14,877 research outputs found

    Automated combination of bilateral energy contracts negotiation tactics

    Get PDF
    [EN] This paper addresses the theme automated bilateral negotiation of energy contracts. In this work, the automatic combination between different negotiation tactics is proposed. This combination is done dynamically throughout the negotiation process, as result from the online assessment that is performed after each proposal and counter-proposal. The proposed method is integrated in a decision support system for bilateral negotiations, called Decision Support for Energy Contracts Negotiations (DECON), which in turn is integrated with the Multi-Agent Simulator of Competitive Electricity Markets (MASCEM). This integration enables testing and validating the proposed methodology in a realistic market negotiation environment. A case study is presented, demonstrating the advantages of the proposed approach

    Decision Support System for the Negotiation of Bilateral Contracts in Electricity Markets

    Get PDF
    The use of Decision Support Systems (DSS) in the eld of Electricity Markets (EM) is essential to provide strategic support to its players. EM are constantly changing, dynamic environments, with many entities which give them a particularly complex nature. There are several simulators for this purpose, including Bilateral Contracting. However, a gap is noticeable in the pre-negotiation phase of energy transactions, particularly in gathering information on opposing negotiators. This paper presents an overview of existing tools for decision support to the Bilateral Contracting in EM, and proposes a new tool that addresses the identied gap, using concepts related to automated negotiation, game theory and data mining.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and grant agreement No 703689 (project ADAPT); and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013info:eu-repo/semantics/publishedVersio

    Optimizing Opponents Selection in Bilateral Contracts Negotiation with Particle Swarm

    Get PDF
    This paper proposes a model based on particle swarm optimization to aid electricity markets players in the selection of the best player(s) to trade with, to maximize their bilateral contracts outcome. This approach is integrated in a Decision Support System (DSS) for the pre-negotiation of bilateral contracts, which provides a missing feature in the state-of-art, the possible opponents analysis. The DSS determines the best action of all the actions that the supported player can take, by applying a game theory approach. However, the analysis of all actions can easily become very time-consuming in large negotiation scenarios. The proposed approach aims to provide the DSS with an alternative method with the capability of reducing the execution time while keeping the results quality as much as possible. Both approaches are tested in a realistic case study where the supported player could take almost half a million different actions. The results show that the proposed methodology is able to provide optimal and near-optimal solutions with an huge execution time reduction.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and grant agreement No 703689 (project ADAPT); from the CONTEST project - SAICT-POL/23575/2016; and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.info:eu-repo/semantics/publishedVersio

    Consensus-based approach to peer-to-peer electricity markets with product differentiation

    Full text link
    With the sustained deployment of distributed generation capacities and the more proactive role of consumers, power systems and their operation are drifting away from a conventional top-down hierarchical structure. Electricity market structures, however, have not yet embraced that evolution. Respecting the high-dimensional, distributed and dynamic nature of modern power systems would translate to designing peer-to-peer markets or, at least, to using such an underlying decentralized structure to enable a bottom-up approach to future electricity markets. A peer-to-peer market structure based on a Multi-Bilateral Economic Dispatch (MBED) formulation is introduced, allowing for multi-bilateral trading with product differentiation, for instance based on consumer preferences. A Relaxed Consensus+Innovation (RCI) approach is described to solve the MBED in fully decentralized manner. A set of realistic case studies and their analysis allow us showing that such peer-to-peer market structures can effectively yield market outcomes that are different from centralized market structures and optimal in terms of respecting consumers preferences while maximizing social welfare. Additionally, the RCI solving approach allows for a fully decentralized market clearing which converges with a negligible optimality gap, with a limited amount of information being shared.Comment: Accepted for publication in IEEE Transactions on Power System

    Bilateral contract prices estimation using a Q-learning based approach

    Get PDF
    The electricity markets restructuring process encouraged the use of computational tools in order to allow the study of different market mechanisms and the relationships between the participating entities. Automated negotiation plays a crucial role in the decision support for energy transactions due to the constant need for players to engage in bilateral negotiations. This paper proposes a methodology to estimate bilateral contract prices, which is essential to support market players in their decisions, enabling adequate risk management of the negotiation process. The proposed approach uses an adaptation of the Q-Learning reinforcement learning algorithm to choose the best from a set of possible contract prices forecasts that are determined using several methods, such as artificial neural networks (ANN), support vector machines (SVM), among others. The learning process assesses the probability of success of each forecasting method, by comparing the expected negotiation price with the historic data contracts of competitor players. The negotiation scenario identified as the most probable scenario that the player will face during the negotiation process is the one that presents the higher expected utility value. This approach allows the supported player to be prepared for the negotiation scenario that is the most likely to represent a reliable approximation of the actual negotiation environment.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 703689 (project ADAPT) and No 641794 (project DREAM-GO); NetEfficity Project (P2020 − 18015); and UID/EEA/00760/2013 funded by FEDER Funds through COMPETE pro-gram and by National Funds through FCT.info:eu-repo/semantics/publishedVersio

    Decision Support for Negotiations among Microgrids Using a Multiagent Architecture

    Get PDF
    [EN] This paper presents a decision support model for negotiation portfolio optimization considering the participation of players in local markets (at the microgrid level) and in external markets, namely in regional markets, wholesale negotiations and negotiations of bilateral agreements. A local internal market model for microgrids is defined, and the connection between interconnected microgrids is based on nodal pricing to enable negotiations between nearby microgrids. The market environment considering the local market setting and the interaction between integrated microgrids is modeled using a multi-agent approach. Several multi-agent systems are used to model the electricity market environment, the interaction between small players at a microgrid scale, and to accommodate the decision support features. The integration of the proposed models in this multi-agent society and interaction between these distinct specific multi-agent systems enables modeling the system as a whole and thus testing and validating the impact of the method in the outcomes of the involved players. Results show that considering the several negotiation opportunities as complementary and making use of the most appropriate markets depending on the expected prices at each moment allows players to achieve more profitable results

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case

    Context aware Q-Learning-based model for decision support in the negotiation of energy contracts

    Get PDF
    [EN] Automated negotiation plays a crucial role in the decision support for bilateral energy transactions. In fact, an adequate analysis of past actions of opposing negotiators can improve the decision-making process of market players, allowing them to choose the most appropriate parties to negotiate with in order to increase their outcomes. This paper proposes a new model to estimate the expected prices that can be achieved in bilateral contracts under a specific context, enabling adequate risk management in the negotiation process. The proposed approach is based on an adaptation of the Q-Learning reinforcement learning algorithm to choose the best scenario (set of forecast contract prices) from a set of possible scenarios that are determined using several forecasting and estimation methods. The learning process assesses the probability of occurrence of each scenario, by comparing each expected scenario with the real scenario. The final chosen scenario is the one that presents the higher expected utility value. Besides, the learning method can determine which is the best scenario for each context, since the behaviour of players can change according to the negotiation environment. Consequently, these conditions influence the final contract price of negotiations. This approach allows the supported player to be prepared for the negotiation scenario that is the most probable to represent a reliable approximation of the actual negotiation environme

    Management of local citizen energy communities and bilateral contracting in multi-agent electricity markets

    Get PDF
    ABSTRACT: Over the last few decades, the electricity sector has experienced several changes, resulting in different electricity markets (EMs) models and paradigms. In particular, liberalization has led to the establishment of a wholesale market for electricity generation and a retail market for electricity retailing. In competitive EMs, customers can do the following: freely choose their electricity suppliers; invest in variable renewable energy such as solar photovoltaic; become prosumers; or form local alliances such as Citizen Energy Communities (CECs). Trading of electricity can be done in spot and derivatives markets, or by bilateral contracts. This article focuses on CECs. Specifically, it presents how agent-based local consumers can form alliances as CECs, manage their resources, and trade on EMs. It also presents a review of how agent-based systems can model and support the formation and interaction of alliances in the electricity sector. The CEC can trade electricity directly with sellers through private bilateral agreements. During the negotiation of private bilateral contracts, the CEC receives the prices and volumes of their members and according to its negotiation strategy, tries to satisfy the electricity demands of all members and reduce their costs for electricity.info:eu-repo/semantics/publishedVersio

    Multi-agent systems and birtual producers in electronic marketplaces

    Get PDF
    This paper presents an agent-based simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviours, preference models and pricing algorithms, considering user risk preferences. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions. In the simulated market agents interact in several different ways and may joint together to form coalitions. In this paper we address multi-agent coalitions to analyse Distributed Generation in Electricity Market
    • …
    corecore