42,693 research outputs found

    Decision tree extraction from trained neural networks

    Get PDF
    Artificial Neural Networks (ANNs) have proved both a popular and powerful technique for pattern recognition tasks in a number of problem domains. However, the adoption of ANNs in many areas has been impeded, due to their inability to explain how they came to their conclusion, or show in a readily comprehendible form the knowledge they have obtained. This paper presents an algorithm that addresses these problems. The algorithm achieves this by extracting a Decision Tree, a graphical and easily understood symbolic representation of a decision process, from a trained ANN. The algorithm does not make assumptions about the ANN’s architecture or training algorithm; therefore, it can be applied to any type of ANN. The algorithm is empirically compared with Quinlan’s C4.5 (a common Decision Tree induction algorithm) using standard benchmark datasets. For most of the datasets used in the evaluation, the new algorithm is shown to extract Decision Trees that have a higher predictive accuracy than those induced using C4.5 directly

    Enhancing Decision Tree based Interpretation of Deep Neural Networks through L1-Orthogonal Regularization

    Full text link
    One obstacle that so far prevents the introduction of machine learning models primarily in critical areas is the lack of explainability. In this work, a practicable approach of gaining explainability of deep artificial neural networks (NN) using an interpretable surrogate model based on decision trees is presented. Simply fitting a decision tree to a trained NN usually leads to unsatisfactory results in terms of accuracy and fidelity. Using L1-orthogonal regularization during training, however, preserves the accuracy of the NN, while it can be closely approximated by small decision trees. Tests with different data sets confirm that L1-orthogonal regularization yields models of lower complexity and at the same time higher fidelity compared to other regularizers.Comment: 8 pages, 18th IEEE International Conference on Machine Learning and Applications (ICMLA) 201

    Building Credit-Risk Evaluation Expert Systems Using Neural Network Rule Extraction and Decision Tables.

    Get PDF
    In this paper, we evaluate and contrast four neural network rule extraction approaches for credit scoring. Experiments are carried out on three real life credit scoring data sets. Both the continuous and the discretised versions of all data sets are analysed. The rule extraction algorithms, Neurolinear, Neurorule, Trepan and Nefclass, have different characteristics with respect to their perception of the neural network and their way of representing the generated rules or knowledge. It is shown that Neurolinear, Neurorule and Trepan are able to extract very concise rule sets or trees with a high predictive accuracy when compared to classical decision tree (rule) induction algorithms like C4.5(rules). Especially Neurorule extracted easy to understand and powerful propositional ifthen rules for all discretised data sets. Hence, the Neurorule algorithm may offer a viable alternative for rule generation and knowledge discovery in the domain of credit scoring.Credit; Information systems; International; Systems;

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Using rule extraction to improve the comprehensibility of predictive models.

    Get PDF
    Whereas newer machine learning techniques, like artifficial neural net-works and support vector machines, have shown superior performance in various benchmarking studies, the application of these techniques remains largely restricted to research environments. A more widespread adoption of these techniques is foiled by their lack of explanation capability which is required in some application areas, like medical diagnosis or credit scoring. To overcome this restriction, various algorithms have been proposed to extract a meaningful description of the underlying `blackbox' models. These algorithms' dual goal is to mimic the behavior of the black box as closely as possible while at the same time they have to ensure that the extracted description is maximally comprehensible. In this research report, we first develop a formal definition of`rule extraction and comment on the inherent trade-off between accuracy and comprehensibility. Afterwards, we develop a taxonomy by which rule extraction algorithms can be classiffied and discuss some criteria by which these algorithms can be evaluated. Finally, an in-depth review of the most important algorithms is given.This report is concluded by pointing out some general shortcomings of existing techniques and opportunities for future research.Models; Model; Algorithms; Criteria; Opportunities; Research; Learning; Neural networks; Networks; Performance; Benchmarking; Studies; Area; Credit; Credit scoring; Behavior; Time;
    corecore