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Abstract 

Loss of customer goodwill in uncapacitated single level lot-sizing is studied with a mixed integer programming 

model extending the well-known Wagner-Whitin (WW) model. The objective is to maximize profit from production 

and sales of a single good over a finite planning horizon. Demand, costs, and prices vary with time. Unsatisfied 

demand cannot be backordered. It leads to the immediate loss of profit from sales. Previous models augment the 

total cost objective by this lost profit. The difference of the proposed model is that unsatisfied demand in a given 

period causes the demand in the next period to shrink due to the loss of customer goodwill. A neighborhood search 

and restoration heuristic is developed that tries to adjust the optimal lot sizes of the original no-goodwill-loss model 

to the situation with goodwill loss. Its performance is compared with the Wagner-Whitin solution, and with the 

commercial solver CPLEX 8.1 on 360 test problems of various period lengths.  
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1. Introduction and background 

The deterministic dynamic lot-sizing problem has been first introduced and solved by Wagner and 

Whitin [1]. It is one of the most famous discrete decision problems of production and inventory planning. 

The way this problem is modeled differs from the classical economic order quantity (EOQ) model in that 

demand is neither stationary nor continuous. Instead, both inventory replenishments and demand are 

instantaneous and discretized over a finite planning horizon of several periods. Demand may change from 

one period to another, implying that it is time-varying. Without capacity restrictions, the Wagner-Whitin 

(WW) problem can be viewed as a shortest path problem. An early work by Evans [2] describes an 

efficient computer implementation of the original forward recursive dynamic programming (DP) 

algorithm of Wagner and Whitin. The implementation of Evans requires low core storage and solves the 

WW problem to optimality in O(T 2) time where T denotes the number of periods in the planning horizon. 

A later report by Saydam and Evans [3] provides a comparative performance analysis of the WW and 

other heuristics for the lot-sizing problem when demand cannot be backordered. Similar DP based 

algorithms have been developed which guarantee optimality in polynomial time. As the variation in the 

problem data lessens, the computational complexity of such exact methods decreases too. There are now 

algorithms running in O(T log T) or even in linear time when costs are constant for all periods. The 
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algorithms by Federgruen and Tzur [4], Wagelmans et al. [5], and by Aggarwal and Park [6] are 

prominent examples.  

This paper focuses exclusively on the lost demand dimension of the basic WW model with revenue 

considerations. Lost demand in inventory planning due to the erosion of customer goodwill has not 

received as much attention in the operations research literature as the other challenging characteristics of 

lot-sizing. Yet, even a Google search for “loss of customer goodwill” finds above 900 hits on the Web as 

of August 2005. This concept has been touched upon in management science textbooks of various 

business school curricula. Today it is widely accepted that product unavailability no matter for what 

reason incurs a goodwill cost that may be difficult to estimate [7–11]. Loss of sales revenue from 

cancelled orders is a natural consequence. The cost of such loss is also referred to as shortage cost. 

However, estimating the loss in future sales because of customer dissatisfaction is typically harder. In 

Lawrence and Pasternack [7], for example, it is argued that many businesses do not have any idea what 

the long-term goodwill cost for an unsatisfied customer might be. Empirical evidence found in Blazenko 

and Vandezande [11] ties the likelihood of lost revenue arising from the loss of customer goodwill to the 

alternative sources of supply that are available. If there are good alternative sources or substitutable 

products, the prospect of long-term revenue loss for companies is greater.  

Motivated by the inherent intricacy of modeling the cost of stockouts, we take on the profit-

maximizing lost sales model of Aksen et al. [12] and add the impact of customer goodwill loss. The 

goodwill loss concept is relatively new in the literature of lot-sizing as will be elaborated in Section 2. 

The rest of this paper is organized as follows: We first review the background of lot-sizing models in the 

literature. Then we present the basic relationships between customer goodwill loss and demand. The 

fading impact of goodwill loss is illustrated in a short example. A mixed integer programming (MIP) 

formulation is described for which we propose a heuristic search method. This method is demonstrated on 

a numerical example, and then benchmarked on 22 test problems found in Aksen et al. Computational 

experiments with 360 randomly generated test problems are also reported. Finally, we conclude with a 

summary of our study, and suggest further research directions in the modeling of customer goodwill loss. 

2. Background of lot-sizing models 

Though the WW model approaches its 50th anniversary, it is still the starting point of myriad models 

that deal with a wide spectrum of medium to long term planning problems of the manufacturing and 

process industry. In developing variants of the WW model, researchers aim to capture more real world 

phenomena. Capacity or resource restrictions, set-up times besides set-up costs, sequence-dependent set-

up costs, multi-level and multi-item versions, loading and scheduling decisions concurrent with the lot-

sizing decisions, backlogging of demand, all-units or incremental quantity discounts, rolling planning 

horizons, deteriorating inventory due to limited shelf life of items, stockouts, and lot-sizing with supplier 

selection are among such phenomena addressed by present-day models. The majority of these extensions 

inflate the model’s complexity, thereby worsen its solution time and quality. The abundance of 
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deterministic dynamic lot-sizing models has given birth to several distinguished surveys and reviews. 

Two highlights in this area are the comprehensive review of Bahl et al. [13] and the excellent study by 

Kuik et al. [14]. Lately; Karimi et al. [15] review models and algorithms for the single-level capacitated 

lot-sizing problem (CLSP). The reader is also referred to Drexl and Kimms [16] for an in-depth summary 

and analysis of CLSP that integrates scheduling decisions.  

Several articles have combined backordering and stockouts in lot-sizing. Backordering means that 

unsatisfied customer demand (shortage) can be met in a later period as opposed to being immediately lost. 

There is sometimes a maximum number of periods until the end of which demand can be backordered. 

Any unsatisfied demand beyond that grace period is lost. Backordering in a period is assumed to trigger a 

partial loss of demand in that period in addition to the shortage cost. An example of this approach is the 

deteriorating inventory model of Wee [17] with partial backordering and profit maximization. When 

computing the total cost of inventory shortage in his model, Wee assumes that a fraction of unsatisfied 

demand will be backordered whereas the rest will be lost right away. He uses a shortage cost per unit 

backordered per period and a penalty cost per unit lost that covers the loss of marginal profit. A recent 

paper by Wang [18] discusses an inventory model with shortages for time-varying demand of 

deteriorating items. Wang mentions the opportunity cost due to lost sales during each shortage period. 

Also Wang’s model pursues a profit maximization objective. He argues that from an economic point of 

view shortages may be desirable in practice when the unit value of the inventory is very high and hence 

the holding cost is high. While some customers can be convinced to wait for backlogging during the 

shortage periods, others would withdraw their orders, thus cause an opportunity cost due to lost sales.  

Pricing with the aim of profit maximization in a CLSP setting is modeled and solved with an efficient 

Lagrangian relaxation algorithm in Haugen et al. [19]. Their model can be considered a monopolistic 

generalization of the CLSP. The manufacturer facing the lot-sizing problem is a price setter, and his 

customers’ demand is sensitive to price. This price sensitivity is leveraged in order to adapt the demand 

so as to conform to the capacity constraints throughout the planning horizon. When demand in a period is 

too much to meet, then price is increased, which leads to a decline in demand, thus prevents shortage. On 

the other hand, too high a price in that period would cause demand to shrink so much that maximum 

possible profit would not be attained. Thus, prices and lot sizes should be decided concurrently. Haugen 

et al.’s algorithm competes favorably with the known methods of solving the cost minimization version 

of the same problem without pricing. The authors argue that profit maximization and pricing in the CLSP 

may prove both practically more interesting as well as numerically more feasible.  

Sandbothe and Thompson [20,21] present a total cost minimization model that replaces backordering 

with production capacity constraints and inventory bounds. In their model, unsatisfied demand in a 

stockout period is permanently lost, incurring a cost at a fixed rate per unit lost. Aksen et al. [12] omit 

capacity constraints in the model of Sandbothe and Thompson, and allow all costs and prices to vary 

dynamically over the planning horizon. In addition to stockout periods, they introduce the so-called 

conservation period, in which it is more profitable for the producer to lose the demand in spite of 

 3



D. Aksen − Goodwill loss in uncapacitated lot-sizing 

available inventory at hand. Structural properties of an optimal solution to their lost sales model are 

proven using a concave cost network representation with a single source node. This conservation model is 

reiterated in Chu and Chu [22] with time-varying storage capacities. Chu and Chu assert that as 

companies put an increasing emphasis on customer satisfaction, deliberate lost sales occur seldom. In 

their view, to have the demand of a stockout period out-sourced is more realistic than to consider it lost. 

This way, the producer suffers an outsourcing cost instead of shortage or backordering cost.  

The goodwill loss concept in lot-sizing is first mentioned in a paper by Hsu and Lowe [23]. The authors 

comment that production loss or customer goodwill loss may lead to a unit penalty cost for unsatisfied 

demand that grows in a nonlinear fashion, and is dependent on how long that demand has been 

backordered. Also inventory holding costs may be dependent on how long the items have been in stock. 

In Graves [24] we come across goodwill loss again. Graves formulates two models, one for the lost sales 

case, and another for the backorders. He assumes that demand that cannot be met in a period is lost, and a 

loss of customer goodwill would manifest itself in terms of reduced future sales. According to Graves, 

this lost sales cost is very difficult to quantify as it represents the future unknown impact from poor 

service today. In his lost sales model too, the cumulative cost of goodwill loss, which is linearly 

proportional to the sum of unmet demands by a unit penalty, is subtracted from the total profit function. 

In our model, on the other hand, a certain ratio of realized demand that goes unsatisfied in the current 

period t is deducted from the original demand of the next period (t+1), which in turn yields the realized 

demand for (t+1). We use the term effective demand for the realized amount of original demand. It could 

be less than the original value if a goodwill loss comes from the preceding period. For the producer, this 

goodwill loss in demand is exogenous and irreversible. A fraction of those customers whose demand is 

not satisfied in the current period reacts to this by not returning the next period. On the other hand, the 

producer might not meet an effective demand either due to stockout or for the sake of conserving 

inventory. Such a decision of the producer leads to lost sales. This type of loss, which we call shortage, is 

endogenous since it is under the control of the producer. We assume that any shortage in period t causes a 

goodwill loss in (t+1) only. The goodwill impact vanishes or becomes negligible after that period. As far 

as we know, our model is the first dynamic lot-sizing model that quantifies customer goodwill loss as a 

reduction in future demand. Lawrence and Pasternack [7] point out that marketing surveys and focus 

groups can yield reasonable estimates of future reduction in a firm’s profitability due to goodwill loss. 

The rationale behind our model is the effectiveness of such instruments in forecasting the impact of 

goodwill loss as shrinking future demand.  

3. Representing goodwill loss 

In this section we give two different specific versions of representing customer goodwill loss as a 

reduction in original demand. The second version will be adopted and incorporated into the mathematical 

lot-sizing model with lost sales. In Appendix A we merge these two versions into a unified goodwill loss 

representation, and show that it converges to either specific version at the limits. We make a distinction 
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between original, realized, and satisfied demand. Realized demand is the effective demand, which yields 

after the deduction of the goodwill loss from the original demand. If all of the effective demand in period 

t is satisfied, then this implies there is no shortage in t. Otherwise, satisfied demand in t is the rest of the 

effective demand after the deduction of the shortage. The following relationship is common to both 

versions of goodwill loss representation. 

( ) ( ) ( ) ( )

( )

Satisfied Demand in t =   Original Demand in t     Goodwill Loss in t     Shortage in t

Effective Demand in t

− −  

3.1. Version-A  

In Version-A, the amount of goodwill loss in period t depends on the size of lost sales in the previous 

period relative to that period’s original demand. The larger percentage of original demand in (t–1) is 

unsatisfied, the larger percentage of original demand in (t) will be lost due to goodwill. This may happen 

when a company’s customers move with a collective memory, and make their decisions of buying or not 

buying by looking at the past performance of the company. If company statistics reveal that it adequately 

met demand in the previous period, then customers choose buying from it. Otherwise, they get concerned 

about the company’s failure, and do not feel like buying from it in the current period. The relationship 

between demand and goodwill loss in Version-A is given below where β (0 < β ≤ 1) is a known 

coefficient indicating the rate of goodwill loss.  

( 1)
( ) ( )

( )
Shortage in t  

Goodwill Loss in t =   β ×  × Orig.Demand in t
Orig.Demand in t - 1

−
 

3.2. Version-B  

In Version-B, there exists an absolute dependence of the amount of goodwill loss in period t on the size 

of lost sales in the previous period. Two concurrent relationships between demand and loss in Version-B 

are given below where the latter directly follows from the former. Note that these relationships can be 

rewritten such that any nonlinearity is avoided when they are incorporated into a mathematical model.  

{ }

{ }

( ) ( ) ( 1)

( ) 0,   ( )  ( 1)

      Goodwill Loss in t =  min  Original Demand in t ,   β × Shortage in t  

Effective Demand in t =  max  Original Demand in t   β × Shortage in t  

−

− −
 

To explain the goodwill loss in Version-B with a naive example, assume that the demand of customers 

in period (t–1) is both effectively and originally 10 units. Let β (the rate of goodwill loss) equal one. 

Assume now this effective demand entirely goes unmet by the producer. Then, the goodwill loss in t will 

be the minimum of those 10 units and the current period’s original demand, no matter how big it is. In 

Version-A, however, since the last period’s demand is fully lost and β is one, goodwill loss will be as 

high as the current period’s original demand. This means, even if the current period’s original demand is 

10000, all of it will be lost due to goodwill. Version-B of the goodwill loss phenomenon applies 

particularly when the producer serves during the planning horizon a multitude number of individual 

repeat buyers each having more or less a unit demand. If this is the case then 10 buyers can hardly have 

the power of affecting the opinion of 10000 buyers at once. In contrast, if the producer serves the very 
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same customer whose demand randomly fluctuates over time, then the representation of goodwill loss in 

Version-A could be a better fit to the producer’s situation. We adopt Version-B and solve our goodwill 

loss model according to that representation. The same solution techniques could be used for Version-A or 

for a unified goodwill loss representation that combines both versions as proposed in Appendix A. 

3.3. Diminishing impact of goodwill loss 

In both representations of the customer goodwill loss, the impact of a single loss period on the demand 

of the first succeeding no-loss period is likely higher than the impact of two or more consecutive loss 

periods. Such a block of loss periods eventually makes a diminishing impact. We ascribe this 

counterintuitive situation to two reasons. First one is the short time span of goodwill impact. No matter 

how big a demand is lost in the current period; its effect is felt only in the next period. Secondly, as 

shortages pile up in consecutive periods, effective demand in the last loss period shrinks. Shortage in the 

last loss period is made out of this effective demand, and goodwill loss in the next period amounts to a 

certain ratio of this shortage in both Version-A and -B. The lesser effective demand in the last loss period 

is, the lesser possible shortage can happen, thus the smaller goodwill loss arises in the first no-loss period. 

We give a short example with four periods to illustrate this situation. Two scenarios and the 

corresponding impact on the last period are shown in Table 1. Arrows in the table indicate the direction of 

impact. In scenario 1 we do not meet demand until the last month whereas in scenario 2 only the third 

month’s demand is lost. A smaller effective demand goes unsatisfied in the last loss period July (2500 in 

scenario 1 vs. 3000 in scenario 2), which translates into a less impact on the first no-loss period August 

(1250 in scenario 1 vs. 1500 in scenario 2). For the same rate of goodwill loss (50%), one can verify that 

if Version-A was adopted, a diminishing goodwill impact would be observed again. That is, in scenario 1 

the goodwill loss of August would be 1500 units as opposed to 2000 units in scenario 2.  

 

Table 1    Goodwill impacts of different number of loss periods with β = 50% 

 Period Original Demand Effective Demand Satisfied Demand Shortage Period Loss  
May 2000 2000 0 2000 2000 
June 2000 1000 0 1000 2000 
July 3000 2500 0 2500 3000 

Sc
en

ar
io

 1
 

August 4000 2750 2750 0 1250 
May 2000 2000 2000 0 0 
June 2000 2000 2000 0 0 
July 3000 3000 0 3000 3000 

Sc
en

ar
io

 2
 

August 4000 2500 2500 0 1500 
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4. The mathematical model with goodwill loss 

We add several new decision variables and logical constraints to the lost sales model P of Aksen et al. 

[12] while we modify their balance constraint for inventory flows. The following parameters appear in 

our goodwill loss model. 

T : Number of periods in the planning horizon. 

st : Set-up cost (fixed cost) of production in period t. 

pt : Unit revenue (unit selling price) in period t. 

ct : Unit production cost (variable cost) in period t. 

ht : Unit inventory holding cost in period t. This is charged for inventory at the end of period t. 

dt : Demand in period t. 

β : Rate of customers who do not return the next time if their current effective demand is not satisfied. 

M : A large number acting as a Big-M value in logical constraints. (M ). 1
T

tt d
=

=∑
ε : A very small number used in the definition of the effective demand to convert less-than-or-equal-to 

constraints to strictly inequality constraints. We calculate it as  ε  = max {M −1,  0.10β , 0.05}  to mitigate  

the quite possible scaling problem between this constant and the value M. 

The decision variables of our goodwill loss model are given below. 

Xt : Production quantity in period t. 

It : End-of-period inventory for period t. 

LUt : Shortage (or unsatisfied effective demand) in period t. This variable is the same as Lt in P. 

LGt : Goodwill loss (or demand of customers lost to the goodwill impact) in period t. 

Et : Effective (or realized) demand in period t.  

yt : Indicator variable of the production activity in period t.   yt =  
  1       0

0      

tif X

otherwise

>⎧⎪
⎨
⎪⎩

δt  : Indicator variable signaling whether or not the expression ( )1t td LUβ
−

⎡ ⎤− ⋅⎢ ⎥  in the definition of the 

effective demand Et is nonnegative.  δt = 11          

0     

t tif d LU

otherwise

β
−

⎧ ⎡ ⎤≥ ⋅⎪ ⎢ ⎥
⎨
⎪⎩

 

 
The operator ⎡⋅⎤ in the definition of δt returns the smallest integer number greater than or equal to its 

argument. We use this operator to measure loss values as integers. Demand in our new model occurs in 

discrete units. Hence, loss values have to be integer too. There are two additional assumptions in Aksen et 

al’s lost sales model P besides those of the standard Wagner-Whitin model: Any demand not satisfied in 

its period is considered lost, and the gross marginal profit (pt − ct) is nonnegative in each period t. We 

adopt these assumptions as is. Since realized sales for period t are given by (dt − LGt − LUt) in the new 
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model, profit function Π of the problem P needs a modification. An MIP formulation of the new goodwill 

loss model is presented below. 

 
 
Problem PG  

Max.  PROFIT  ΠG  =    
1 1

( )   (  
T T

t t t t t t t t t t
t t

)p d LG LU s y c X h I
= =

− − − + +∑ ∑  (1) 

s.t. 
Xt  ≤  M yt       t = 1, …, T (2) 

X1  −  I1  +  LU1  =  d1   (3) 

It−1  +  Xt  −  It  +  LUt  =  Et  t = 2, …, T (4) 

E1  =  d1  (5) 

LUt  ≤  Et t = 1, …, T (6) 

LGt  +  Et   =   dt t = 1, …, T (7) 

Et  ≤  dt  −  β LUt−1  +  M (1−δt) t = 2, …, T (8) 

Et  ≥  dt  −  β LUt−1  −  M (1−δt)  −  (1−ε) t = 2, …, T (9) 

Et  ≤  dt δt t = 2, …, T (10) 

dt  ≤  β LUt−1  +  M δt t = 2, …, T (11) 

dt  ≥  β LUt−1  −  M (1−δt) t = 2, …, T (12) 

Xt  ≥ 0,   It  ≥ 0,   Et  ≥ 0 t = 1, …, T (13) 

LGt , LUt  œ       t = 1, …, T (14) +
 

Z

yt , δt  œ  {0, 1} t = 1, …, T (15) 

The profit function in (1) shows the difference between total realized revenue and total inventory cost. 

The first set of constraints (2) and binary property of yt in (15) enforce a set-up cost with positive 

production in each period. Constraints (3)-(5) provide balance for inventory flow from the previous 

period (t−1) to the current period. Constraint (5) also implies there can be no goodwill loss in the first 

period. Constraints (6) ensure that lost sales in a period cannot exceed that period’s effective demand. 

Constraints (7) establish the simple relationship between effective demand, original demand and goodwill 

loss in a period. Constraints (8)-(12) supported by the binary property of δt in (15) linearize the 

definitions of indicator variables δt, goodwill loss, and its impact on demand. In other words, they ensure 

that { }10,   2.t tt × =  max d  β  LU  E −− ∀ ≥⎡ ⎤⎢ ⎥ t  Loss variables LUt and LGt are restricted to nonnegative 

integer values in (14). This way, since demand occurs also in discrete units, we are allowed in (13) to 
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declare Xt, It and Et as nonnegative linear variables only. This MIP model has 3×T linear, 2×T integer, and 

(2×T − 1) binary decision variables used in (9×T − 4) constraint equations. The T equality constraints in (7) 

and T linear variables representing effective demand values Et are used for the purpose of clarity. They 

can actually be dropped from the model. Subsequently all Et’s in constraints from (4) through (10) need 

to be substituted by (dt– LGt). This would reduce the size of the proposed model in (1)-(15); however, 

since the number of binary and integer variables would remain the same, the model would not be 

substantially easier to solve with a general purpose MIP solver. 

Ignoring the impact of goodwill loss in problem PG directly requires the goodwill rate β to be zero. In 

this case, PG transforms to the lost sales model P, because then the extra variables LGt, Et and δt all 

become redundant, and the variables LUt in PG substitute for Lt in P while the integrality requirements on 

them drops out. We can bracket the optimal objective value of PG between a lower and upper bound. Let 

,   and Π* denote optimal objectives of the problems PG, its associated WW problem and lost 

sales problem P without goodwill loss, respectively. Likewise, let 

*
GΠ *

WW
Π

*
G

σ , *
WW

σ  and σ 
* respectively denote 

the optimal production schedules ( *
tX  values) of these three associated problems. Then, the following 

lemma and corollary hold true for . *
GΠ

Lemma 1.   . * *
WW G≤ ≤Π Π    *Π

Proof:  The production schedule *
WW

σ  minimizes the total cost by satisfying all periods’ demand, leaving 

no space for a shortage, thus preventing also goodwill losses. It is a feasible schedule for the associated 

lost goodwill problem PG. However, demand in the WW model is satisfied regardless of profitability, 

even when potential gross profit from sales is too low to meet the set-up cost. The profit obtained from a 

total cost minimizing objective cannot exceed the optimal value of a profit maximizing objective. On the 

other hand, in the no-goodwill-loss problem P the goodwill rate β equals 0%, which means that losing the 

effective demand to achieve a higher profitability does not cut off potential profits from any future 

demand. Hence, the profit obtained in the no-goodwill-loss problem P cannot be lower than that in the 

lost goodwill problem PG.      á 

Corollary 1.   If production schedule σ 
* is feasible for the associated problem PG, then . * *

G =Π Π

Proof:  The proof of Corollary 1 immediately follows from Lemma 1.      á 

5. A Search-and-Restoration heuristic for problem PG 

We implement basically a neighborhood search method to find a high-quality heuristic solution to the 

lost goodwill problem PG. This method called search-and-restoration heuristic [SRH] exploits the 

optimal solution of the equivalent no-goodwill problem P. We first use the DP algorithm [AAC] 

described in [12] to obtain in O(T 2) time an initial production schedule σ 
* which is optimal for the 
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corresponding problem P. If σ 
* is feasible for PG, it will be also optimal for it due to Corollary 1. If not, 

then we scan σ 
* for (blocks of) loss periods starting from period 1 through period T. During this 

inspection of σ 
*, we try to restore the feasibility of balance of inventory flow constraints (4), and in 

conjunction with them the feasibility of constraints (6)-(12) which define the effective demand and 

goodwill loss values in PG. A number of restoration alternatives are checked for the minimum extra cost 

incurred. These restoration alternatives make the backbone of the [SRH] heuristic. Each of them can be 

viewed as a scenario of either satisfying or losing the effective demand in the last loss period analyzed. It 

is not impossible for the least cost scenario to modify the production schedule such that new loss periods 

arise ahead of the one currently analyzed. We focus on only one loss period at a time, which is either a 

singled-out period or the last in a block of loss periods. As we progress from the first towards the last loss 

period, we do not look back on the previous ones for which a least cost alternative has been already 

chosen. Therefore, our heuristic is a local search method as a whole.  

During the local search with [SRH], we benefit from three lemmas proven for the no-goodwill problem 

P in Aksen et al. To fit the lemmas into the goodwill problem, terms dt and Lt are updated with Et and LUt 

respectively. The first updated lemma ( * * 0   t tLU X t= ∀ ) suggests that effective demand in a given period 

be fully satisfied if production is made in that period. The second updated lemma ( ) refers 

to the so-called zero-inventory ordering policy of the WW solution. It suggests that production be made in 

a given period only if the inventory at the beginning of that period equals zero. The third updated lemma 

( ) dictates that partial shortage of effective demand be avoided. This implies 

that each period we lose either none or all of effective demand. Our algorithm [SRH] is developed upon 

these updated lemmas. Fine programming details and pseudo code of [SRH] are left out for the sake of 

brevity. A short verbal explanation of the cost analysis performed in each restoration is provided in 

sections 5.1 and 5.2. This is followed by a small example illustrating the effectiveness of [SRH] for the 

lost goodwill problem PG. Thorough description of the restoration alternatives with formal notations are 

left to Appendix B.  

* *
1 0   t tI X− = ∀t

∀* * *( ) 0   t t tLU E LU t− =

Some terms (production, loss, stockout and conservation period) that help elucidate the algorithm 

[SRH] are defined next. These are supplemented with three more definitions below. The major steps of 

[SRH] are outlined in Figure 1.  

Definition 1a. A period t is a production period if Xt > 0. 

Definition 1b. A period t is a loss period if LUt > 0. 

Definition 1c. A loss period t is also a stockout period if It = 0.  

Definition 1d.  A loss period t is also a conservation period if It > 0. 

Definition 1e. A period t in the optimal production schedule σ 
* of problem P is a regeneration period if the last 

production that occurred in or before t is exhausted in t. To be exact, period t is a regeneration period if  It  = 0  and  

LUt = 0  while  Et > 0. 
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Definition 2a. A block of loss periods 〈t1,t2〉 is said to be interior if  t1 > 1  and  t2 < T. 

Definition 2b. A block of loss periods 〈t1,t2〉 is said to span k periods if  (t2− t1) = k.  

 
 

Search-and-Restoration Heuristic [SRH] for problem PG 

Initialization: 
Solve the equivalent no-goodwill problem P with the DP algorithm [AAC]. An optimum of P is the 

production schedule *σ  with production amounts *
tX .  

Step 1:  Set the counter t = 1.  

Step 2: Starting from period t onward, look for the first block of loss period(s) 〈t1,t2〉  where t ≤ t1 ≤ t2. 

Compute the current effective demand values Et1+1, Et1+1, …, Et2
 within this block. If the last loss period t2 

coincides with the final period T  (t2 = T )  then stop. 

Step 3: If
  
Et2  

is calculated as zero, then advance the counter t to (t2+2) and go to step 2. 

Step 4: Depending on the location (interior or at the very beginning of the planning horizon?), size 

(spans at least 2 periods or only 1 period?), and type of loss periods (stockout or conservation periods?), 

examine appropriate alternatives of satisfying Et2
 (such that LGt2+1= 0) or losing Et2

 (such that LGt2+1 > 0).  

Step 5: Choose the one that charges the least additional cost on the maximum profit Π* of problem P. 

Decrease Π* by that least cost, accommodate the production amounts *
tX , effective demand Et and total 

loss values (LGt + LUt) as determined in this least cost alternative.  

Step 6: Advance the counter t beyond the last analyzed loss period t2 for as many periods as required by 

the least cost alternative chosen in step 5. Repeat steps 2-6 until all loss periods have been analyzed.  

Figure 1     Major steps of [SRH] 

 

In the following restoration alternatives, 〈t1,t2〉 denotes a block of one or more loss periods. The last 

production period preceding 〈t1,t2〉 is u. If 〈t1,t2〉 consists of conservation periods, then q is the first 

regeneration period coming after this block. If 〈t1,t2〉 consists of stockout periods, then (t2+1) is a 

production period by definition, and j denotes the regeneration period of this production, while 〈j+1, q〉 

represents a possible second block of stockout periods followed by a third production in period (q+1). 

Having j = q implies that there exists no stockout period between the consecutive production periods 

(t2+1) and (q+1). Figure 2 and Figure 3 below help better visualize conservation and stockout events 

together with the relevant regeneration, production and loss periods as well as effective demands and 

shortages. On the time axis in the figures are also ending inventories indicated. Solid, dashed, and dotted 

arrows show demands, production activities, and shortages, respectively. 
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Figure 2     A block of conservation periods 〈t1,t2〉 
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Figure 3     An interior block of stockout periods 〈t1,t2〉  

 

5.1. Alternatives of restoration for conservation periods 〈t1,t2〉 

Alt.1:  Endure the goodwill loss in period (t2+1). Decrease the production in period u to accommodate 

this loss in the demand of (t2+1). 

Alt.2:  Avoid the shortage in period t2, this way the goodwill loss in (t2+1), by increasing the production 

in period u accordingly. 
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Alt.3:  Make a new production in t2 to avoid the shortage in this period. This will cover the effective 

demand of t2 and demands of the succeeding periods 〈t2+1,q〉 unless there is one or more demands to be 

conserved among them. Adjust the production level in period u accordingly. 

Alt.4:  Repeat Alt.3 for some period before t2 and after u. Attention should be paid again to the potential 

conservation periods of the new production. 

Alt.5:  Shift the production in (q+1) to an earlier period strictly between u and (t2+1) such that the 

shortage in t2, thus the goodwill loss in (t2+1) is prevented. Adjust then the original production in u. 

5.2. Alternatives of restoration for stockout periods 〈t1,t2〉 

Alt.6:  Endure the goodwill loss in period (t2+1). Decrease the original production in period (t2+1) by as 

much as this goodwill loss. 

Alt.7:  Endure the goodwill loss in period (t2+1). Then, either cancel the entire production in that period, 

or shift and adjust it to a later period that comes before the next production period (q+1).  

Alt.8:  In case of interior stockout period(s), cancel the production in (t2+1) and endure the goodwill loss 

in this period. Its remaining effective demand is to be covered by the previous production in u. Provided 

that there is no production activity in period (t2+2), recheck Alt.7 to see if the cancelled production of 

(t2+1) should be shifted to a later period. 

Alt.9:  Avoid the shortage in period t2, this way the goodwill loss in (t2+1), by increasing the production 

in period u accordingly. 

Alt.10:  Make an extra intermediate production in period t2 in the amount of this period’s effective 

demand in order to restore the goodwill loss in (t2+1). 

Alt.11:  If the block 〈t1,t2〉 is comprised of three or more stockout periods, then consider either only one or 

two new production activities inside this block. These new production activities have to cover the 

effective demand of period t2 so as to avoid the goodwill loss in (t2+1). 

Alt. 12-14: In order to meet the effective demand in period t2 shift the original production in period (t2+1) 

backward either to the previous period t2 (Alt.12), or to some least cost period in 〈t1,t2−1〉 (Alt.13), or 

further back to some least cost period in 〈u+1,t1−1〉 (Alt.14). For Alt.13 there must be at least three 

stockout periods, while Alt.14 is applicable to interior stockout periods only. In the latter alternative, the 

production quantity in period u must be recalculated by observing the conservation periods ahead of u.  

Alt.15:  First, check if stockout periods appear right at the start of the planning horizon, and if the original 

production in period (t2+1) of the no-goodwill schedule covers the demands of at least two periods. If both 

yes, then replace that production with two production activities. The first of these will be made in some 

stockout period in 〈1,t2〉 while the second will be made (t2+1) periods after the first one. 
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Alt.16:  First, check if 〈t1,t2〉 is an interior block of stockout periods, and if the preceding production 

activity in u covers at least two periods. If both yes, then discard the demand of period (t1−1) from that 

production in u and lose it. Calculate new effective demands for 〈t1,t2〉, and make an exclusive production 

in t2 so as to meet the effective demand in that period and avoid the goodwill loss in the next period. 

Alt.17:  Same as Alt.11 except for the period of the first new production activity fixed as t1.  

Alt.18:  Begin with the same initial checks of Alt. 16. If 〈t1,t2〉 pass these checks, then shift it backward on 

the time axis by one period. As a result of this shift the production in u will contract by the demand of 

period (t1−1) and new stockout periods will be 〈t1−1,t2−1〉. Depending on whether production is made in 

period (t2+2), there are two subcases to be analyzed both of which are carefully explained in Appendix B.  

Searching and restoring a block of loss periods in each of these 18 alternatives takes at most O(T 2) 

time. Thus, once algorithm [AAC] finds the optimal no-goodwill production schedule σ 
* in O(T 2) time, 

the entire cost analysis and restoration of loss blocks can be made in another O(T 2) time. As a result, the 

local search method [SRH] has a quadratic order of time complexity overall. As explained in section 4 

before, any instance of the no-goodwill problem P reduces to a special instance of the goodwill problem 

PG with the goodwill rate β simply set to zero, i.e. we can write P ∝P PG where ∝P indicates reduction in 

polynomial time. For time-varying data P is solvable in no less than O(T 2) time. Then, even if there exists 

a polynomial time algorithm that solves PG optimally, it cannot have a time complexity less than O(T 2). 

Therefore, our proposed method [SRH] with its quadratic running time has merit. 

5.3.  An illustrative example  

We demonstrate the algorithm [SRH] on an 8-period test problem called AKSEN2. Problem parameters 

and an optimal production schedule σ 
* ignoring the impact of goodwill loss are given in Table 2 and 

Table 3, respectively. There is an interior block of four stockout periods 〈4, 7〉 in σ 
*. The impact of 

goodwill loss with the rate β = 50% supplements σ 
* with two new production activities within the loss 

block. The new production plan results in one less stockout period and approx. 7.5% decrease in profit. 

Among 12 alternatives that are eligible for inspection in this sample problem, it is Alternative 17, which 

achieves the least fall in the profit of the no-goodwill problem. We verify the optimality of the new plan 

by solving the model of the corresponding problem PG with the MIP solver CPLEX 8.1. We give the 

profit values also for two suboptimal cases. One of these is the WW solution of the problem. Since all 

demand is met in this solution, there is no need to consider the lost goodwill cost. However, the profit 

obtained from the WW solution is $44 less than the profit we find with [SRH]. The second case, which is 

the [AAC] solution exposed to 50% lost goodwill impact, does not promise a better profit, either. As can 

be seen in Table 3, goodwill impact deteriorates the original profit of [AAC] solution by 14.75% (from 

$1017 to $867). 
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Table 2    Cost, unit revenue and demand data for AKSEN2 

Period t st ct ht pt Demand dt 
1 $ 100 $ 10 $ 5 $ 30 9 
2 100 10 5 22 12 
3 100 10 5 42 9 
4 100 10 5 14 25 
5 100 10 5 15 9 
6 100 10 5 12 20 
7 100 10 5 12 20 
8 100 10 5 40 25 

 

Table 3   [AAC] without goodwill loss, [AAC] with goodwill loss, WW, and [SRH] solutions for AKSEN2 

σ 
* t *

1tI −  *
tX dt 

*
tLG *

tE *
tLU Total 

Loss in t
*
tI  Revenue 

in t 
Costs 

in t 
Profit 

in t
1 0 9 9 − 9 0 0 0    $ 270   $ 190  $ 80
2 0 21 12 − 12 0 0 9 264 355 (91)
3 9 0 9 − 9 0 0 0 378 0 378
4 0 0 25 − 25 25 25 0 0 0 0
5 0 0 9 − 9 9 9 0 0 0 0
6 0 0 20 − 20 20 20 0 0 0 0
7 0 0 20 − 20 20 20 0 0 0 0[A

A
C

]  
w

ith
ou

t 
go

od
w

ill
 lo

ss
 

8 0 25 25 − 25 0 0 0 1000 350 650
Total Profit: $ 1017

1 0 9 9 0 9 0 0 0    $ 270   $ 190  $ 80
2 0 21 12 0 12 0 0 9 264 355 (91)
3 9 0 9 0 9 0 0 0 378 0 378
4 0 0 25 0 25 25 25 0 0 0 0
5 0 0 9 9 0 0 9 0 0 0 0
6 0 0 20 0 20 20 20 0 0 0 0
7 0 0 20 10 10 10 20 0 0 0 0

[A
A

C
]  

w
ith

  
go

od
w

ill
 lo

ss
 

8 0 20 25 5 20 0 5 0 800 300 500
Total Profit:   $ 867

1 0 9 9 0 9 0 0 0    $ 270   $ 190  $ 80
2 0 21 12 0 12 0 0 9 264 355 (91)
3 9 0 9 0 9 0 0 0 378 0 378
4 0 34 25 0 25 0 0 9 350 485 (135)
5 9 0 9 0 9 0 0 0 135 0 135
6 0 40 20 0 20 0 0 20 240 600 (360)
7 20 0 20 0 20 0 0 0 240 0 240

W
W

 

8 0 25 25 0 25 0 0 0 1000 350 650
Total Profit: $ 897

1 0 9 9 0 9 0 0 0    $ 270   $ 190  $ 80
2 0 21 12 0 12 0 0 9 264 355 (91)
3 9 0 9 0 9 0 0 0 378 0 378
4 0 25 25 0 25 0 0 0 350 350 0
5 0 0 9 0 9 9 9 0 0 0 0
6 0 0 20 5 15 15 20 0 0 0 0
7 0 12 20 8 12 0 8 0 144 220 (76)

[S
R

H
] 

8 0 25 25 0 25 0 0 0 1000 350 650
Total Profit:  $ 941
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6. Computational experiments and benchmarking 

Algorithm [SRH] has been coded in C, compiled in Microsoft Visual C++ 6.0®, and run on a desktop 

computer with 1.7 GHz Pentium 4 processor and 512 MB RAM. The solution quality and time of [SRH] 

has been examined first on Aksen et al.’s 22 test problems. In all problems, a uniform impact rate β = 

50% is assumed for goodwill loss. In addition, a GAMS [25] model has been created for each test 

problem, and solved on the same platform to optimality where possible using the MIP solver CPLEX 8.1. 

Together with the CPU time, each test problem’s optimal or best feasible profit value found by CPLEX 

serves as a benchmark for [SRH]. In MIP models of GAMS, solution accuracy obtained from the 

employed solver is mainly controlled by upper limits on the number of iterations (ITERLIM) and on the 

resource usage (RESLIM) in terms of CPU seconds. A relative optimality criterion (OPTCR) can be set for 

the MIP master problem determining when the solver should terminate its branch and bound or cut 

procedure. OPTCR is defined as the ratio (|BP−BF|) / (1.0e-10 + |BF|) where BF is the objective function 

value of the current best integer solution while BP is the best known (current) upper bound in case of 

maximization. The solver stops trying to improve upon the integer solution BF when this ratio drops 

below the specified value [26].   

During the first phase of experimentation the triplets of accuracy parameters ITERLIM, RESLIM and 

OPTCR in GAMS models are (750000 / 18000 / 0.01%) and (7750000 / 21600 / 0.1%) for test problems with T 

≤ 200 and for those with T ≥ 240, respectively. Table 4 shows the results of experiments with the 22 test 

problems. On this test bed [SRH] performs apparently well. While CPLEX 8.1 runs out of memory in 

three large-size problems, [SRH] can solve all of them under 0.1 sec. Only in problem AKSEN1, the 

optimal profit of the solver is slightly better than the outcome of [SRH]. 

In the second phase of experimentation, we test [SRH] on a larger set of randomly generated problems, 

and again benchmark with the MIP solver CPLEX 8.1 of GAMS suit 21.1. We use the accuracy 

parameters (750000 / 18000 / 0.01%) in most of the GAMS models in this phase. However, in 19 problems 

of T = 150 periods, the solver runs out of memory before the specified limit on resource usage is reached. 

Therefore, in the GAMS models of those problems, we raise the relative optimality criterion to 1% and 

limit the resource usage to 3¼ to 4.0 CPU hours.  

The randomized scheme of test problem generation is given in Table 5. Variation in five problem 

parameters for five demand patterns (using five different initial seeds) as shown in the table leads to 360 

random problems. In generating demand values, we sample from three probability distributions. In two of 

these, namely normal and exponential distributions, we round random variables to the nearest integer to 

make sure that there is no fractional demand. In the case of discrete uniform distribution, there is 

obviously no rounding. Different values of unit costs and prices due to supposed irregular seasonality in 

the problem data are presented in Table 6 and Table 7. Gross marginal profits (pt − ct) are relatively small, 

making loss of demand more appealing. The ratio of unit holding cost ht to unit production cost ct varies 
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between 3.85% and 15%. This is an acceptable range in most real-life lot-sizing problems, because 

holding cost is usually treated as the capital cost of production. 

 

 

 

Table 4    Performance of [SRH] in the first phase of experimentation 

Prob. Name T Profit of [SRH] CPU of  
[SRH] (s) 

CPU of  
CPLEX 8.1 (s) 

Opt. Profit of  
CPLEX 8.1 

AKSEN1 8 82.00 0.000 0.078 84.00 
AKSEN2 8 941.00 0.000 0.046 941.00 

BRENNAN 10 355.85 0.000 0.078 356.66 

MAES6 12 88,604.30 0.000 0.093 88,604.30 

RD7-ALL 12 58,550.00 0.000 0.046 58,550.00 

AKSEN3 16 1,184.00 0.000 0.234 1,184.00 

RD10-ALL 16 725.00 0.000 0.125 725.00 

RD2-ALL 18 570.00 0.000 0.109 570.00 

RD4-ALL 24 467.00 0.000 1.250 467.00 

RD6-ALL 24 1,617.00 0.000 0.156 1,617.00 

RD8-ALL 30 5,369.00 0.000 0.109 5,369.00 

RD3-ALL 36 1,665.00 0.000 0.156 1,665.00 

RD5-ALL 48 6,748.00 0.000 2.609 6,748.00 

RD01-ALL 48 310,749.00 0.000 0.109 310,749.00 

RD9-ALL 72 25,090.00 0.000 3.062 25,090.00 

RD100 100 782,149.00 0.000 0.234 782,150.97 

RD144 144 46,243.00 0.050 698.453 46,243.00 

RD200 200 1,564,298.00 0.000 1.171 1,564,298.00 

RD240 240 93,488.00 0.000 13,749.812 OUT OF MEMORY 

RD312 312 118,578.00 0.050 12,876.453 OUT OF MEMORY 

RD350 350 109,105.46 0.060 16,472.921 OUT OF MEMORY 

RD400 400 3,128,596.00 0.050 1.734 3,128,596.00 
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Table 5    Randomized generation scheme for 360 test problems 

Parameter Explanation No. values Values 

T Length of the planning 
horizon 6 24, 36, 60, 96, 120, 150 

pdf  of  dt 
Probability distribution 
function of demand 3 

• Normal with  µ = 150  and  σ 2 = 1600 
• Discrete Uniform[30, 270, 10] 
• Exponential with µ = 150 

ct  and  ht 
Unit production and holding 
costs 2 

• Both constant: ct = 13.0  and  ht = 1.0 
• Both seasonally varying. 

pt Unit selling prices 2 
• Discrete uniformly distributed between  
 15.0 and 25.0 in increments of 5.0. 
• Seasonally varying. 

st Set-up costs  1 Constant:  st = 1000.0 

SEED Initial random number seed 5 622, 1371, 2003, 99, 1971 

 

Table 6    Values for unit cost and unit price parameters with seasonality 

ct with seasonality: cI cII cIII cIV cV cVI cVII cVIII cIX cX 

Values: 12 13 13 11 13 13 10 11 12 13 

ht with seasonality: hI hII hIII hIV hV hVI     

Values: 0.5 1.0 1.5 1.5 1.0 0.5     

pt with seasonality: pI pII pIII pIV pV pVI pVII pVIII pIX pX 

Values: 18 25 16 19 22 20 15 15 18 20 

 

6.1. Results 

Comparative results obtained from 360 test problems are summarized in Table 8. The first half of the 

table shows the average best profit values of WW, CPLEX and [SRH] solutions for each subset of 60 

problems. Average CPU times for CPLEX and for [SRH] are displayed in the last two columns of the first 

half. These results validate the solution time superiority of [SRH] over commercial solvers. They also 

confirm that [SRH] can find close-to-optimal production schedules for the lost goodwill problem PG, 

assuring a higher profit value than the corresponding WW solution. The second half of Table 8 shows 

relative discrepancies between the best profit values of WW, CPLEX and [SRH] solutions. Cumulative 

results of 360 test problems indicate that [SRH] achieves an average improvement of 2.41% and 

maximum improvement of 14.32% over the WW approach. On the other hand, CPLEX can generate a 

higher profit than [SRH] in approx. 60% of test problems (220 out of 360). Yet, profits found by [SRH] 

fall short of the objective values of the optimal (or best feasible integer) CPLEX solutions by only 0.18% 

on the average. The biggest discrepancy between a [SRH] and associated CPLEX profit is measured as 

3.27%. Our experiments verify that [SRH] is not an exhaustive but a local search algorithm; hence, it may 

not always yield the true optimal solution of a given instance of the lost goodwill problem PG.  
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An interesting but not too much surprising empirical finding of our extensive GAMS runs is that 

solution times of CPLEX 8.1 decrease dramatically as gross marginal profits (pt − ct) grow. Preserving 

pt’s, when we drop unit production costs by 3 units, i.e. when we increase the average gross marginal 

profit by 3 units, then the maximum CPU time even for 150-period problems reduces to 72 seconds. A 

reasonable justification for this high sensitivity of commercial MIP solvers to gross marginal profits in 

problem PG is as follows. Endogenous loss of demand (shortage) becomes less profitable as gross 

marginal profits tend upwards. Thus, stockouts and conservation of demand arise less; consequently, the 

lost goodwill problem to be solved does not differ much from a classical WW model without lost 

goodwill cost. 

Table 7    Range of periods in which values of seasonality are applicable 

ct with 
seasonality: 

cI cII cIII cIV cV cVI cVII cVIII cIX cX 

T = 24 1−6 7−12 13−18 19−24       
T = 36 1−6 7−12 13−18 19−24 25−30 31-36     
T = 60 1−10 11−20 21−30 31−40 41−50 51−60     
T = 96 1−12 13−24 25−36 37−48 49−60 61−72 73−84 85−96   
T = 120 1−12 13−24 25−36 37−48 49−60 61−72 73−84 85−96 97−108 109-120
T = 150 1−15 16−30 31−45 46−60 61−75 76−90 91−105 106−120 121−135 136−150
ht with 

seasonality: 
hI hII hIII hIV hV hVI     

T = 24 1−4 5−8 9−12 13−16 17−20 21−24     
T = 36 1−6 7−12 13−18 19−24 25−30 31−36     

T = 60 1−6, 
37−42 

7−12, 
43−48 

13−18, 
49−54 

19−24, 
55−60 

25−30 31−36     

T = 96 
1−6, 
37−42, 
73−78 

7−12, 
43−48, 
79−84 

13−18, 
49−54, 
85−90 

19−24, 
55−60, 
91−96 

25−30, 
61−66 

31−36, 
67−72 

    

T = 120 1−12, 
73−84 

13−24, 
85−96 

25−36, 
97−108 

37−48, 
109−120

49−60 61−72     

T = 150 1−15, 
91−105 

16−30, 
106−120 

31−45, 
121−135 

46−60, 
136−150

61−75 76−90     

pt with 
seasonality: 

pI pII pIII pIV pV pVI pVII pVIII pIX pX 

T = 24 1−6 7−12 13−18 19−24       

T = 36 1−6, 
25−30 

7−12, 
31−36 

13−18 19−24       

T = 60 1−10 11−20 21−30 31−40 41−50 51−60     
T = 96 1−12 13−24 25−36 37−48 49−60 61−72 73−84 85−96   
T = 120 1−12 13−24 25−36 37−48 49−60 61−72 73−84 85−96 97−108 109-120
T = 150 1−15 16−30 31−45 46−60 61−75 76−90 91−105 106−120 121−135 136−150
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Table 8    Performance comparisons between WW, GAMS/CPLEX and [SRH] in 360 test problems 

T NT ( )*Avg. WWΠ  ( )*Avg.
CPLEX

GΠ  ( )[SRH]
Avg. GΠ Avg. CPLEX 

CPU time (s) 
Avg. [SRH]  
CPU time (s) 

24 60 13752.53 14195.69 14158.83 0.345 0.000 
36 60 22423.97 22885.25 22842.96 0.353 0.000 
60 60 40294.72 40879.51 40803.53 3.488 0.000 
96 60 57747.07 59094.03 58981.18 208.843 0.002 
120 60 71817.62 73323.76 73211.39 2686.485 0.003 
150 60 89969.00 91758.99 91715.87 8393.388 0.004 

T NT Avg. 
%(WW-SRH) 

Max.  
%(WW-SRH) 

Avg. 
%(CPLEX-SRH) 

Max.  
%( CPLEX -SRH) 

NCPLEX > SRH 

24 60 3.55 14.32 0.30 3.27 24 

36 60 2.10 9.36 0.19 3.13 28 

60 60 1.41 6.36 0.20 1.63 38 

96 60 2.71 11.01 0.19 1.27 43 

120 60 2.34 7.95 0.15 0.87 48 

150 60 2.36 8.04 0.05 0.90 39 
Cum. 
Res. 360 2.41 14.32 0.18 3.27   220 

 

7. Summary and conclusions 

This paper dwells upon the customer goodwill loss due to unsatisfied demand in lot-sizing problems. 

Previous research treats the goodwill loss by including it directly in the objective function as an additional 

cost component. The traditional approach is to intensify the gross profit loss due to stockouts with an 

extra unit cost which is multiplied by the volume of unsatisfied demand. The resulting amount is usually 

assumed to reflect both the actual loss of profit and the eventual cost of losing customer goodwill. Our 

paper brings about a first-time change to the treatment of goodwill loss in dynamic lot-sizing. We propose 

an uncapacitated single-item model that allows lost sales to maximize profit in a production environment 

with fluctuating costs and prices. The impact of goodwill loss due to unsatisfied demand in a given period 

is felt as a decline in the realized (effective) demand of the succeeding period. This decline occurs only in 

one period ahead, and is proportional to the quantity of unsatisfied demand. The deterministic nature of 

goodwill impact in our model is supported by observations of Wee [11] who says “in real world 

applications, it is not unrealistic to assume that the retailers have some knowledge on buyers’ behaviors 

such as their responses to shortages and price increase.”  

The impact of customer goodwill loss has been imbedded in the lost sales version of the well-known 

WW model. This yields a MIP formulation of our proposed model. We differentiate between endogenous 

and exogenous loss of demand, the latter of which represents the goodwill loss as an uncontrollable 

consequence of the former. The solution time of the new model with the benchmark MIP solver CPLEX 

8.1 is noticeably sensitive to the average gross marginal profit in the problem. Lower gross marginal 

profits delay the convergence to a proven optimal solution. As an alternative to the MIP optimization, we 
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present a quadratic-time two-stage neighborhood search and restoration heuristic called [SRH]. It first 

uses the DP algorithm [AAC] to generate an optimal production schedule to the problem without 

goodwill impact. An extensive local search is then applied to the (blocks of) loss periods in this schedule, 

and feasibility is restored at the minimum possible cost. On 22 problems reported in [12] as well as on 

another test bed of 360 randomly generated problems, the solution quality of [SRH] is competitive. 

Moreover, [SRH] requires significantly less CPU time than the MIP solver. In comparison to WW 

solutions which do not allow lost sales, average [SRH] profits on the same test bed are by 2.41% higher. 

The immediate future extension of our study will be an in-depth computational analysis of the first 

extreme version of customer goodwill representation and its comparison to the second specific version 

which we have thoroughly studied in this paper. The continuation on customer goodwill loss has to look 

into such generic perspectives as capacity constraints, backordering, quantity discounts and set-up times. 

They could be incrementally incorporated into the goodwill loss model, which would certainly increase 

the problem complexity. Alternatively, the challenge for a polynomial time algorithm to solve the lost 

goodwill problem optimally might also be undertaken by future researchers.  
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Appendix A. A unified representation of customer goodwill loss  

Version-A and Version-B of customer goodwill loss representation proposed in section 3 can be 

merged into a unified representation that would converge to either of them at the limits. For this, in 

addition to the notations and symbols introduced in section 4, let coefficients βA and βB denote the given 

ratios of goodwill loss in Version-A and -B, respectively. Also let α be the ratio of original demand that 

comes from customers of Version-A. This refers to those customers of the company who make up their 

mind for a purchase in period t by looking at the company’s success of satisfying overall demand in (t–1). 

The rest of the demand is then due to repeat customers whose goodwill loss is defined as in Version-B. 

This decomposition of overall demand dt is equally projected onto the unsatisfied demand (shortage) LUt 

and goodwill loss LGt. The relationships defining the goodwill loss can be rewritten according to the 

demand decomposition as follows. 

   1
1

 -  
 

t
t

t

dLG due to customers of  Version A  LU
d

β αA t−
−

=  t = 2, …, T  

 1{ , (1 ) }t tLG   due to customers of  Version - B   min d LUB tβ α −= −  t = 2, …, T  

Since dt–1 ≥ LUt–1 always holds true, the expression min{⋅} in the second relationship can be dropped out 

if a monotonically increasing demand stream (dt ≥ dt−1) is assumed for simplicity. Once the relationships 

are added side by side, the total goodwill loss in period t is obtained. 
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  1
1

   (1 )
 

t
t A B

t

dTotal LG   LU
d

β α β α  t−
−

⎡ ⎤
= + −⎢

⎣ ⎦
⎥  t = 2, …, T  

The coefficient preceding LUt–1 in the above expression can be treated as a new, period dependent rate of 

customer goodwill loss. This leads to the following unified goodwill loss expression. 

 1
ˆ  t t tLG LUβ −=  t = 2, …, T (16) 

The only difference between this unified goodwill loss expression and the one in Version-B is the time 

dependency of goodwill loss rate. Time dependency of β̂  would not affect the general algorithmic 

procedure in [SRH], the search-and-restoration heuristic. [SRH] can be tailored to solve the lot-sizing 

problem with profit maximization and the unified customer goodwill loss representation given in (16). In 

the limits, this is, for the extreme values 1 and 0 of the ratio α, (16) converges to Version-A and Version-

B, respectively. One last remark should be made about the necessary modifications to the mathematical 

model of problem PG in the limit α = 1, i.e. when Version-A is preferred instead of Version-B as 

goodwill loss representation. In order to adapt the model of PG to Version-A, binary variables δt have to 

be discarded, and equations (8)-(12) have to be replaced by three new constraints provided below. The 

third constraint in (19) only ensures that the goodwill loss in period t be zero if there was no demand, 

hence there was also no shortage in the previous period. The first two constraints enforce LGt to attain an 

integer value, which equals the ceiling of   1
1 

( )t
t

t

d
LU

d
β −

−

. 

   1
1

  (1 )
 

t
t t

t

dLG   LU
d

β ε−
−

≤ + −  ∀t = 2, …, T    ∋  dt−1 > 0 (17) 

   1
1

 
 

t
t t

t

dLG   LU
d

β −
−

≥  ∀t = 2, …, T    ∋  dt−1 > 0 (18) 

  1  t t tLG   d d−≤  ∀t = 2, …, T     (19) 

Appendix B. Formal description of 18 restoration alternatives in [SRH]  

The following restoration alternatives (five in B1 and thirteen in B2) are applicable for all kinds of 

conservation and stockout periods, respectively, unless specific conditions of applicability are explicitly 

stated next to the numbers of alternatives. Notations and symbols used therein are the same as those given 

in section 5 and depicted in Figure 2 and Figure 3. 

B1. Restoring conservation periods 〈t1,t2〉 

Alternative 1   

Lose Et2
 such that  is deducted from the original demand dt2+1 to yield Et2+1. 

Also 

{
2 22

 11 , tt × =  min d β  E  LG ++
⎡
⎢ }t

⎤
⎥

*
uX  drops then by LGt2+1. 
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Alternative 2   

Produce Et2
 in period u, and carry it from u through t2 to avoid a shortage in t2, this way to avoid the 

goodwill loss in period (t2+1). *
uX  increases then by Et2

.  

Alternative 3   

Make a new production in t2. Include in  effective demand Et2 
and demand of periods (t2+1) through 

q which were originally covered by the production 

2

new
tX

*
uX . If there is a period r between t2 and q whose 

demand was not covered in *
uX , then include dr in  only if r is not a conservation period with 

respect to t2. Deduct those demand values from 

2

new
tX

*
uX  which will be included now in .  

2

new
tX

Alternative 4   

Split the original production *
uX  into two parts at some least expensive period k*

∈ 〈u+1, t2−1〉. In this 

period k*, produce the dynamically determined value of (Ek + Ek+1+
 … + Et2−1) in addition to Et2

. Reduced 

*
uX  and new effective demand and total loss values need to be computed by taking into account the 

conservation periods of production in u as well as in k*.  

Alternative 5: Valid only if  q < T 

If it is nonzero, then shift the original production *
1qX +  that comes right after the regeneration period q to 

an earlier period k ∈ 〈u+1, t2〉 such that effective demand in t2 is also met. Compute new effective demand 

and total loss values by looking out for the conservation periods of production in u as well as in k*.  

B2. Restoring stockout periods 〈t1,t2〉 

Alternative 6   

Lose Et2
 such that { }

22
 11 , tt × =  min d

2t
β  E  LG ++
⎡
⎢

⎤
⎥  and Et2+1 = dt2+1 − LGt2+1. Drop also  by LGt2+1. 

2

*
1tX +

Alternative 7   
Lose Et2

 and let Et2+1 = dt2+1 − LGt2+1. Either cancel the entire production 
2

*
1tX + , which means to lose all 

demand met from (t2+1) through q, or shift it to a later period k*
∈ 〈t2+2, q〉 such that it covers less demand 

than it does at its current period (t2+1). Adjust effective demand and total loss values accordingly by 

looking out for the conservation periods of production in (t2+1) as well as in k* if  is shifted to k*. 
2

*
1tX +

Alternative 8: Applies to interior stockout periods only. 

The entire production  is cancelled, and Et2
 is lost. Hence we will have Et2+1 = dt2+1 − LGt2+1. The cost 

analysis is done in three subcases as shown below. In each subcase, effective demand and total loss values 

need to be adjusted in accordance with the respective changes on the current production schedule.  

2

*
1tX +
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Subcase 1.    
2

*
2 0tX + >

Just increase *
uX  by Et2+1.  

Subcase 2.     and   j = q 
2

*
2  0tX + =

Increase *
uX  by Et2+1. Shift the cancelled production 

2

*
1tX +  to period (t2+2).  

Subcase 3.     and   j < q 
2

*
2  0tX + =

Again, increase *
uX  by Et2+1. Make a new production in period (t2+2). This new production 

2

*
2tX +  will 

cover all or some of the demand values of the interval 〈t2+2, q〉 depending on the conservation periods 

of (t2+2) in that interval. 

Alternative 9  

Produce Et2
 in period u and carry it from u through t2 to avoid a shortage in t2, this way to avoid the 

goodwill loss in period (t2+1). *
uX  increases then by Et2

. 

Alternative 10  

Produce Et2
 in period t2 and do not carry it in inventory. We will have = Et2

. 
2

new
tX

Alternative 11: Valid only if the block 〈t1,t2〉 spans 2 or more periods.  

Choose first a least expensive extra production period ∈ 〈t1, t2−1〉 to meet the effective demand in t2 

and to avoid goodwill loss in (t2+1). This new extra production  will meet

*
1k

*
1

new

k
X *

1

new

k
E , 

2

new
tE and new values 

of effective demand in those periods between ( +1) and (t2−1) which are not a conservation period for 

. Next, investigate the profitability of dividing  into two parts, one part still produced in  

and the rest in a later period  with  t1 ≤ < ≤ t2. If it turns out less expensive than making only one 

extra production, then modify  such that its coverage is limited to periods 〈 , −1〉. Produce 

 to meet 

*
1k

*
1

new

k
X *

1

new

k
X *

1k

*
2k *

1k *
2k

*
1

new

k
X *

1k *
2k

*
2

new

k
X *

2

new

k
E  and 

2

new
tE  alongside with several or all new effective demand values of periods 

between ( +1) and (t2−1). After we determine the least expensive extra production period(s)  (and 

) we need to adjust also total loss values in 〈t1,t2〉. This alternative might incur the least cost among 

others if in particular set-up costs st in PG are either negligible or of a magnitude comparable with unit 

production and holding costs. 

*
2k *

1k

*
2k

Alternative 12:  

Produce (Et2
+ ) in period t2. Carry 

2

*
1tX + 2

*
1tX +  in inventory during t2 and do not produce in (t2+1).  
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Alternative 13: Valid only if the block 〈t1,t2〉 spans 2 or more periods. 

Shift 
2

*
1tX +  backward from (t2+1) to some least expensive period k ∈ 〈t1, t2−1〉. The new production *

new

k
X  

will include previou *

*

s
k

 E , new 
2

new
tE  and several or all new effective demand values of periods

values for periods (k*
+1) through t2.  

 〈k*
+1, 

t2−1〉 in addition to 
2 1tX + . Also recalculate new total loss *

Alternative 14: Applies to interior stockout periods only. 

Shift 
2

*
tX backwa rom (t2+1) to some least expensive period k ∈ 〈u+1, t1−1〉. *

new

k
X  will include 

previous *k

1+  rd f *

E , new 
2t

newE  and several or all new effective demand values of periods 〈k +1, dition 

to 
2

*
1tX + . Total loss and effective demand values for periods 〈k*

+1, t2〉 as 

*
〉 in ad

well as must be 

 and in k

 t2−1

 ( )* new

uX

recalculated according to the conservation periods of production in u *. 

Alternative 15: Invalid for interior stockout periods. Also invalid if 
2

*
2 0tX + > . 

In this alternative, stock eriods begin immediately at t1 = 1. Meet Et2
 to avoid Gt2+1. For this, replace 

oduction 
2

*
1tX +  with two pro ions activities in periods *

1r  and *
2r  where *

1r ∈ 〈1, t2〉 and 

*
2r = (t2+1+ *

1r ). Remember that original 
2

*
1tX

out p L

the original pr duct

+  is used up by the end of the first regeneration period j 

following the block 〈1, t2〉. Since 
2

*
1tX +  cannot be shifted beyond j, at most min{t2,   j − t2 − 1} candidate 

pairs are inspected starting from  r1= 1  and  r2= t2+2  to find the least expensive pair of production periods 

( *
1r , 

*
2r ). Once found, new values of effective demand and total losses fo riods q〉 must be r pe 〈1, 

recalculated where (q+1) is the second original production period after 〈1, t2〉. 

Alternative 16: Applies to interior stockout periods only. Invalid if  u = t1 − 1. 

Lose d  Thus, decrease original *
ut1−1. X   by dt1−1. Compu ew ctte n  effe ive demand values for periods 〈t1,t2〉. 

Meet 
2

new
tE  with an exclusive production in t2 such that 

2

new
tX = 

2

new
tE . 

Alternative 17: Valid only if the block 〈t1,t2〉 spans 2 or more periods. 

This alternative is an easier version of Alternative 12 with a smaller search space. To meet the effective 

demand in t2 and to avoid goodwill loss in (t2+1), produce twice during the stockout periods; once in t1 

and once in a least expensive period k*
∈ 〈t1+1, t2〉. So, different than in Alternative 12, the time of the first 

e as Alternative 12. 

Alternative 18

extra production activity is fixed to t1. The rest of this alternative is the sam

: Applies to interior stockout periods only where  u < (t1− 1). 
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Provided that the original *
uX  covers at least two periods before t1, shift in this last alternative the block 

of stockout periods from 〈t1,t2〉 to 〈t1−1, t2−1〉 such that *
uX  contracts by dt1−1. There are two subcases to be 

considered depending on period (t2+2).  

Subcase 1.    
2

*
2 0tX + >

Either make new extra production in t2 to meet 
2

new
tE , or shift original  backward to t2. In both 

cases, a goodwill loss in period (t2+1) will be avoided. 

2

*
1tX +

Subcase 2.      
2

*
2 0tX + =

Cancel the production  and shift it to the next period (t2+2). Produce 
2

*
1tX + 2

new
tX = 

2

new
tE + dt2+1  after the 

new effective demands in periods 〈t1, t2+1〉 have been computed. In this subcase, too, we avoid a 

goodwill loss in period (t2+1).  
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