16,372 research outputs found

    Unremarkable AI: Fitting Intelligent Decision Support into Critical, Clinical Decision-Making Processes

    Full text link
    Clinical decision support tools (DST) promise improved healthcare outcomes by offering data-driven insights. While effective in lab settings, almost all DSTs have failed in practice. Empirical research diagnosed poor contextual fit as the cause. This paper describes the design and field evaluation of a radically new form of DST. It automatically generates slides for clinicians' decision meetings with subtly embedded machine prognostics. This design took inspiration from the notion of "Unremarkable Computing", that by augmenting the users' routines technology/AI can have significant importance for the users yet remain unobtrusive. Our field evaluation suggests clinicians are more likely to encounter and embrace such a DST. Drawing on their responses, we discuss the importance and intricacies of finding the right level of unremarkableness in DST design, and share lessons learned in prototyping critical AI systems as a situated experience

    Processing of microCT implant-bone systems images using Fuzzy Mathematical Morphology

    Get PDF
    The relationship between a metallic implant and the existing bone in a surgical permanent prosthesis is of great importance since the fixation and osseointegration of the system leads to the failure or success of the surgery. Micro Computed Tomography is atechnique that helps to visualize the structure of the bone. In this study, the microCT is used to analyze implant-bone systems images. However, one of the problems presented in the reconstruction of these images is the effect of the iron based implants, with a halo or fluorescence scattering distorting the micro CT image and leading to bad 3D reconstructions.In this work we introduce an automatic method for eliminate the effect of AISI 316L iron materials in the implant-b one system based on the application of Compensatory Fuzzy Mathematical Morphology for future investigate about the structural and mechanical properties of bone and cancellous materials.Fil: Bouchet, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Colabella, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Omar, Sheila Ayelén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Ballarre, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Pastore, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata; Argentin

    Evolution at the edge of expanding populations

    Full text link
    Predicting evolution of expanding populations is critical to control biological threats such as invasive species and cancer metastasis. Expansion is primarily driven by reproduction and dispersal, but nature abounds with examples of evolution where organisms pay a reproductive cost to disperse faster. When does selection favor this 'survival of the fastest?' We searched for a simple rule, motivated by evolution experiments where swarming bacteria evolved into an hyperswarmer mutant which disperses 100% \sim 100\% faster but pays a growth cost of 10%\sim 10 \% to make many copies of its flagellum. We analyzed a two-species model based on the Fisher equation to explain this observation: the population expansion rate (vv) results from an interplay of growth (rr) and dispersal (DD) and is independent of the carrying capacity: v=2rDv=2\sqrt{rD}. A mutant can take over the edge only if its expansion rate (v2v_2) exceeds the expansion rate of the established species (v1v_1); this simple condition (v2>v1v_2 > v_1) determines the maximum cost in slower growth that a faster mutant can pay and still be able to take over. Numerical simulations and time-course experiments where we tracked evolution by imaging bacteria suggest that our findings are general: less favorable conditions delay but do not entirely prevent the success of the fastest. Thus, the expansion rate defines a traveling wave fitness, which could be combined with trade-offs to predict evolution of expanding populations

    Determination and evaluation of clinically efficient stopping criteria for the multiple auditory steady-state response technique

    Get PDF
    Background: Although the auditory steady-state response (ASSR) technique utilizes objective statistical detection algorithms to estimate behavioural hearing thresholds, the audiologist still has to decide when to terminate ASSR recordings introducing once more a certain degree of subjectivity. Aims: The present study aimed at establishing clinically efficient stopping criteria for a multiple 80-Hz ASSR system. Methods: In Experiment 1, data of 31 normal hearing subjects were analyzed off-line to propose stopping rules. Consequently, ASSR recordings will be stopped when (1) all 8 responses reach significance and significance can be maintained for 8 consecutive sweeps; (2) the mean noise levels were ≤ 4 nV (if at this “≤ 4-nV” criterion, p-values were between 0.05 and 0.1, measurements were extended only once by 8 sweeps); and (3) a maximum amount of 48 sweeps was attained. In Experiment 2, these stopping criteria were applied on 10 normal hearing and 10 hearing-impaired adults to asses the efficiency. Results: The application of these stopping rules resulted in ASSR threshold values that were comparable to other multiple-ASSR research with normal hearing and hearing-impaired adults. Furthermore, in 80% of the cases, ASSR thresholds could be obtained within a time-frame of 1 hour. Investigating the significant response-amplitudes of the hearing-impaired adults through cumulative curves indicated that probably a higher noise-stop criterion than “≤ 4 nV” can be used. Conclusions: The proposed stopping rules can be used in adults to determine accurate ASSR thresholds within an acceptable time-frame of about 1 hour. However, additional research with infants and adults with varying degrees and configurations of hearing loss is needed to optimize these criteria

    Spinal cord stimulation for predominant low back pain in failed back surgery syndrome: study protocol for an international multicenter randomized controlled trial (PROMISE study)

    Get PDF
    Background: Although results of case series support the use of spinal cord stimulation in failed back surgery syndrome patients with predominant low back pain, no confirmatory randomized controlled trial has been undertaken in this patient group to date. PROMISE is a multicenter, prospective, randomized, open-label, parallel-group study designed to compare the clinical effectiveness of spinal cord stimulation plus optimal medical management with optimal medical management alone in patients with failed back surgery syndrome and predominant low back pain. Method/Design: Patients will be recruited in approximately 30 centers across Canada, Europe, and the United States. Eligible patients with low back pain exceeding leg pain and an average Numeric Pain Rating Scale score >= 5 for low back pain will be randomized 1:1 to spinal cord stimulation plus optimal medical management or to optimal medical management alone. The investigators will tailor individual optimal medical management treatment plans to their patients. Excluded from study treatments are intrathecal drug delivery, peripheral nerve stimulation, back surgery related to the original back pain complaint, and experimental therapies. Patients randomized to the spinal cord stimulation group will undergo trial stimulation, and if they achieve adequate low back pain relief a neurostimulation system using the Specify (R) 5-6-5 multi-column lead (Medtronic Inc., Minneapolis, MN, USA) will be implanted to capture low back pain preferentially in these patients. Outcome assessment will occur at baseline (pre-randomization) and at 1, 3, 6, 9, 12, 18, and 24 months post randomization. After the 6-month visit, patients can change treatment to that received by the other randomized group. The primary outcome is the proportion of patients with >= 50% reduction in low back pain at the 6-month visit. Additional outcomes include changes in low back and leg pain, functional disability, health-related quality of life, return to work, healthcare utilization including medication usage, and patient satisfaction. Data on adverse events will be collected. The primary analysis will follow the intention-to-treat principle. Healthcare use data will be used to assess costs and long-term cost-effectiveness. Discussion: Recruitment began in January 2013 and will continue until 2016

    Characterization of spatio-temporal epidural event-related potentials for mouse models of psychiatric disorders.

    Get PDF
    Distinctive features in sensory event-related potentials (ERPs) are endophenotypic biomarkers of psychiatric disorders, widely studied using electroencephalographic (EEG) methods in humans and model animals. Despite the popularity and unique significance of the mouse as a model species in basic research, existing EEG methods applicable to mice are far less powerful than those available for humans and large animals. We developed a new method for multi-channel epidural ERP characterization in behaving mice with high precision, reliability and convenience and report an application to time-domain ERP feature characterization of the Sp4 hypomorphic mouse model for schizophrenia. Compared to previous methods, our spatio-temporal ERP measurement robustly improved the resolving power of key signatures characteristic of the disease model. The high performance and low cost of this technique makes it suitable for high-throughput behavioral and pharmacological studies
    corecore