13 research outputs found

    Deciding the value 1 problem for probabilistic leaktight automata

    Get PDF
    The value 1 problem is a decision problem for probabilistic automata over finite words: given a probabilistic automaton, are there words accepted with probability arbitrarily close to 1? This problem was proved undecidable recently; to overcome this, several classes of probabilistic automata of different nature were proposed, for which the value 1 problem has been shown decidable. In this paper, we introduce yet another class of probabilistic automata, called leaktight automata, which strictly subsumes all classes of probabilistic automata whose value 1 problem is known to be decidable. We prove that for leaktight automata, the value 1 problem is decidable (in fact, PSPACE-complete) by constructing a saturation algorithm based on the computation of a monoid abstracting the behaviours of the automaton. We rely on algebraic techniques developed by Simon to prove that this abstraction is complete. Furthermore, we adapt this saturation algorithm to decide whether an automaton is leaktight. Finally, we show a reduction allowing to extend our decidability results from finite words to infinite ones, implying that the value 1 problem for probabilistic leaktight parity automata is decidable

    What is known about the Value 1 Problem for Probabilistic Automata?

    Get PDF
    The value 1 problem is a decision problem for probabilistic automata over finite words: are there words accepted by the automaton with arbitrarily high probability? Although undecidable, this problem attracted a lot of attention over the last few years. The aim of this paper is to review and relate the results pertaining to the value 1 problem. In particular, several algorithms have been proposed to partially solve this problem. We show the relations between them, leading to the following conclusion: the Markov Monoid Algorithm is the most correct algorithm known to (partially) solve the value 1 problem

    Profinite Techniques for Probabilistic Automata and the Markov Monoid Algorithm

    Get PDF
    We consider the value 1 problem for probabilistic automata over finite words: it asks whether a given probabilistic automaton accepts words with probability arbitrarily close to 1. This problem is known to be undecidable. However, different algorithms have been proposed to partially solve it; it has been recently shown that the Markov Monoid algorithm, based on algebra, is the most correct algorithm so far. The first contribution of this paper is to give a characterisation of the Markov Monoid algorithm. The second contribution is to develop a profinite theory for probabilistic automata, called the prostochastic theory. This new framework gives a topological account of the value 1 problem, which in this context is cast as an emptiness problem. The above characterisation is reformulated using the prostochastic theory, allowing us to give a simple and modular proof.Comment: Conference version: STACS'2016, Symposium on Theoretical Aspects of Computer Science Journal version: TCS'2017, Theoretical Computer Scienc

    The Complexity of POMDPs with Long-run Average Objectives

    Full text link
    We study the problem of approximation of optimal values in partially-observable Markov decision processes (POMDPs) with long-run average objectives. POMDPs are a standard model for dynamic systems with probabilistic and nondeterministic behavior in uncertain environments. In long-run average objectives rewards are associated with every transition of the POMDP and the payoff is the long-run average of the rewards along the executions of the POMDP. We establish strategy complexity and computational complexity results. Our main result shows that finite-memory strategies suffice for approximation of optimal values, and the related decision problem is recursively enumerable complete

    IST Austria Technical Report

    Get PDF
    Evolution occurs in populations of reproducing individuals. The structure of the population affects the outcome of the evolutionary process. Evolutionary graph theory is a powerful approach to study this phenomenon. There are two graphs. The interaction graph specifies who interacts with whom in the context of evolution.The replacement graph specifies who competes with whom for reproduction. The vertices of the two graphs are the same, and each vertex corresponds to an individual of the population. A key quantity is the fixation probability of a new mutant. It is defined as the probability that a newly introduced mutant (on a single vertex) generates a lineage of offspring which eventually takes over the entire population of resident individuals. The basic computational questions are as follows: (i) the qualitative question asks whether the fixation probability is positive; and (ii) the quantitative approximation question asks for an approximation of the fixation probability. Our main results are: (1) We show that the qualitative question is NP-complete and the quantitative approximation question is #P-hard in the special case when the interaction and the replacement graphs coincide and even with the restriction that the resident individuals do not reproduce (which corresponds to an invading population taking over an empty structure). (2) We show that in general the qualitative question is PSPACE-complete and the quantitative approximation question is PSPACE-hard and can be solved in exponential time

    The Value 1 Problem Under Finite-memory Strategies for Concurrent Mean-payoff Games

    Get PDF
    We consider concurrent mean-payoff games, a very well-studied class of two-player (player 1 vs player 2) zero-sum games on finite-state graphs where every transition is assigned a reward between 0 and 1, and the payoff function is the long-run average of the rewards. The value is the maximal expected payoff that player 1 can guarantee against all strategies of player 2. We consider the computation of the set of states with value 1 under finite-memory strategies for player 1, and our main results for the problem are as follows: (1) we present a polynomial-time algorithm; (2) we show that whenever there is a finite-memory strategy, there is a stationary strategy that does not need memory at all; and (3) we present an optimal bound (which is double exponential) on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy)

    IST Austria Technical Report

    Get PDF
    We consider concurrent mean-payoff games, a very well-studied class of two-player (player 1 vs player 2) zero-sum games on finite-state graphs where every transition is assigned a reward between 0 and 1, and the payoff function is the long-run average of the rewards. The value is the maximal expected payoff that player 1 can guarantee against all strategies of player 2. We consider the computation of the set of states with value 1 under finite-memory strategies for player 1, and our main results for the problem are as follows: (1) we present a polynomial-time algorithm; (2) we show that whenever there is a finite-memory strategy, there is a stationary strategy that does not need memory at all; and (3) we present an optimal bound (which is double exponential) on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy)

    Deciding the value 1 problem for probabilistic leaktight automata

    No full text
    The value 1 problem is a decision problem for probabilistic automata overfinite words: given a probabilistic automaton, are there words accepted withprobability arbitrarily close to 1? This problem was proved undecidablerecently; to overcome this, several classes of probabilistic automata ofdifferent nature were proposed, for which the value 1 problem has been showndecidable. In this paper, we introduce yet another class of probabilisticautomata, called leaktight automata, which strictly subsumes all classes ofprobabilistic automata whose value 1 problem is known to be decidable. We provethat for leaktight automata, the value 1 problem is decidable (in fact,PSPACE-complete) by constructing a saturation algorithm based on thecomputation of a monoid abstracting the behaviours of the automaton. We rely onalgebraic techniques developed by Simon to prove that this abstraction iscomplete. Furthermore, we adapt this saturation algorithm to decide whether anautomaton is leaktight. Finally, we show a reduction allowing to extend ourdecidability results from finite words to infinite ones, implying that thevalue 1 problem for probabilistic leaktight parity automata is decidable

    Deciding the value 1 problem for probabilistic leaktight automata

    No full text
    The value 1 problem is a decision problem for probabilistic automata over finite words: given a probabilistic automaton, are there words accepted with probability arbitrarily close to 1? This problem was proved undecidable recently; to overcome this, several classes of probabilistic automata of different nature were proposed, for which the value 1 problem has been shown decidable. In this paper, we introduce yet another class of probabilistic automata, called leaktight automata, which strictly subsumes all classes of probabilistic automata whose value 1 problem is known to be decidable. We prove that for leaktight automata, the value 1 problem is decidable (in fact, PSPACE-complete) by constructing a saturation algorithm based on the computation of a monoid abstracting the behaviours of the automaton. We rely on algebraic techniques developed by Simon to prove that this abstraction is complete. Furthermore, we adapt this saturation algorithm to decide whether an automaton is leaktight. Finally, we show a reduction allowing to extend our decidability results from finite words to infinite ones, implying that the value 1 problem for probabilistic leaktight parity automata is decidable

    Deciding the Value 1 Problem for Probabilistic Leaktight Automata

    No full text
    Abstract—The value 1 problem is a decision problem for probabilistic automata over finite words: given a probabilistic automaton A, are there words accepted by A with probability arbitrarily close to 1? This problem was proved undecidable recently. We sharpen this result, showing that the undecidability holds even if the probabilistic automata have only one probabilistic transition. Our main contribution is to introduce a new class of probabilistic automata, called leaktight automata, for which the value 1 problem is shown decidable (and PSPACE-complete). We construct an algorithm based on the computation of a monoid abstracting the behaviors of the automaton, and rely on algebraic techniques developed by Simon for the correctness proof. The class of leaktight automata is decidable in PSPACE, subsumes all subclasses of probabilistic automata whose value 1 problem is known to be decidable (in particular deterministic automata), and is closed under two natural composition operators
    corecore