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TREPAN is an algorithm for the extraction of comprehensible rules from trained neural net-

works. The method has been applied successfully to biological sequence (bioinformatics) prob-

lems. It has now been extended to handle chemoinformatics (QSAR) datasets. The method has

been shown to have advantages over traditional symbolic rule induction methods such as C5.

Results obtained for bioinformatics and chemoinformatics problems using the TREPAN algo-

rithm are presented.
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INTRODUCTION

Artificial Neural Network (ANN) solutions are tradition-

ally viewed as classification systems whose internal rep-

resentations are extremely difficult to interpret. Simpler

techniques are often of more utility due to the compre-

hensibility of the resulting models.1 It is now becoming

apparent that algorithms can be designed which extract

understandable representations from trained neural net-

works, enabling them to be used for data mining, i.e. the

discovery and explanation of previously unknown rela-

tionships present in data.

TREPAN2 is an algorithm for the extraction of com-

prehensible rules from trained artificial neural networks.

The aim is to overcome the »black box« nature of ANN

models. We have recently described a generalized imple-

mentation of this algorithm,3,4 and applied it to some

problems in bioinformatics.

The aim of this paper is to describe further applica-

tions of the TREPAN methodology, specifically to data-

sets comprising real-valued variables as are commonly

found in chemoinformatics problems. The examples in-

clude a brief summary of the original bioinformatics

dataset together with three new examples where TREPAN

is applied to chemoinformatic sets. The results are com-

pared with equivalent results obtained using the well-

known C5 rule induction algorithm.5

METHODS

The ANNs used in this study were feed-forward, back-

propagation networks with a single hidden layer and a

single output unit. Negative and positive training cases

were assigned target values at the output unit of 0 and 1,

respectively. The networks employed tanh transfer func-

tions for the hidden units and a logistic transfer function
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for the output unit. Network training was performed us-

ing the scaled conjugate gradient method to minimize

the cross-entropy error, and a weight decay regularizer

was employed to guard against over-training.6 Network

training was carried out using Netlab.7

The training protocol followed a similar procedure to

that adopted by Manallack et al.8 The details for dataset 1

appear elsewhere.4 For datasets 2 and 3, to determine an

optimal network, each dataset was divided randomly into

training and validation sets in the ratio of 3:1. The num-

ber of hidden units was varied between 2 and 5, and in

each case 20 networks were minimized over the training

set starting from random initial weights. In addition to the

weight decay error term, an early stopping rule based on

the validation set was used to provide further protection

against over-training. The network with the lowest valida-

tion set error was selected for analysis by TREPAN.

The procedure for dataset 4 was similar, except that

a ratio of 2:1 was used for the division into training and

validation sets, to maintain consistency with the original

analysis.

Decision trees were constructed using the generaliz-

ed implementation of the TREPAN algorithm.4 A sample

size of 1000 was used together with a maximum tree

size of 9 nodes. This was found to be sufficient to de-

scribe the datasets. The equivalent C5 decision trees were

extracted using Clementine v7. For these results the de-

fault values for C5 were used.

The decision trees in the figures are structured so

that a positive result for a test leads down the left hand

branch of the tree. Negative results are to the right. For

the TREPAN trees, unclassified, means that there are

further nodes in this branch of the tree that have not

been shown in the figure. The numbers in the leaf nodes

for the TREPAN trees indicate the number of training

set examples reaching that node.

Data were obtained from the original sources as de-

scribed in the relevant part of the results and discussion

section below.

RESULTS AND DISCUSSION

The four applications studied are:

1. Identifying splice junction sites in human DNA

sequences.

2. Distinguishing drugs from leads.

3. Identifying conformational classes from molecu-

lar dynamics simulations.

4. QSAR analysis.

Table I shows the accuracy of the various methods

on the original training sets expressed as a percentage of

correct classifications. In this table the ANN column re-

fers to the accuracy of the original ANN from which the

TREPAN tree was trained.

Dataset 1: Splice Junction prediction

This dataset is the clean dataset of human splice

junction sites from Thanaraj.9 The set comprises a train-

ing set of 567 positive and 943 negative sequences and

an external test set of 229 positive and 373 negative se-

quences. The set was chosen because it is a well-studied

problem and the answer, in terms of a consensus se-

quence, is well known to be the sequence:10

C/G A G � G T A/G A G T

From Table I it can be seen that all three methods

perform reasonably well on this dataset. Although C5

gives accurate results, the decision tree it uses to do this,

is highly complex. In contrast the decision tree produced

by TREPAN (Figure 1) is a simple M-of-N rule, where

'-2 = A' describes an Adenine at position -2 and '-1 = G'

describes a Guanine at position -1 etc. Furthermore, the

rule is cast in a form that is very recognizable to the

practicing biologist.

Dataset 2: Distinguishing Drugs from Leads

This dataset comprises a set of 137 drug like mole-

cules classified into drugs or leads.11 For each of these a

set of 7 descriptors, analogous to those in the original

paper, was calculated using Cerius-2.12 These parame-

ters are AlogP, MW, MR, N donors, N acceptors, N rot

bonds and the number of Lipinski violations. This

dataset is interesting as the intention is to derive useful

»rules of thumb« in the same spirit as the Lipinski

rules.13 Indeed, as these rules are inherently cast as an

M-of-N rule (i.e. If two of four conditions are met the

compound is unlikely to be bioavailable) the formalism

of the TREPAN rules may be very suitable for this type

of problem.
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TABLE I. Accuracy for chemoinformatic datasets

Dataset C5 / % Neural

Network / %

TREPAN / %

Splice Junction Donor 91.9 93.9 90.7

Drug/Lead 69.3 68.6 65.7

Conformation 99.0 94.4 94.4

QSAR 91.8 98.0 91.8

Figure 1. TREPAN tree for splice junction dataset.



The network training protocol resulted in a network

with 3 hidden units. The C5 and TREPAN trees are

shown in Figures 2a and 2b, respectively. Both methods

give sensible trees consistent with the findings of the

original paper. However the trees are different. The C5

tree splits first on MW then on the number of Lipinski

violations and finally on the number of H bond accep-

tors. The tree seems very reasonable. The TREPAN tree

also splits on MW but also on MR. Of course these two

are highly correlated but the TREPAN tree shows the

advantage of the M-of-N formalism. The 1-of-2 rule de-

rived is essentially an OR condition, something which a

binary split method such as C5 cannot achieve.

Dataset 3: Conformational Analysis

This dataset concerns the analysis of conformational

data using statistical techniques. The data is derived from

molecular dynamics simulations of the anti-diabetic agent

rosiglitazone (Figure 3). These simulations were perform-

ed for a period of 5ns, using standard techniques. A sam-

ple structure was taken every 1ps leading to 5000 data

points. Each of these conformations was classified as ei-

ther a folded or an extended structure based on the mea-

sured distance between the two ends of the molecule.

Figure 4 shows these distances across the time series and

it can be seen that the conformations are divided roughly

50:50 between the folded (<10A) and extended (>10A)

structures. The data themselves are the dihedral angles

of each of the 8 flexible torsion angles T1-T8.

In this case the network training procedure resulted

in a network with 4 hidden units. The C5 algorithm pro-

duces highly accurate classifications of the conformations

but does this using a very complicated decision tree (not

described here). By contrast, the TREPAN tree (Figure

5) is straightforward (note that the TREPAN analysis

was performed on a subset of the original data). Essen-

tially, this tree is showing how the molecule adopts a

folded conformation. Firstly, the molecule must fold

about one of the central torsion angles, in this case T5.

In addition, it needs to have required values for two

outer torsion angles T2 and T7. This second rule again

shows the value of the M-of-N formalism. In this case

the 2-of-2 rule is analogous to a logical AND operation.

Dataset 4: QSAR

The final example is a standard QSAR dataset.14 This

comprises a set of 48 inhibitors of HIV-1 protease. These

compounds were categorized into low (pIC50 < 8) and

high (pIC50 > 8) inhibitory activity against the enzyme.

The X block is a set of 14 parameters described in Ref.

14. The original paper utilizes a 3 component PLS model
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Figure 2a. C5 tree for drug/lead dataset.

Figure 2b. TREPAN tree for drug/lead dataset.

Figure 3. Structure of rosiglitazone.

Figure 4. Distance vs. time for molecular dynamics simulation data.



with an R2 of 0.91 and a Q2 of 0.85. The highest load-

ings of the parameters of the model were X9, X11, X10

and X13 all of which were positive.

The optimal network was found to have 2 hidden

units. The C5 tree (Figure 6a) gives a simple splitting on

the values of X11 and X13. Both of these have high

loadings in the original PLS model. The TREPAN tree

(Figure 6b) differs from this. Again the primary split is a

1-of-2 rule analogous to a logical OR. Once again the

tree is readily comprehensible and preserves the features

of the original model.

CONCLUSIONS

The examples illustrated show the utility of decision tree

approaches to common problems in bioinformatics and

chemoinformatics. In particular, the M-of-N formalism

employed by TREPAN appears to be particularly useful

both for the analysis of bioinformatic data, where the re-

sult is often a consensus sequence and also to chemoin-

formatic problems, where rule of thumb solutions can have

advantages over more precise QSAR predictions in that

the derived rules are much easier to interpret and are

therefore, arguably, of more value to the practicing me-

dicinal chemist who has to 'make the next molecule'.

A further advantage of the TREPAN methodology is

that it can be generalized to extract rules from other

classifiers. It would be of interest to apply TREPAN us-

ing C5 as the classifier. This approach could combine the

accuracy and computational efficiency of C5 with the

comprehensibility of the TREPAN formalism.
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Figure 5. TREPAN tree for conformation dataset.

Figure 6a. C5 tree for QSAR dataset.

Figure 6b. TREPAN tree for QSAR dataset.
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Izlu~ivanje razumljivih logi~kih pravila iz neuronskih mre`a. Primjena TREPAN algoritma
u bioinformatici i kemoinformatici

Brian D. Hudson, David C. Whitley, Antony Browne i Martyn G. Ford

TREPAN je algoritam za izlu~ivanje razumljivih pravila iz neuronskih mre`a nakon provedenoga postupka

u~enja. Metoda je uspje{no primjenjivana na probleme u bioinformatici, za analizu biolo{kih sekvencija. Pri-

mjena TREPAN metode sada se pro{iruje i na analizu skupova podataka u kemoinformatici (QSAR). Pokazano

je da metoda ima prednosti u odnosu na uobi~ajene postupke koji se rabe za indukciju simboli~kih pravila po-

put metode C5. Prikazani su rezultati koji su dobiveni u analizi bioinformati~kih i kemoinformati~kih problema

s pomo}u algoritma TREPAN.
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