3 10922 11114

(4500 s.) 4.42% (1110 s.) 1.76%

Table 6.1: Comparison with a commercial solver, T = 3

Tables 6.1, 6.2 and 6.3 display the results obtained for a time horizon T = 3, 4

and 5 respectively. For each instance presented in those tables, several results are

shown. The column OPT gives the value of the optimal cost found by CPLEX.

Beneath this value, in brackets() is the CPU time, in seconds, needed by CPLEX to

solve that particular instance. The second column, CONST indicates the cost ob-

tained by our heuristic. Beneath this value, the relative difference with the optimum,

computed as CONST−OPT
OPT

is displayed in italic as a percentage(%). The instances

where our heuristic CONST found the optimum are bolded in those tables. Note

that the CONST running times were not reported in the tables. This is because,

for all the instances, CONST required less than one second (1 s.) to build a routing

plan.

The overall results are very satisfying. The average difference to the optimum

obtained by CPLEX is 5.33%, and most of the instances were less than 10% above
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6.2 Comparison of the results with a commercial solver

SET 1 SET2

OPT CONST OPT CONST

n (CPU) % gap to OPT (CPU) % gap to OPT

4 4395.71 4395.71 10422.1 10467.5

(8 s.) 0.00% (3 s.) 0.44%

5 7112.62 7617.77 12265 12915.6

(8 s.) 7.10% (42 s.) 5.30%

6 4468.62 4661.21 7181.45 8052.12

(3540 s.) 4.31% (64 s.) 12.12%

7 6086.63 6686.48 13411.2 14837.3

(210 s.) 9.86% (251 s.) 10.63%

8 5192.32 5432.01 15161.2 17392.7

(5123 s.) 4.62% (4856 s.) 14.72%

9 11856 12304.9 13356 14122.7

(7850 s.) 3.79% (6524 s.) 5.74%

10 7522.3 8124.5 18865.23 19413.8

(8522 s.) 8.01% (10256 s.) 2.91%

Table 6.2: Comparison with a commercial solver, T = 4

that lower bound, as described in the histogram of Figure 6.1. Moreover, for five

instances, CONST found an optimal routing plan.

The other interesting fact that comes out of this first study is the CPU time

needed by CPLEX to find an optimum. Some small instances were solved in a few

seconds. However, as soon as n ≥ 8 or t ≥ 5, the running times increase significantly

and CPLEX cannot find solutions in less than an hour. The biggest instance took

more than 12,000 seconds (more than 3 hours) to be solved, and our heuristic found

a solution with a cost 1.62% above optimum, within a second.

We conducted experiments on bigger instances, which are not reported here

(n > 8 and T > 10). For those instances, CPLEX was imposed a maximum running

time of 5 hours, and could not find any feasible solution to the IRP within that

time.
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6.2 Comparison of the results with a commercial solver

SET 1 SET2

OPT CONST OPT CONST

n (CPU) % gap to OPT (CPU) % gap to OPT

4 3783.8905 3997.09 12596.2 13758.5

(12 s.) 5.63% (2 s.) 9.23%

5 9203.2 9433.56 13600.25 14252.6

(3800 s.) 2.50% (4569 s.) 4.80%

6 7756.56 8681.6 20170.56 21680.9

(5423 s.) 11.93% (5462 s.) 7.49%

7 9965.37 10890.1 13200.32 14638.8

(7852 s.) 9.28% (6875 s.) 10.90%

8 13856.32 14375.1 31966.2 34595.6

(7845 s.) 3.74% (7542 s.) 8.23%

9 15954.21 17525.6 16805.85 18375.7

(9521 s.) 9.85% (8554 s.) 9.34%

10 11025.23 11204 27782.32 28821

(12654 s.) 1.62% (9532 s.) 3.74%

Table 6.3: Comparison with a commercial solver, T = 5
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Figure 6.1: Gap to optimality
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6.3 Comparison of the results with a myopic heuristic

For real-world instances, it therefore becomes impractical to seek the optimum

with a LP solver. However, we still need to assess the performance of our heuristic

on bigger instances. This will be done by using another heuristic as a benchmark,

as developed in the next section.

6.3 Comparison of the results with a myopic heuris-

tic

To assess the quality of our heuristic on instances of a more consistent size, we

compared our results with the output of a myopic IRP heuristic. After describing

that heuristic, we will present the data sets used. We will then present several

analyses of our results, in terms of total cost, fleet utilization, and inventory level.

6.3.1 Description of the alternative heuristic

The heuristic we used as benchmark will be referred to as LATEST. It consists of

serving urgent customers only. Campbell et al. (2002) presented it as the “rule of

thumb” in the industry, and it was used as a benchmark in Bertazzi et al. (2002). It

can be described with the following rules:

1. Start from the beginning of the planning period, and consider one day at a

time. On a given day, list the customers who will experience stockouts if they

are not delivered on that day.

2. For each of those customers, create a route that serves the customer, that fills

its tank to capacity. Create several full load direct deliveries if the volume

needed exceeds the truck capacity.
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6.3 Comparison of the results with a myopic heuristic

3. If, on such a route, there is available truck capacity left, extend the route

to nearby customers whose inventory is strictly less than capacity, on a least

insertion cost basis.

4. All the customers served by a given route will be filled to capacity, except

perhaps the last one, which will be served the remaining volume in the vehicle.

5. Do not initiate routes with customers who do not require a delivery on the

day considered.

6.3.2 Data sets

Both heuristics were run on an extensive range of instances, obtained by varying

the different parameters. 12 sets of problem sizes were examined by choosing n =

15, 25, 35, 45 and considering 3 sets of planning horizon T = 5, 10, 15, that is one,

two and three working weeks. We did not feel the need to investigate longer planning

horizons, as it would be unrealistic to forecast a deterministic demand over such a

time period. For each problem size, and each capacity set ([5, 100] and [5, 200]), four

instances were generated and solved. We will consequently examine here a total of

4× 3× 2× 4 = 96 instances.

The reader should know that several other data sets were examined. Indeed, in

our experiments we considered a wide panel of customer capacity sets as narrow as

[5, 33] or [132, 200], and we also built instances with correlated customer demand,

therefore creating “peak” periods within the planning period. However, throughout

these experiments, no significant patterns could be detected. We therefore chose

to present here only the general, random instances. We believe this will be more

synthetic, and therefore provide more insight on the quality of our solution.

We will now present the results obtained, by exploring three facets of the so-

lution qualities. It is obvious that the cost obtained will be the main performance
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Figure 6.2: Cost improvement of CONST over LATEST

indicator. We will however study two other performance indicators, namely the fleet

utilization, and the inventory behavior. Given that 96 instances have been studied,

we will present only average results to highlight the influence of the different para-

meters. The interested reader can however refer to Appendix A to view the complete

computational results.

6.3.3 Comparison of the cost obtained by the heuristics

As indicated, we will start by examining the performances of the two heuristics,

CONST and LATEST in terms of total cost. In all the instances studied, the

cost of the solution built by CONST was less than the one produced by LATEST.

We will therefore write our results as a percentage relative improvement %imp =

LATEST−CONST
LATEST

.

The overall distribution of our results, over all parameters can be seen in the

graph in Figure 6.2.

On average, CONST finds solutions with a cost 13.6% less than the cost provided

by LATEST. In some cases a relative improvement of up to 35% has been observed.
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6.3 Comparison of the results with a myopic heuristic
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Figure 6.3: Computing time observed

The average computing time observed was 170 seconds, but this unfortunately

hides disparity, as shown on the graph of Figure 6.3. Indeed, a minority of instances

took up to 15 minutes to be solved. The graph shows however that the majority of

the problems were solved within five minutes.

Table 6.4 describes the results obtained with the different parameters used to

generate the instances: time horizon, number of customers and customer’s capacity

range.

Firstly, we can see that the number of nodes n does not really influence the

relative performance of CONST, except perhaps in the set n = 45, which is above

average with 17% improvement. This might be due to a deterioration of the qual-

ity of LATEST when dealing with a large number of customers. Additionally, no

noticeable difference can be noticed between the two sets of capacity range.

Secondly, the main result of this table is that, for a very short planning horizon

(5 days), our algorithm outperforms LATEST by 22%, but this difference drops

to 10% for longer horizons. This can be interpreted as follows: LATEST proceeds

with very costly deliveries, that are useless in short planning horizons, as the volume

delivered will not be used. It however becomes more competitive when considering
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6.3 Comparison of the results with a myopic heuristic

Parameter Value %

T 5 22.35

10 10.42

15 8.12

n 15 13.67

25 13.13

35 13.37

45 17.29

Range of Ci [5,100] 14.71

[5,200] 13.24

Average 13.63

Table 6.4: % improvement of CONST over LATEST, for different parameters

longer planning horizons.

The other explanation would be that the quality of CONST deteriorates with

longer planning horizons. This could be possible, and would reflect the difficulty

in efficiently distributing the delivery volumes throughout the planning horizons.

That is, our algorithm, CONST, would lack the fluidity necessary to produce good

solutions to the SDVRP. The heuristic is indeed basically built around a non-split

VRP algorithm. One way to verify this would be to implement a heuristic that

searches wider solution spaces and gives a higher degree of freedom to the sizes of

the delivery volumes and the “split” deliveries. One approach that could be adapted

in future research is the SDVRP tabu search heuristic proposed by Archetti et al.

(2003).

We believe however that the quality of our heuristic does NOT deteriorate with

the length of the planning horizon, as other performance indicators, developed here-

after, remain very stable with T . The first of these alternative performance measures

is relative to the fleet of vehicles.
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6.3 Comparison of the results with a myopic heuristic

6.3.4 Study of the fleet utilization

In what follows, we will focus on two indicators concerning the fleet of vehicles used.

The first one is Kmax, the number of trucks needed to implement the schedule.

It is easily computed as the maximum of the fleet sizes, over all the days of the

planning period. The second one, Kavg, is the average number of trucks used .

From these two metrics we can easily deduce the ratio of idle trucks in the fleet,

Kidle = Kmax−Kavg

Kmax
. The values of these indicators are presented in Table 6.5.

We can see that, overall, CONST uses a fleet of 13.3 vehicles, whereas LATEST

needs an average of 17.6 trucks. This represents a 25% relative difference.

Moreover, the utilization of the fleet within the planning period is far from

being optimal with the solutions provided by LATEST : on average, 38% of the fleet

is idle. CONST provides better results, as it has a smaller idle fleet, in absolute and

relative terms(only 27%). Note that, while the relative size of the idle fleet stays

stable for all parameters in the solutions provided by CONST, this is not the case

for LATEST. The situation worsens with longer planning horizons, and we can see

that for T = 15, almost half (43%) the fleet needed stays idle. These results are very

satisfying, as they deal with a more tactical aspect of the routing plan, that is, the

fleet sizing. Moreover, our algorithm would be able to adapt to problems incurring

a fixed cost on each vehicle of the fleet.

We will now provide similar analysis on the inventory behavior of the customers.

6.3.5 A note on the inventory behavior

The last facet to be examined when providing solutions to the inventory routing

problem is the inventory behavior of the different customers. Given the variety of

82



6.3 Comparison of the results with a myopic heuristic

LATEST CONST

Variable Value Kavg Kmax %KIdle Kavg Kmax %KIdle

T 5 13.23 19.63 33% 10.32 14.22 27%

10 11.41 18.20 37% 10.45 14.33 27%

15 8.67 15.11 43% 8.34 11.48 27%

n 15 5.51 9.56 42% 4.97 7.41 33%

25 10.12 15.67 35% 8.94 12.33 28%

35 14.74 23.08 36% 12.91 17.63 27%

45 18.16 28.14 35% 15.02 19.71 24%

Ci 5-100 7.51 12.30 39% 6.50 9.51 32%

5-200 15.39 23.90 36% 13.41 17.81 25%

Average 11.10 17.65 38% 9.70 13.34 27%

Table 6.5: Fleet size and utilization, for different parameters

customers, with each having his own capacity Ci and his own demand pattern, we

decided to measure this inventory level as a percentage of Ci. This value was

then averaged over T and n. The values of this measure of the inventory behavior

in the solutions obtained by CONST and LATEST were compared in Table 6.6,

that distinguishes the different data sets. The figures in this table clearly show

that LATEST is making an uncontrolled use of inventory. Indeed, on average, the

customer’s inventory levels are at 71% of their capacity Ci, whereas, for CONST,

this level drops to 45%. This is however understandable, because of the very nature

of LATEST and CONST. In LATEST each time a customer is visited, it must be

“filled” to capacity whenever possible, whereas, in CONST, a customer’s inventory

must be left empty at the end of the planning period.

We see this difference in inventory behavior as positive performance for CONST.

Indeed, this means it uses more efficiently the resource buffer available, that is the

inventory, to obtain a good routing plan and reduce routing costs.
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Variable Value LATEST CONST

T 5.00 71.62% 40.56%

10.00 70.96% 47.23%

15.00 72.20% 48.45%

n 15.00 71.92% 46.27%

25.00 71.34% 46.19%

35.00 71.19% 44.58%

45.00 71.95% 42.49%

Ci 5-100 72.96% 44.06%

5-200 70.02% 46.47%

Average 71.49% 45.27%

Table 6.6: Average inventory level, as a % of Ci

Moreover, this means that our algorithm would have the potential to be adapted

to problems where an inventory holding cost h would be charged for each unit of

product present in the customer’s inventory on each day of the planning period. We

believe however that in such a case the whole heuristic would need to be redesigned,

to account for these additional costs during the construction-improvement phases.

The heuristic proposed by Bertazzi et al. (2002), for example, explicitly takes into

account the holding costs.

This analysis of the inventory behavior of the customers was the last facet of the

computational results we wished to present. We can therefore conclude this chapter.

6.4 Summary

This chapter described the computational experiments conducted: the cost of the

solutions found by our heuristic were compared with the optimum on small instances,

and with the output of a myopic heuristic on a wide panel of problems. In the first
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set of experiments, our heuristic was on average within 5.33% above the optimum.

In the second set of experiments, we noticed a 13.6% cost saving over the myopic

policy, a far more rational utilization of the daily fleet, and a tighter use of the

inventory buffer.
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Chapter 7

Conclusion and future research

This thesis has presented an innovative analysis of the Inventory Routing Prob-

lem(IRP). Indeed, the IRP is, till now, regarded as a marginal routing problem,

given that the routing decisions could not be related to fixed-size orders. This

study showed that, in fact, the IRP was nothing more than a Split-Delivery Vehicle

Routing Problem (SDVRP), with multiple delivery periods and delivery dates con-

straints, referred to as the MVRPD. We explained how an IRP can be transposed

to this demand-driven VRP, and formally showed the equivalence between the two

problems. Once this equivalence was shown, we looked into the classic VRP liter-

ature, as well as in the SDVRP studies, to find constructive methods adapted to

the problem we defined. This allowed us to design a heuristic that we tested on

numerical instances. The results were satisfying, as our heuristic gave results 5.33%

above optimum in small instances, and, on average, presented a 13% cost reduction

over a myopic heuristic.

We believe however that our contribution was more about highlighting the intrin-

sic nature of the IRP than about designing a powerful heuristic. There is therefore

ample room for refinement and improvement of our solution method, and we will

give some indications of what could be done hereafter:
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First of all, we believe it would be interesting to design a more customized

heuristic for the MVRPD to take into account specific features of the problem cre-

ated. Indeed, what we did, when designing our solution method, was to simply

adapt existing robust methods to our problem. An effort should be made, for ex-

ample, to take into account the fact that, in the problem created, a lot of demand

points share the same geographical location. This information could be used, when

locally improving solutions, to reduce the number of potential moves examined, and

therefore to reduce the computational effort needed.

Second of all, we wish to highlight, once again, the Split-Delivery nature of the

IRP. This implies that future research could try to adapt the different solution tech-

niques experimented in the SDVRP literature, and listed in Section 2. We believe

that the biggest drawback of the solution method we have chosen (inspired by Dror

& Trudeau (1990)) is the lack of fluidity of the demand. Other methods should

therefore be applied to our problem. The tabu search developed by Archetti et al.

(2003) appears to be the best candidate. Note as well that the local improvement op-

erators developed in Sierksma & Tijssen (1998) gave promising results, and allowed

more fluidity in the customer demand than the traditional 2-opt and r-opt operators

we implemented in our study. On a related issue, we believe that the cutting-plane

developed by Belenguer et al. (2000) for the SDVRP could be adapted to produce

optimal solutions for middle-size instances, and lower bounds of a good quality

for bigger instances, which could help assess the quality of the different heuristics.

Above all, the new development in the SDVRP literature should be watched closely,

as the topic has been far from extensively studied.

If our transposition allows us to use such a wide panel of solution methods,

it can also inspire us to include additional features to the IRP, by considering the

different VRP variants. The first feature that comes to our mind is the time windows

constraint. Indeed, extensive work has been done on the VRP with time windows

87



(VRPTW) and could be adapted here. The results of such a study could be directly

compared with the work on the IRP conducted by Campbell et al. (2002), that

explicitly takes into account time windows and operating modes. The authors of

the latter suggested another extension to the IRP, that could easily be implemented

here: the multi-depot IRP, where several suppliers serve the customers. Again, our

transformation would help implement the solution methods used in the multi-depot

VRP method.

One last feature that should be explored using our approach is the inventory

holding costs considerations. Indeed, we completely overlooked this aspect of the

IRP in our study, in order to focus on the routing plan and the inventory constraints.

It is straightforward however to include these holding costs in our formulation, by

assigning a day-dependent cost of associating each delivery volume to a given vehicle.

Integrating these additional costs into the objective when building and improving

feasible solutions will highlight the tradeoff between inventory holding costs and

routing costs. Such a study would allow an interesting comparison with the figures

obtained by Bertazzi et al. (2002).
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Appendix A

Comparison of CONST with

LATEST

In Section 6.3 of Chapter 6 we presented our numerical results in terms of average

results, in order to give a synthetic insight on the performance of CONST. The

reader can find in the following table the results obtained in each of our individual

instances. For each instance, the table presents the problem characteristics (number

of days T , the number of customers n, the maximum allowed ratio of customer

capacity to truck capacity Cmax) and the results obtained by both LATEST and

CONST : total cost, average inventory Ī, average number of trucks used Kavg,

maximum number of trucks needed Kmax and computing time CPU.

Instance LATEST CONST

T n Cmax Cost Ī Kavg Kmax CPU Cost Ī Kavg Kmax CPU

5 15 100 19069 0.76 3.60 8 0 14970 0.50 3.00 8 1

5 15 100 12678 0.73 3.60 6 1 10880 0.40 3.20 5 2

5 15 100 12989 0.69 3.00 4 1 11404 0.34 2.40 5 1

5 15 100 26663 0.71 5.00 6 1 20866 0.36 4.00 5 1

5 15 200 59283 0.72 12.00 18 1 48486 0.40 9.80 13 7

5 15 200 33466 0.78 6.60 13 0 21561 0.44 4.60 6 3
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Instance LATEST CONST

T n Cmax Cost Ī Kavg Kmax CPU Cost Ī Kavg Kmax CPU

5 15 200 51253 0.70 9.00 12 0 38944 0.41 7.00 8 4

5 15 200 21084 0.68 6.00 11 0 16909 0.37 5.00 6 3

5 25 100 29320 0.69 6.20 10 1 22700 0.43 5.00 7 5

5 25 100 39015 0.72 7.20 10 1 29527 0.42 5.40 9 6

5 25 100 31568 0.73 7.60 12 1 24648 0.39 5.80 9 7

5 25 100 52884 0.72 7.80 12 1 41023 0.36 6.00 10 4

5 25 200 67406 0.70 11.00 14 2 54234 0.47 8.80 12 8

5 25 200 52562 0.71 13.20 19 1 43165 0.46 11.00 13 21

5 25 200 57938 0.69 15.60 23 1 41988 0.39 11.60 16 14

5 25 200 76443 0.71 14.80 20 1 56572 0.42 11.20 16 12

5 35 100 78318 0.71 12.80 15 2 59571 0.38 9.40 13 19

5 35 100 32340 0.75 9.80 18 2 23185 0.41 7.80 11 12

5 35 100 63189 0.75 13.60 19 2 46537 0.38 10.20 14 18

5 35 100 40995 0.74 8.80 12 2 30910 0.40 6.60 11 11

5 35 200 116855 0.67 22.00 30 3 93871 0.41 17.40 23 115

5 35 200 90874 0.72 23.00 29 4 72591 0.40 18.60 26 164

5 35 200 139724 0.67 21.80 27 3 112122 0.41 17.60 24 116

5 35 200 85943 0.73 20.20 29 3 61532 0.37 14.40 19 88

5 45 100 60106 0.71 10.60 15 2 47150 0.43 8.20 11 23

5 45 100 58683 0.73 13.20 22 2 44269 0.44 10.40 15 32

5 45 100 70544 0.73 13.80 20 2 55188 0.40 10.80 15 29

5 45 100 83505 0.75 14.40 25 2 65771 0.45 11.40 16 36

5 45 200 95618 0.72 24.80 41 2 76188 0.40 19.20 24 120

5 45 200 160296 0.68 29.00 43 3 126105 0.42 23.00 29 201

5 45 200 111021 0.74 25.40 38 2 89189 0.36 19.80 29 157

5 45 200 113887 0.72 27.80 47 3 86105 0.36 21.60 27 187

10 15 100 44855 0.75 4.00 7 1 36488 0.47 3.60 6 9

10 15 100 54022 0.70 3.80 7 1 49073 0.43 3.50 7 11

10 15 100 42057 0.68 3.80 7 1 37845 0.47 3.50 6 6

10 15 100 39687 0.73 4.70 8 1 35205 0.48 4.30 7 9

10 15 200 66216 0.72 8.60 16 2 59607 0.53 8.30 11 47

10 15 200 111858 0.66 11.20 17 3 105712 0.55 10.90 14 71

10 15 200 70482 0.72 7.60 12 1 60804 0.49 6.80 10 23

10 15 200 72622 0.64 8.10 14 2 66239 0.53 7.50 11 32

10 25 100 64608 0.75 7.10 11 2 56008 0.45 6.50 10 75

10 25 100 53094 0.73 5.80 10 2 48116 0.45 5.20 7 48
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Instance LATEST CONST

T n Cmax Cost Ī Kavg Kmax CPU Cost Ī Kavg Kmax CPU

10 25 100 67172 0.71 6.10 11 2 58851 0.46 5.60 9 28

10 25 100 104707 0.72 8.30 13 3 95514 0.47 7.80 11 55

10 25 200 98825 0.71 12.00 20 3 88664 0.46 10.80 14 137

10 25 200 156451 0.72 12.00 17 2 141738 0.49 10.80 16 158

10 25 200 101558 0.70 12.10 16 3 91197 0.54 11.00 16 114

10 25 200 127026 0.68 16.60 23 3 120034 0.51 15.80 19 298

10 35 100 87562 0.75 9.00 16 3 75450 0.46 7.80 10 88

10 35 100 86597 0.72 9.00 14 3 78239 0.45 8.20 11 83

10 35 100 113151 0.72 10.70 20 3 100587 0.47 9.60 14 89

10 35 100 75741 0.72 9.10 12 2 64529 0.44 8.20 13 146

10 35 200 146516 0.69 18.40 28 3 134562 0.49 17.10 22 464

10 35 200 240728 0.69 22.30 35 5 222462 0.48 20.60 29 831

10 35 200 240566 0.69 19.20 37 4 224666 0.47 18.00 25 519

10 35 200 187712 0.70 17.50 32 3 173910 0.46 16.30 22 514

10 45 100 136335 0.71 13.70 21 4 119662 0.44 12.10 16 479

10 45 100 115435 0.73 10.10 14 4 107317 0.45 9.40 12 411

10 45 100 136976 0.73 12.80 21 5 120277 0.43 11.30 15 361

10 45 100 110330 0.72 12.40 23 5 93136 0.43 11.00 14 418

10 45 200 330157 0.65 25.6 39 7 292887 0.48 24.9 30 562

10 45 200 220843 0.68 18.4 27 6 199700 0.46 17.8 23 456

10 45 200 200916 0.70 19.60 27 9 176323 0.46 17.60 21 654

10 45 200 189059 0.69 26.60 37 7 173914 0.48 24.50 32 552

15 15 100 36576 0.80 1.60 3 2 31078 0.50 1.73 4 22

15 15 100 39409 0.76 1.53 4 2 30215 0.47 1.67 3 20

15 15 100 38634 0.74 3.47 6 2 35368 0.48 3.40 6 36

15 15 100 56614 0.78 2.53 5 2 52420 0.46 2.53 4 19

15 15 200 96508 0.70 7.33 13 3 90640 0.51 7.07 9 112

15 15 200 76663 0.74 6.47 12 2 69181 0.48 5.93 9 146

15 15 200 86978 0.69 8.20 15 2 80115 0.51 8.07 11 116

15 15 200 119192 0.69 6.93 13 3 112397 0.51 6.87 11 92

15 25 100 97110 0.76 6.20 11 3 88931 0.46 6.07 8 237

15 25 100 147688 0.71 7.20 13 4 141671 0.45 6.80 10 324

15 25 100 142275 0.74 7.53 11 5 127968 0.47 7.00 10 168

15 25 100 76142 0.72 6.27 12 5 69533 0.47 6.07 9 238

15 25 200 159841 0.69 12.87 23 6 147789 0.51 12.20 16 744

15 25 200 200422 0.70 12.73 20 4 189077 0.53 12.13 15 550
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Instance LATEST CONST

T n Cmax Cost Ī Kavg Kmax CPU Cost Ī Kavg Kmax CPU

15 25 200 187784 0.70 12.60 22 4 175697 0.51 12.00 16 709

15 25 200 222658 0.71 14.13 23 4 216260 0.53 13.93 18 642

15 35 100 112525 0.74 8.93 15 4 100577 0.44 8.47 12 469

15 35 100 148300 0.73 8.73 18 5 139735 0.47 8.27 11 303

15 35 100 140276 0.73 10.40 15 5 128910 0.45 9.73 13 439

15 35 100 129383 0.72 7.40 15 4 119631 0.45 7.27 10 537

15 35 200 302239 0.70 17.00 30 7 291068 0.50 16.27 21 554

15 35 200 286059 0.71 17.73 30 5 275275 0.51 17.07 23 523

15 35 200 226855 0.68 18.73 33 14 212912 0.51 18.00 24 621

15 35 200 216857 0.67 17.67 25 12 205914 0.49 17.00 22 254

15 45 100 139127 0.73 11.13 22 6 129874 0.50 10.47 14 865

15 45 100 151317 0.72 12.87 22 9 140714 0.50 12.13 16 660

15 45 100 135012 0.71 11.20 20 5 122781 0.43 10.47 15 745

15 45 100 141897 0.71 12.47 20 10 131163 0.47 11.73 16 530

15 45 200 275519 0.70 21.40 34 9 257188 0.48 19.93 27 403

15 45 200 356177 0.70 21.93 34 7 334511 0.51 20.47 30 732

15 45 200 219026 0.67 24.87 34 7 207885 0.50 23.87 32 768

15 45 200 298449 0.70 21.40 27 7 282534 0.52 20.27 31 678

Table A.1: Comparison of CONST with LATEST
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