
The Value 1 Problem Under Finite-memory Strategies for
Concurrent Mean-payoff Games

Krishnendu Chatterjee (IST Austria) Rasmus Ibsen-Jensen (IST Austria)

Abstract

We consider concurrent mean-payoff games, a very well-studied class of two-player (player 1 vs
player 2) zero-sum games on finite-state graphs where every transition is assigned a reward between 0
and 1, and the payoff function is the long-run average of the rewards. The value is the maximal expected
payoff that player 1 can guarantee against all strategies of player 2. We consider the computation of
the set of states with value 1 under finite-memory strategies for player 1, and our main results for the
problem are as follows: (1) we present a polynomial-time algorithm; (2) we show that whenever there
is a finite-memory strategy, there is a stationary strategy that does not need memory at all; and (3) we
present an optimal bound (which is double exponential) on the patience of stationary strategies (where
patience of a distribution is the inverse of the smallest positive probability and represents a complexity
measure of a stationary strategy).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/162999123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Concurrent mean-payoff games. Concurrent mean-payoff games are played on finite-state graphs by
two players (player 1 and player 2) for infinitely many rounds. In each round, the players simultaneously
choose moves (or actions), and the current state along with the two chosen moves determine a probability
distribution over the successor states. The outcome of the game (or a play) is an infinite sequence of states
and action pairs. Every transition is associated with a reward between 0 and 1, and the mean-payoff (or
limit-average payoff) of a play is the limit-inferior (or limit-superior) average of the rewards of the play.
Concurrent games were introduced in a seminal work of Shapley [26], where discounted sum objectives (or
games that halt with probability 1) were considered. The generalization to concurrent games with mean-
payoff objectives (or games that have zero stop probabilities) was presented by Gillette in [19]. The player-1
value val(s) of the game at a state s is the supremum value of the expectation that player 1 can guarantee
for the mean-payoff objective against all strategies of player 2. The games are zero-sum where the objective
of player 2 is the opposite.

Important previous results. Many celebrated results have been established for concurrent mean-payoff
games and its sub-classes: (1) the existence of values (or determinacy or equivalence of switching of strategy
quantifiers for the players as in von-Neumann’s min-max theorem) for concurrent discounted games was
established in [26]; (2) the result of Blackwell and Ferguson established existence of values for the celebrated
game of Big-Match [2] (the celebrated Big-Match example is from [19])1; and (3) developing on the results
of [2] and of Bewley and Kohlberg on Puisuex series [1] the existence of values for concurrent mean-payoff
games was established in [25]. The decision problem of whether the value val(s) is at least a rational
constant λ can be decided in PSPACE [6, 21]; and the results of [21] present an algorithm for approximation
which is polynomial in the number of actions and double exponential in the size of the state space (hence
if the number of states is constant then the value can be approximated in polynomial time). Several special
cases of concurrent mean-payoff games have been widely studied, for example, (a) concurrent reachability
games [13] where reachability objectives are the very special case of mean-payoff objectives where reward
zero is assigned to all transitions other than a set of sink terminal states which are assigned reward 1;
(b) turn-based deterministic mean-payoff games [14, 28], where in each state at most one of the players
have the choice of more than one action and the transition function is deterministic; and (c) turn-based
(stochastic) reachability games [12]. The decision problem of whether the value val(s) is at least a rational
constant λ is square-root sum hard even for concurrent reachability games [15], and even for the special
case of turn-based stochastic reachability games [12] or turn-based deterministic mean-payoff games [28]
the existence of a polynomial-time algorithm is a major and long-standing open problem.

Value 1 problem and its potential significance. While the decision problem for value computation is
notoriously hard for concurrent mean-payoff games, an important special case of the problem is to compute
the set of states with value 1. We refer to this problem as the value-1 set computation problem. We discuss
the potential significance of the value 1 problem for mean-payoff objectives. It was shown in [10] that
reliability requirements can be specified as a mean-payoff condition, where in every step a computation
is done, and if the computation succeeds a reward 1 is assigned, and if the computation might fail, then
reward 0 is assigned. The reliability is the long-run average reward. The value 1 problem asks whether there
exists a sequence of strategies such that the i’th strategy ensures reliability 1 − f(i), for some function f ,
where limi→∞ f(i) = 0. Note that this problem cannot naturally be modeled as a reachability objective.

Strategies. A strategy in a concurrent game, considers the past history of the game (the finite sequence of
1note that even showing existence of a value for the specific Big-Match game was open for years, which shows the hardness of

analysis of such games

1

1:

2:

⊥:

>:

1

1:

2:

1

1

G2
G1

1:

2:

⊥:

>:

1

1:

2:

1

1

G4G3

Figure 1: The games G1 to G4

states and actions played so far), and specifies a probability distribution over the next moves. Thus a strategy
requires memory to remember the past history of the game. A strategy is stationary if it is independent of
the past history and only depends on the current state. The complexity of a stationary strategy is described
by its patience which is the inverse of the minimum non-zero probability assigned to a move. The notion of
patience was introduced in [16] and also studied in the context of concurrent reachability games [22, 20]. A
strategy is finite-memory if the memory set used by the strategy is finite. Note that for implementability of
a strategy (such as by an automata), we need a finite-memory strategy.

Examples. We now illustrate concurrent mean-payoff games with a few examples. Consider the four games
(G1, G2, G3, andG4) shown in Figure 1: the transition functions are deterministic and shown as arrows; and
transition with rewards 1 are annotated, and all other rewards are 0. Each game has four states, namely, 1, 2,
> and ⊥; and since > and ⊥ remain the same, in the figures G1 and G2 (also G3 and G4) are drawn such
that they share > and ⊥. The state > has value 1 and state ⊥ has value 0. In the first game G1, both state 1
and state 2 have value 1/2 (because of symmetry). The other three example games, G2, G3 and G4, are
minor variants of G1 (only one successor is changed).

1. In G2, the edge from state 2 to ⊥ is changed to a self-loop. In G2, there exists an infinite-memory
strategy to ensure that the mean-payoff is 1, and for every ε > 0 there is a stationary strategy to ensure
mean-payoff 1− ε. The witness stationary strategy is as follows: in state 1 play the action pairs with
probability (ε/4, 1− ε/4) and in state 2 with probability (1/2, 1/2).

2. In G3, the top edge from state 1 to state 2 is changed to a self-loop. In G3, there is no strategy to
ensure that the mean-payoff is 1, but for every ε > 0 there is a stationary strategy to ensure mean-
payoff 1 − ε. The witness stationary strategy is as follows: in state 1 play the action pairs with
probability (ε/2, 1− ε/2) and in state 2 with probability (1− ε2/2, ε2/2).

3. In G4, the bottom edge from state 1 to state 2 is changed to a self-loop. In G4, there exists no
stationary strategy that can ensure positive mean-payoff value; however, for every ε > 0 there exists
an infinite-memory strategy to ensure mean-payoff 1− ε.

Details regarding the analysis of the values of the above games and in depth discussion on the strategy
constructions for them are available in [23, Section 1.6.2].

2

Our contributions. Our main contributions are related to the computation of the value 1 problem for
concurrent mean-payoff games where player 1 is restricted to finite-memory strategies2. Our main results
are as follows: (1) We present a polynomial-time algorithm to compute the value 1 set. (2) We show that
stationary strategies are sufficient, i.e., whenever finite-memory strategies exist, then there is a stationary
strategy. (3) We establish an optimal double exponential patience bound for the witness stationary strategies
(our contribution for patience is the upper bound, and the matching lower bound follows from [20, 22] for
the special case of reachability objectives). A key and novel insight of our polynomial-time algorithm is
that we establish that we can use local operators and iterate them to compute the value 1 set; this is perhaps
counter-intuitive for concurrent mean-payoff games as no strategy-iteration algorithm is known to exist. In
addition we also establish a robustness result, which shows that for a pair of concurrent mean-payoff games,
if the support of the transition probabilities match (but the precise transition probabilities may differ), then
the value 1 set also match.

Related works. The problem of value-1 set computation has been extensively studied in many different
contexts; such as, concurrent games with reachability objectives [13] as well as with ω-regular and prefix
independent objectives [5, 4, 8], probabilistic automata [7, 17], and probabilistic systems with counters [3].
However, the value-1 set computation was not considered for concurrent mean-payoff games which we
consider in this work. A related problem of computing the set of states where there exists an optimal
strategy that ensures mean-payoff 1 (almost-sure winning) has been considered in [11].

2 Definitions

In this section we present the definitions of game structures, strategies, mean-payoff objectives, the value
and value 1 problem, and other basic notions.

Probability distributions. For a finite setA, a probability distribution onA is a function δ : A→ [0, 1] such
that

∑
a∈A δ(a) = 1. We denote the set of probability distributions on A by D(A). Given a distribution

δ ∈ D(A), we denote by Supp(δ) = {x ∈ A | δ(x) > 0} the support of the distribution δ. For a
distribution, the patience of the distribution is the inverse of the minimum non-zero probability assigned to
an element: formally, the patience pat(δ) is maxa∈A{ 1

δ(a) | δ(a) > 0}.
Concurrent game structures. A (two-player) concurrent stochastic game structure G = (S,A,Γ1,Γ2, δ)
consists of the following components.

• A finite state space S and a finite set A of actions (or moves).

• Two move assignments Γ1,Γ2 : S → 2A \ ∅. For i ∈ {1, 2}, assignment Γi associates with each
state s ∈ S the non-empty set Γi(s) ⊆ A of moves available to player i at state s. For technical
convenience, we assume that Γi(s) ∩ Γj(t) = ∅ unless i = j and s = t, for all i, j ∈ {1, 2}
and s, t ∈ S. If this assumption is not met, then the moves can be trivially renamed to satisfy the
assumption.

• A probabilistic transition function δ : S×A×A→ D(S), which associates with every state s ∈ S and
moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s) a probability distribution δ(s, a1, a2) ∈ D(S) for the successor
state.

2note that once a finite-memory strategy for player 1 is fixed, then there always exists a finite-memory optimal counter-strategy
for player 2, and thus the strategies for player 2 are not restricted

3

For a set Q ⊆ S of states we will denote by Q = S \ Q the complement of Q. We will denote by δmin

the minimum non-zero transition probability, i.e., δmin = mins,t∈S mina1∈Γ1(s),a2∈Γ2(s){δ(s, a1, a2)(t) |
δ(s, a1, a2)(t) > 0}. We will denote by n the number of states (i.e., n = |S|), and by m the maximal
number of actions available for a player at a state (i.e., m = maxs∈S max{|Γ1(s)|, |Γ2(s)|}). We will
later define Markov chains as games where m = 1. Since finding the mean-payoff of Markov chains can
be done in polynomial time, we will only consider the case where m ≥ 2. For all states s ∈ S, moves
a1 ∈ Γ1(s) and a2 ∈ Γ2(s), let Succ(s, a1, a2) = Supp(δ(s, a1, a2)) denote the set of possible successors
of s when moves a1 and a2 are selected. The size of the transition relation of a game structure is defined as
|δ| =

∑
s∈S

∑
a1∈Γ1(s)

∑
a2∈Γ2(s) |Succ(s, a1, a2)|.

One step probabilities. Given a concurrent game structure G, a state s, two distributions ξ1 ∈ D(Γ1(s))
and ξ2 ∈ D(Γ2(s)), the one step probability transition for a set U of states, denoted as δ(s, ξ1, ξ2)(U) is∑

a1∈Γ1(s),a2∈Γ2(s),t∈U δ(s, a1, a2)(t) · ξ1(a1) · ξ2(a2). Often we will consider the distribution of player 2
to be a single action, i.e., ξ2(a2) = 1 for an action a2, and then use the notation δ(s, ξ1, a2). We will also
write Succ(s, ξ1, ξ2) =

⋃
a1∈Supp(ξ1),a2∈Supp(ξ2) Succ(s, a1, a2) for the set of possible successors under the

distributions.
Turn-based stochastic games, turn-based deterministic games and MDPs. A game structure G is turn-
based stochastic if at every state at most one player can choose among multiple moves; that is, for every
state s ∈ S there exists at most one i ∈ {1, 2} with |Γi(s)| > 1. A turn-based stochastic game with a
deterministic transition function is a turn-based deterministic game. A game structure is a player-2 Markov
decision process (MDP) if for all s ∈ S we have |Γ1(s)| = 1, i.e., only player 2 has choice of actions in the
game, and player-1 MDPs are defined analogously.

Plays. At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and inde-
pendently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the successor state t
with probability δ(s, a1, a2)(t), for all t ∈ S. A path or a play of G is an infinite sequence ω =(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), (s2, a

2
1, a

2
2) . . .

)
of states and action pairs such that for all k ≥ 0 we have

(1) sk+1 ∈ Succ(sk, a
k
1, a

k
2); and (2) ak1 ∈ Γ1(sk); and (3) ak2 ∈ Γ2(sk). We denote by Ω the set of all

paths.
Strategies. A strategy for a player is a recipe that describes how to extend prefixes of a play. Formally, a
strategy for player i ∈ {1, 2} is a mapping σi : (S × A × A)∗ × S → D(A) that associates with every
finite sequence x ∈ (S × A × A)∗ of state and action pairs, and the current state s in S, representing the
past history of the game, a probability distribution σi(x · s) used to select the next move. The strategy σi
can prescribe only moves that are available to player i; that is, for all sequences x ∈ (S × A × A)∗ and
states s ∈ S, we require that Supp(σi(x · s)) ⊆ Γi(s). We denote by Σi the set of all strategies for player
i ∈ {1, 2}. Once the starting state s and the strategies σ1 and σ2 for the two players have been chosen, the
probabilities of events are uniquely defined [27], where an event A ⊆ Ω is a measurable set of paths. For an
event A ⊆ Ω, we denote by Prσ1,σ2s (A) the probability that a path belongs to A when the game starts from
s and the players use the strategies σ1 and σ2. We denote by Eσ1,σ2s [·] the associated expectation measure.
We will consider the following special classes of strategies:

1. Stationary (memoryless) and positional strategies. A strategy σi is stationary (or memoryless) if it
is independent of the history but only depends on the current state, i.e., for all x, x′ ∈ (S × A ×
A)∗ and all s ∈ S, we have σi(x · s) = σi(x

′ · s), and thus can be expressed as a function σi :
S → D(A). For stationary strategies, the complexity of the strategy is described by the patience of
the strategy, which is the inverse of the minimum non-zero probability assigned to an action [16].
Formally, for a stationary strategy σi : S → D(A) for player i, the patience is maxs∈S pat(σi(s)),

4

where pat(σi(s)) is the patience of the distribution σi(s). A strategy is pure (deterministic) if it does
not use randomization, i.e., for any history there is always some unique action a that is played with
probability 1. A pure stationary strategy σi is also called a positional strategy, and represented as a
function σi : S → A. We denote by ΣS

i the set of stationary strategies for player i.

2. Strategies with memory and finite-memory strategies. A strategy σi can be equivalently defined as
a pair of functions (σui , σ

n
i), along with a set Mem of memory states, such that (i) the next move

function σni : S × Mem → D(A) given the current state of the game and the current memory
state specifies the probability distribution over the actions; and (ii) the memory update function σui :
S × A × A × Mem → Mem given the current state of the game, the action pairs, and the current
memory state updates the memory state. Any strategy can be expressed with an infinite set Mem of
memory states, and a strategy is a finite-memory strategy if the set Mem of memory states is finite,
otherwise it is an infinite-memory strategy. We denote by ΣF

i the set of finite-memory strategies for
player i.

Absorbing states. A state s is absorbing if for all actions a1 ∈ Γ1(s) and all actions a2 ∈ Γ2(s) we have
Succ(s, a1, a2) = {s}. In the present paper we will also require that |Γ1(s)| = |Γ2(s)| = 1 if s is absorbing.
Objectives. A quantitative objective Φ : Ω → R is a measurable function. In this work we will con-
sider limit-average (or mean-payoff) objectives. We will consider concurrent games with a reward func-
tion r : S × A × A → [0, 1] that assigns a reward value r(s, a1, a2) for all s ∈ S, a1 ∈ Γ1(s) and
a2 ∈ Γ2(s). For a path ω =

(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
, the limit-inferior average (resp. limit-superior

average) is defined as follows: LimInfAvg(ω) = lim infn→∞
1
n

∑n−1
i=0 r(si, ai1, a

i
2) (resp. LimSupAvg(ω) =

lim supn→∞
1
n

∑n−1
i=0 r(si, ai1, a

i
2)). For the analysis of concurrent games with Boolean limit-average objec-

tives (with rewards 0 and 1 only) we will also need reachability and safety objectives. Given a target set
U ⊆ S, the reachability objective Reach(U) requires some state in U be visited at least once, i.e., defines
the set

Reach(U) = {ω =
(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
| ∃i ≥ 0. si ∈ U}

of paths. The dual safety objective for a set F ⊆ S of safe states requires that the set F is never left, i.e.,

Safe(F) = {ω =
(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
| ∀i ≥ 0. si ∈ F}.

We also consider the eventual safety objective, namely coBüchi objective, that requires for a given set F that
ultimately only states in F are visited, i.e.,

coBuchi(F) = {ω =
(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
| ∃j ≥ 0.∀i ≥ j. si ∈ F}.

Observe that reachability objectives are a very special case of Boolean reward limit-average objectives where
states in U are absorbing and are exactly the states with reward 1, and similarly for safety objectives.
Markov chains. A game structure G is a Markov chain if m = 1. We will in that case write δ(s) for the
distribution δ(s, a1, a2), where a1 is the unique action in Γ1(s) and a2 is the unique action in Γ2(s). Markov
chains defines a weighted graph (S,E,w), where (s, s′) ∈ E iff δ(s)(s′) > 0 and for all (s, s′) ∈ E we
have that w((s, s′)) = δ(s)(s′). For an event A ⊆ Ω, we denote by Prs(A) the probability Prσ1,σ2s (A),
where σ1 and σ2 are the unique strategies for player 1 and player 2, respectively. A state s is reachable from
another state s′ iff s′ is reachable from s in (S,E,w). A set of states Z is reachable from a state s iff a
state in Z is reachable from s. For any set of states Z in a Markov chain, let RS(Z), be the set of states
from which Z is not reachable. Clearly, RS(Z) ⊆ (S \ Z). A set of states L is called a recurrent class if

5

for each pair of states s, s′ ∈ L we have that s′ is reachable from s and for each pair of states s ∈ L and
s′′ ∈ (S \ L) we have that s′′ is not reachable from s. A recurrent class in a Markov chain is a bottom scc
(strongly connected component) in the graph of the Markov chain, where a bottom scc L is an scc with no
edges leaving the scc.
Properties of Markov chains to be explicitly used in proofs. We will use several basic properties of
Markov chains in our proof and we explicitly state them here. Let us fix a Markov chain with state space S.

1. Given a set Z ⊆ S, for all s ∈ S, with probability 1 either Z is visited infinitely often or RS(Z) is
reached.

2. GivenZ ⊆ S, for all s ∈ S, with probability 1RS(Z) orZ is reached, i.e., Prs(Reach(RS(Z)∪Z)) =
1.

3. Given sets Z ⊆ S and Z ′ ⊆ S, such that Z can only be left from (Z ′ ∩ Z), then for all s ∈ Z with
probability 1 (RS(Z ′)∩Z) or (Z ′ ∩Z) is reached, i.e., Prs(Reach((RS(Z ′)∩Z)∪ (Z ′ ∩Z))) = 1.
Note the similarity with the previous property, only intersection with Z is taken.

4. Given sets Z ⊆ S and Z ′ ⊆ S, such that Z can only be left from (Z ′ ∩ Z) and from each state in
(Z ′ ∩Z) there is a positive probability to leave Z, then for all s ∈ Z with probability 1 (RS(Z ′)∩Z)
or (S \ Z) is reached, i.e., Prs(Reach((RS(Z ′) ∩ Z) ∪ (S \ Z))) = 1.

5. From every state s ∈ S, with probability 1 some recurrent class L is reached; and given a recurrent
class L is reached, with probability 1 every state in L is reached.

6. Consider Z ⊆ S and Z ′ ⊆ S such that for all z ∈ Z the set Z ′ is reachable. Then for all s ∈ S with
probability 1 either RS(Z) or Z ′ is reached, i.e., Prs(Reach(RS(Z) ∪ Z ′)) = 1.

7. Consider Z ⊆ S and Z ′ ⊆ S such that for all s ∈ (S \ (Z∪Z ′)), we have that δ(s)(Z) · ε ≥ δ(s)(Z ′),
for ε > 0. Then, for all s ∈ (S \ (Z ∪Z ′)) the probability to reach Z or RS(Z ∪Z ′) is at least 1− ε,
i.e., Prs(Reach(Z ∪RS(Z ∪ Z ′))) ≥ 1− ε.

8. Consider Z ⊆ S and Z ′ ⊆ S such that for all s ∈ Z the set Z ′ is reachable. Then for all s ∈ Z with
probability 1 (S \ Z) or Z ′ is reached, i.e., Prs(Reach((S \ Z) ∪ Z ′)) = 1.

We will refer to these properties as Markov property 1 to Markov property 8, respectively.
µ-calculus. Consider a µ-calculus expression Ψ = µX.ψ(X) over a finite set S, where ψ : 2S 7→ 2S

is monotonic. The least fixpoint Ψ = µX.ψ(X) is equal to the limit limk→∞Xk, where X0 = ∅, and
Xk+1 = ψ(Xk). For every state s ∈ Ψ, we define the level k ≥ 0 of s to be the integer such that s 6∈ Xk

and s ∈ Xk+1. The greatest fixpoint Ψ = νX.ψ(X) is equal to the limit limk→∞Xk, where X0 = S, and
Xk+1 = ψ(Xk). For every state s 6∈ Ψ, we define the level k ≥ 0 of s to be the integer such that s ∈ Xk

and s 6∈ Xk+1. The height of a µ-calculus expression γX.ψ(X), where γ ∈ {µ, ν}, is the least integer h
such that Xh = limk→∞Xk. An expression of height h can be computed in h+ 1 iterations. A µ-calculus
formula with nested µ and ν operators is a very succinct description of a nested iterative algorithm.
Interpretation of µ-calculus formula. Consider a µ-calculus formula

νY.µX.[f(Y,X)],

where f is pointwise monotonic. The intuitive way to read the formula is as νY.(µX.[f(Y,X)]), i.e., given a
value of Y (say Yi) we compute the inner least fixpoint with function f(Yi, X) which has only one free vari-
able X . Thus for every Yi, µX.[f(Yi, X)] assigns a value for Yi. In other words, the function µX.[f(Y,X)]

6

can be interpreted as a function g(Y) on Y , and the outer fixpoint computes the greatest fixpoint of g. The
interpretation for computation of µY.νX.[f(Y,X)] is similar, and is extended straightforwardly to more
nested µ-calculus formula.

The value problem. Given an objective Φ, and a class C of strategies for player 1, the value for
player 1 under the class C of strategies is the maximal payoff that player 1 can guarantee with a strat-
egy in class C. Formally, val(Φ, C)(s) = supσ1∈C infσ2∈Σ2 E

σ1,σ2
s [Φ]. In this work we will con-

sider the computation of the value 1 set under finite-memory strategies, i.e., the computation of the set
{s ∈ S | val(LimInfAvg(r),ΣF

1)(s) = 1}. Observe that to ensure value 1, player 1 must ensure that for all
ε > 0, the probability to visit reward 1 is at least 1 − ε, and hence it follows if all rewards less than 1 are
decreased to 0 the value 1 set still remains the same, and hence for simplicity for the value 1 set computation
we will consider Boolean reward functions.

3 The Value 1 Set Computation

In this section we will present a polynomial-time algorithm to compute the value 1 set, val1(Φ,ΣF
1), for

mean-payoff objectives Φ. We start with a very basic and informal overview of the algorithm.

Basic overview of the algorithm. The algorithm will compute the value 1 set W by iteratively adding
chunks of states that are guaranteed to be in the value 1 set, and the iteration will finally converge to W .
Let U ⊆ W be the set of states that are already guaranteed to be in the value 1 set (already identified as
subset of W in some previous iteration). Then a new chunk X of states are added such that U ⊆ X ⊆ W ,
and the new chunk of states are also added iteratively (the algorithm is a nested iterative algorithm). For
the set X , let U ⊆ Y ⊆ X be the subset that is already added, and then a new chunk Y ⊆ Z ⊆ X is
added such that player 1 can ensure that one of the following three conditions hold: (1) the probability to
reach U in one step can be made arbitrarily large as compared to the probability to leave W in one step
(then U can be reached with probability arbitrarily close to 1); or (2) the probability to stay in X in one
step is 1 and the probability to reach Y in one step is positive (then Y can be reached with probability 1);
or (3) the probability to stay in X in one step is 1, the one step expected reward and the probability to stay
in Z in one step can be made arbitrarily close to 1. Figure 2, Figure 3, and Figure 4 illustrate the above
three conditions, respectively, pictorially. Very informally, if always one of the the last two conditions is
satisfied, then then the mean-payoff can be made arbitrarily close to 1; and the first condition ensures that
the already computed value 1 set can be reached with probability arbitrarily close to 1. The initialization
of the sets are as follows: U and Y are initialized to the empty set, and W , X , and Z are initialized to the
set of all states. Note that the above three conditions are local (one-step) conditions and we will first define
an one-step predecessor operator to capture the above conditions. We will then show how to compute the
one-step predecessor operator in polynomial time, and finally show how to use the one-step predecessor
operator in a nested iterative algorithm to compute the value 1 set in polynomial time.

3.1 One-step predecessor operator

We first formally define the one-step predecessor operator that was described informally in the basic
overview of the algorithm. Given a state s and two distributions ξ1 ∈ D(Γ1(s)) and ξ2 ∈ D(Γ2(s)),
the expected one-step reward ExpRew(s, ξ1, ξ2) is defined as follows:

∑
a1∈Γ1(s),a2∈Γ2(s) ξ1(a1) · ξ2(a2) ·

r(s, a1, a2). We often use distributions for player 2 that plays a single action a2 with probability 1, and use
a2 to denote such a distribution. For sets U ⊆ Y ⊆ Z ⊆ X ⊆ W , the one-step predecessor operator for
limit-average (mean-payoff) objectives, denoted as LimAvgPre(W,U,X, Y, Z), is the set of states s such

7

U

Y
Z

X
W

W
Pr = x Pr < x · ε

Figure 2: Pictorial illustration of Equation 1.

x+ y = 1

U

Y
Z

X
W

W
x = Pr > 0 y = Pr < 1

Figure 3: Pictorial illustration of Equation 2.

U

Y
Z

X
W

WPr ≤ ε
Pr ≥ 1− ε

ExpRew ≥ 1− ε

Figure 4: Pictorial illustration of Equation 3.

8

that for all 0 < ε < 1
2 , there exists a distribution ξε1 over Γ1(s) such that for all actions a2 in Γ2(s), we have

that (
ε · δ(s, ξε1, a2)(U) > δ(s, ξε1, a2)(W)

)
(1)

∨
(
δ(s, ξε1, a2)(X) = 1 ∧ δ(s, ξε1, a2)(Y) > 0

)
(2)

∨
(
δ(s, ξε1, a2)(X) = 1 ∧ ExpRew(s, ξε1, a2) ≥ 1− ε ∧ δ(s, ξε1, a2)(Z) ≥ 1− ε

)
. (3)

We denote the above conditions as Equation 1, Equation 2, and Equation 3, respectively. Also our nested
iterative algorithm (as informally described) that uses the LimAvgPre(W,U,X, Y, Z) operator will ensure
the required inclusion U ⊆ Y ⊆ Z ⊆ X ⊆ W . Before presenting the algorithm for the computation of
the LimAvgPre set, we first discuss the special case when we only have the first condition Equation 1, then
describe some key properties of witness distributions, and finally present an iterative algorithm to compute
LimAvgPre.
The LPre operator and witness parametrized distribution. An algorithm for the computation of the
predecessor operator (called the LPre operator) for reachability games was presented in [13] where only
Equation 1 is required to be satisfied. We extend the results of [13, 9] to obtain the following properties
(details presented in technical appendix):

• (Input and output). The algorithm takes as input a state s, two sets U ⊆W of states, two sets of action
sets A1 ⊆ Γ1(s) and A2 ⊆ Γ2(s), and either rejects the input or returns the largest set A3 ⊆ A2 such
that the following conditions hold: for every 0 < ε < 1

2 there exists a witness distribution ξε1 ∈ D(A1),

with patience at most
(
ε·δmin

2

)−(|A1|−1)
, such that (i) for all actions a2 ∈ A3 Equation 1 is satisfied;

and (ii) for all actions a′2 ∈ (A2 \A3) we have Succ(s, ξε1, a
′
2) ⊆W . The setA3 is largest in the sense

that ifA4 ⊆ A2 andA4 satisfies the above conditions, thenA4 ⊆ A3. Notice that this indicates that for
all a2 ∈ (A2 \A3) we have Succ(s, ξε1, a2)∩U = ∅, because otherwise a2 would be inA3. Moreover,
the distribution ξε1 has the largest possible support, i.e., for all actions a1 ∈ (A1 \ Supp(ξε1)), there
exists an action a2 in (A2 \A3) such that Succ(s, a1, a2) ∩W 6= ∅. An input would only be rejected
if for each action a1 ∈ A1 there exists an action a2 ∈ A2 such that Succ(s, a1, a2) ∩W 6= ∅.

• (Parametrized distribution). Finally, the witness family of distributions ξε1, for 0 < ε < 1
2 , is presented

in a parametrized fashion as follows: the support Supp(ξε1) for all 0 < ε < 1
2 is the same (denoted as

A∗), and the algorithm gives the support set A∗, and a ranking function that assigns a number from
0 to at most |A∗| to every action in A∗, and for any 0 < ε < 1

2 , the witness distribution ξε1 plays
actions with rank i with probability proportional to εi. In other words, the support set A∗ and the
ranking number of the actions in A∗ is a polynomial witness for the parametrized family of witness
distributions ξε1, for all 0 < ε < 1

2 .

We summarize the important properties which we explicitly use later: LPre(s,W,U,A1, A2) for U ⊆ W
returns the following (see Technical Appendix for correctness proof):

1. (Reject property of LPre). Reject and then for all a1 ∈ A1 there exists a2 ∈ A2 such that
Succ(s, a1, a2) ∩W 6= ∅

2. (Accept properties of LPre). Accepts and returns the set A3 ⊆ A2 and a parametrized distribution ξε1,
for 0 < ε < 1

2 , with support Supp(ξε1) ⊆ A1, such that the following properties hold:

9

• (Accept property a). For all a2 ∈ A3, the distribution ξε1 satisfies Equation 1 for a2.

• (Accept property b). For all a2 ∈ (A2 \ A3), we have Succ(s, ξε1, a2) ∩ W = ∅ and
Succ(s, ξε1, a2) ∩ U = ∅.
• (Accept property c). For all a1 ∈ (A1 \ Supp(ξε1)), there exists an action a2 in (A2 \ A3) such

that Succ(s, a1, a2) ∩W 6= ∅.
• (Accept property d). The set A3 is largest in the sense that for all a2 ∈ (A2 \ A3) and for

all parametrized distributions ξε1 over A1, the Equation 1 cannot be satisfied, while satisfying
actions in A2 using Equation 1, or Equation 2, or Equation 3, for any X,Y, Z such that U ⊆
Y ⊆ Z ⊆ X ⊆W .

One action with large probability property. We will now show that if a state belongs to LimAvgPre, then
there is a family of witness distributions where one action a is played with very large probability.

Lemma 1. Given U ⊆ Y ⊆ Z ⊆ X ⊆ W , if s ∈ LimAvgPre(W,U,X, Y, Z), then for all 0 < ε ≤ δmin
m

there is a witness distribution to satisfy at least one of the three conditions (Equation 1, Equation 2, or
Equation 3) of LimAvgPre where an action a ∈ Γ1(s) is played with probability at least 1− ε · δmin.

Proof. Given 0 < ε ≤ δmin
m , let ξε1 be a witness distribution such that for all actions in Γ2(s) at least one of

the three conditions for LimAvgPre is satisfied. Let C1 be the set of actions a2 in Γ2(s) such that ξε1 and a2

satisfy Equation 1; respectively, C2 for Equation 2, and C3 for Equation 3. Let a be some action such that
ξε1(a) ≥ 1

m (note that such an action must exist). If ξε1(a) ≥ 1 − ε · δmin, then we already have the desired
action a; and we are done. Otherwise, we consider the distribution ξ′1 defined as follows:

ξ′1(a1) =

{
1− ε · δmin if a = a1

ε · δmin ·
ξε1(a1)

1−ξε1(a) otherwise .

We now consider three cases to show ξ′1 is also a witness distribution to satisfy at least one of the three
conditions of LimAvgPre for ε.

1. Consider an action a2 in C1. Since a2 in C1 and ε < δmin
m , we must have that Succ(s, a, a2)∩W 6= ∅,

because otherwise given ξε1 and a2 the set W is reached with probability at least δmin
m (as a is played

with probability at least 1
m by ξε1), i.e., δ(s, ξε1, a2)(W) ≥ δmin

m > ε. This contradicts that a2 satisfies
Equation 1 for ξε1 for the given ε < δmin

m . Hence given a and a2, the probability to leave the set W
is 0; and since all the other actions are only scaled in ξ′1 as compared to ξε1 we have

δ(s, ξε1, a2)(U)

δ(s, ξε1, a2)(W)
≤ δ(s, ξ′1, a2)(U)

δ(s, ξ′1, a2)(W)

Hence, given ξ′1 the action a2 must also satisfy Equation 1 for ε.

2. Consider an action a2 in C2. Since a2 in C2 (i.e., satisfies Equation 2) we must have Succ(s, ξε1, a2) ⊆
X (stay in X with probability 1) and Succ(s, ξε1, a2) ∩ Y 6= ∅ (next state in Y with positive
probability). Since ξ′1 assigns positive probability to precisely the same set of actions as ξε1, i.e.,
Supp(ξ′1) = Supp(ξε1), we have that Succ(s, ξ′1, a2) = Succ(s, ξε1, a2) ⊆ X (stay in X with proba-
bility 1) and Succ(s, ξ′1, a2)∩Y = Succ(s, ξε1, a2)∩Y 6= ∅ (next state in Y with positive probability).
Hence we have that ξ′1 and a2 must also satisfy Equation 2.

10

3. Finally consider an action a2 in C3. We must have that (i) Succ(s, a, a2) ⊆ Z and (ii) r(s, a, a2) = 1;
because otherwise we would either not end up in Z or not get reward 1 with probability at least δmin

m
when a2 is played against ξε1 (contradicting that a2 satisfies Equation 3). Since ξ′1 plays a with larger
probability than ξε1, and all other actions are scaled with probabilities of ξε1, it follows that for every
a2 in C3 we must have that ξ′1 and a2 satisfy Equation 3.

The desired result follows.

The action with large probability. In Lemma 1 we showed that some action is played with large probability.
In the lemma the action was chosen depending on ε, but since there are only finitely many actions and if an
action satisfies for some 0 < ε < 1

2 , then it also satisfies for all ε′ such that ε ≤ ε′ < 1
2 , and thus it follows

that there is an action that is played with large probability. We will call a parametrized distribution ξε1, for
0 < ε < 1

2 , an a-large distribution if the distribution plays action a with probability at least 1−ε ·δmin. Thus
the existence of witness a-large distributions, if such distributions exist, follows from Lemma 1. The main
crux of the algorithm would be to find an action a and a parametrized distribution that is a-large as a witness
distribution for LimAvgPre. Our algorithm will use the LPre operator iteratively. The key information we
need is encoded as a matrix as follows.
The matrix for action sets. Given a state s, and the sets U ⊆ Y ⊆ Z ⊆ X ⊆ W , we define an
|Γ1(s)| × |Γ2(s)|-matrix M , such that Ma1,a2 ∈ {W,W,U,X, Y, Z0, Z1}, that corresponds to the type of
successor encountered if player 1 plays action a1 and player 2 plays action a2. Let

Ma1,a2 =

W if Succ(s, a1, a2) ∩W 6= ∅
U if Succ(s, a1, a2) ∩ U 6= ∅ and Succ(s, a1, a2) ∩W = ∅
W if Succ(s, a1, a2) ∩ (W \X) 6= ∅ and Succ(s, a1, a2) ∩ (W ∪ U) = ∅
Y if Succ(s, a1, a2) ∩ (Y \ U) 6= ∅ and Succ(s, a1, a2) ∩ (W ∪ U ∪ (W \X)) = ∅
X if Succ(s, a1, a2) ∩ (X \ Z) 6= ∅

and Succ(s, a1, a2) ∩ (W ∪ U ∪ (W \X) ∪ (Y \ U)) = ∅
Z` if Succ(s, a1, a2) ∩ (Z \ Y) 6= ∅

and Succ(s, a1, a2) ∩ (W ∪ U ∪ (W \X) ∪ (Y \ U) ∪ (X \ Z)) = ∅
and r(s, a1, a2) = `, for ` ∈ {0, 1} .

The matrix uses that U ⊆ Y ⊆ Z ⊆ X ⊆ W , to ensure that the matrix is well-defined. Notice that M
encodes all the information needed by LPre (the entries equal to W,Y,X,Z1, Z0 all ensures both W and U
are not reached, U ensures that U is reached with probability at least δmin and W is not reached. The entries
W ensures that W is reached with probability between δmin and 1). Hence, we could alternatively give M
as input to LPre.
Intuitive description of the algorithm. We first present an intuitive description of our algorithm and then
present it formally. The basic idea of the algorithm is to use LPre iteratively and the existence of a-large
witness distributions. Given a candidate action a, we reject a or accept a using the following procedure.
First, given the action a, if there is an action a2 such that W is left with positive probability given a and a2

(i.e., Ma,a2 = W), then we reject a. Second, we check if playing a with probability 1 satisfies all actions
(by either of the three conditions), and if so we accept. If neither of the first two conditions hold, then we
use an iterative procedure. Let C be the set of actions which are guaranteed to be satisfied (by Equation 1)
by playing an a-large distribution (C consists of each action a2 such that Ma,a2 = U). We run LPre, and
start with (Γ1(s) \ {a}) as available actions for player 1 (we are only interested in a-large distributions and

11

we do not consider a for LPre) and (Γ2(s) \ C) as available actions for player 2. If LPre rejects, we also
reject: this is because no matter which action a1 6= a is played with the largest probability (and we could
not play a alone) there is an action a2, such that Ma1,a2 = W and Ma,a2 6= U , which ensures that all three
equations are violated. If LPre accepts, then we obtain a witness distribution ξ1 and a set A3 of actions of
player 2 such that ξ1 satisfies Equation 1 for all actions inA3. We then create ξ′1, which is ξ1 scaled so that it
plays an a-large distribution (note that ξ1 plays a with probability 0). Afterwards we check if all actions for
player 2 are satisfied by ξ′1. If so, we accept. Otherwise, we check that whether for each action a2 outside
(A3 ∪ C) we can satisfy either Equation 2 or Equation 3: for a2 to be satisfied using Equation 3, we must
have that Ma,a2 = Z1; and for a2 to be satisfied using Equation 2, the distribution ξ′1 must play some action
a1 with positive probability such that Ma1,a2 = Y . If for some a2 outside (A3 ∪ C), neither Ma,a2 = Z1,
nor Ma1,a2 = Y , for some a1 played with positive probability, we reject. Otherwise, if we did not reject, we
remove each action a1 for player 1 from available actions, for which there exists an a2 ∈ (A3∪C), such that
Ma1,a2 = W . Note that if Ma1,a2 = W , then we cannot satisfy a2 using either Equation 2 or Equation 3, if
we play a1 with positive probability. If the set of available actions does not contain a, then we cannot play
a with positive probability in an a-large distribution, which clearly means that no a-large distribution exists
and thus we reject. If this new, smaller set of actions for player 1 contains a, we iterate on with the new set
as the set of available actions for player 1, and the available set for player 2 always remains as (Γ2(s) \ C).
Since, in every iteration, we get a smaller set of actions for player 1, we terminate at some point.

The algorithm ALGOPRED. We now describe the steps of the algorithm which we refer as ALGOPRED

(algorithm for predecessor computation). For a state s, we consider every action a ∈ Γ1(s) as a candidate
for the existence of an a-large witness distribution. For each action a we execute the following steps:

1. (Reject 1). Reject the choice of a if there exists a2 ∈ Γ2(s) such that Ma,a2 = W .

2. (Accept 1). Accept a if for all a2 ∈ Γ2(s) we have Ma,a2 ∈ {U, Y, Z1}, and then return the distribu-
tion that plays a with probability 1, and return “Accept” for state s.

3. Let C be the set of actions a2 in Γ2(s) such that Ma,a2 6= U . Initialize B0
1 and A0

1 as (Γ1(s) \ {a}).
The remainder of the algorithm will be done in iterations.

4. (Iteration). In iteration i ≥ 1, run LPre(s,W,U, ((Ai−1
1 ∩Bi−1

1) \ {a}), C).
(Reject 2): if LPre(s,W,U, ((Ai−1

1 ∩ Bi−1
1) \ {a}), C) rejects the input, then reject this choice of a.

Otherwise let Ai2 be the returned set; and let ξε,i1 be a witness parametrized distribution (parametrized
by 0 < ε < 1

2 which is obtained by the support of ξε,i1 and the ranking of the actions in the support).
We will now define some sets of actions.

(a) Let Ai1 = Supp(ξε,i1) ∪ {a}.
(b) Let Bi

1 be all actions a1 in Γ1(s) such that for all a2 ∈ (C \Ai2) we have Ma1,a2 6= W .

(c) Let Bi
2 be all actions a2 in (C \Ai2) such that either (i) Ma,a2 = Z1; or (ii) there exists an action

a1 ∈ Ai1 with Ma1,a2 = Y .

5. We reject in the following cases:

• (Reject 3). If ((Ai1 ∩Bi
1) \ {a}) = ∅, then reject this choice of a.

• (Reject 4). If (C \Ai2) 6= Bi
2, then reject this choice of a.

• (Reject 5). If a 6∈ Bi
1, then reject this choice of a.

12

6. (Accept 2). Otherwise if Ai1 ⊆ Bi
1, then return accept a, and return the parametrized distribution ξε1,

for 0 < ε < 1
2 , that plays a with probability 1− ε · δmin and with probability ε · δmin follows ξε,i1 , and

also “Accept” state s.

7. If the action is neither accepted nor rejected, then go to iteration i+ 1 in step 4.

If all choices of action a ∈ Γ1(s) get rejected, then “Reject” state s.
The parametrized distribution for Accept 2 is returned as the special action a (to be played with proba-

bility 1 − ε · δmin, for 0 < ε < 1
2), the support set of ξε,i1 and the ranking function of the support as given

by the LPre operator (which gives the parametrized distribution for ξε,i1 which is multiplied by ε · δmin to get
the parametrized a-large witness distribution ξε1 and a is played with the remaining probability).

Illustrations with examples. We illustrate our algorithm on fourM -matrices shown in Figure 5. First observe
that the only feasible candidate for an a-large distribution is the first row, because each other row contains
an W entry, and thus will be rejected at the start. The first matrix shown in Figure 5a will be accepted by
the algorithm and the other three will be rejected by the algorithm.

1. Consider first the matrix in Figure 5a. Then the algorithm is run with the first row as a, it will call
LPre with the all rows but the first row for player 1 and all columns but the first column for player 2
(since given the first row, the first column satisfies Equation 1). The LPre algorithm will then return
the distribution d of playing the second row with probability 1− ε

2 and the third row with probability
ε
2 . It also returns the set A3 containing the second and third column (they satisfy Equation 1). We
then get accept in that iteration, because column 4 and column 5 can be satisfied by Equation 2 and
column 6 can be satisfied by Equation 3.

2. Consider now the second matrix, the one in Figure 5b. It will get rejected at start, because in this case
each row contains an W entry.

3. The third matrix, the one in Figure 5c, will get rejected in the second iteration. In the first iteration,
LPre will return the same distribution d as for the first matrix along with the same A3. This time,
we cannot accept directly, because d no longer satisfies any of the three equations, for column 5. At
that point, the algorithm considers that each column a2 ∈ {4, 5, 6} such that Ma1,a2 = Y for some
a1 ∈ {1, 2, 3} or Ma,a2 = Z1 (where a = 1). Thus, the algorithm removes row 2, from the set of
possible rows, because column 5 is such that M2,5 = W , and 5 6∈ A3 and iterate. Then the algorithm
calls LPre and gets back reject, because each of the rows left contains at least one instance of W .
Hence the algorithm rejects.

4. For the last matrix, the one in Figure 5d, the algorithm calls LPre and gets d and A3, but this time
the algorithm rejects at that point, because row 6 (which is not in A3) does not contain an action a1

played with positive probability such that Ma1,6 = Y or is such that Ma,6 = Z1.

Lemma 2. Given U ⊆ Y ⊆ Z ⊆ X ⊆ W and a state s, if algorithm ALGOPRED accepts s, then
s ∈ LimAvgPre(W,U,X, Y, Z). Furthermore, for every 0 < ε < 1

2 there exists a witness distribution ξε1

with patience at most
(
ε·δmin

2

)−(|Γ1(s)|−1)
to satisfy at least one of the three required conditions (Equation 1,

Equation 2, or Equation 3) for LimAvgPre for every action a2 ∈ Γ2(s).

Proof. We will next show that if ALGOPRED returns a parametrized distribution ξε1, then for all 0 < ε < 1
2

and for all actions a2 ∈ Γ2(s), at least one of the three conditions of LimAvgPre is satisfied. This will show

13

M =

U W W X Y Z1

W U W Y X X

W W U X X X

W W W W W W

(a) This illustrates a M -matrix, which has an a-large
distribution, where a corresponds to the first row.

M =

U W W X Y Z1

W U W Y W X

W W U X X X

W W W W W W

(b) This illustrates a M -matrix, which has no a-
large distribution. The cicled entry is the only entry
changed as compared to Figure 5a.

M =

U W W X Y Z1

W U W Y W X

W W U X X X

W W W W W W

(c) This illustrates a M -matrix, which has no a-
large distribution. The cicled entry is the only entry
changed as compared to Figure 5a.

M =

U W W X Y X

W U W Y X Z1

W W U X X X

W W W W W W

(d) This illustrates a M -matrix, which has no a-large
distribution. The circled entries are the only entries
changed as compared to Figure 5a.

Figure 5

that s ∈ LimAvgPre(W,U,X, Y, Z). The algorithm accepts state s and returns a distribution at two places,
namely, (Accept 1) and (Accept 2). For the case of Accept 1: the algorithms returns a distribution that plays
some action a with probability 1; and for the case of Accept 2 it returns a distribution that plays some subset
of actions (at least 2) with positive probability. We analyze both the cases below.

1. Case Accept 1. In the first case for all actions a2 we have that Ma,a2 ∈ {U, Y, Z1}. We analyze the
three sub-cases.

(a) If Ma,a2 = U , then Succ(s, a, s2) ∩ U 6= ∅ (i.e., the next state is in U with positive probability)
and Succ(s, a, a2)∩W = ∅ (i.e., the next state is inW with probability 0) and hence Equation 1
is satisfied.

(b) If Ma,a2 = Y , then (i) Succ(s, a, a2)∩ (Y \U) 6= ∅ which implies that Succ(s, a, a2)∩ Y 6= ∅,
since (Y \ U) ⊆ Y ; and (ii) Succ(s, a, a2) ∩ (W ∪ U ∪ (W \ X)) = ∅ which implies that
Succ(s, a, a2)∩ (X ∪U) = ∅ because as X ⊆W we have (W ∪U ∪ (W \X)) = X ∪U ; and
hence Succ(s, a, a2) ⊆ X . The first condition ensures that the next state is in Y with positive
probability and the second condition ensures the next state is in X with probability 1, and thus
Equation 2 is satisfied.

(c) If Ma,a2 = Z1, then (i) Succ(s, a, a2)∩ (Z \Y) 6= ∅ which implies that Succ(s, a, a2)∩Z 6= ∅;
and (ii) Succ(s, a, a2) ∩ (W ∪ U ∪ (W \ X) ∪ (Y \ U) ∪ (X \ Z)) = ∅ which implies that
Succ(s, a, a2)∩ (Z ∪U ∪Y) = ∅, because as Z ⊆ X ⊆W we have (W ∪U ∪ (W \X)∪Y ∪
(X \Z)) = (Z∪U ∪Y), and hence Succ(s, a, a2) ⊆ Z (i.e., next state in Z with probability 1);
and (iii) r(s, a, a2) = 1 (i.e., expected reward is 1). It follows that Equation 3 is satisfied.

2. Case Accept 2. In the second case, we consider the case when the algorithm returns a parameterized

14

distribution ξε1, for 0 < ε < 1
2 , in iteration i. Let the action played with probability 1− ε · δmin be a.

Such an action clearly exists, by construction. For any a2 ∈ Γ2(s) such that Ma,a2 = U , then the next
state is in U with probability at least (1 − ε · δmin) · δmin and the next state is in W with probability
at most ε · δmin and the ratio is at least 2 · ε; thus the distribution ξε1 and a2 satisfy Equation 1 for 2 · ε.
As 0 < ε < 1

2 is arbitrary the result follows for all a2 such that Ma,a2 = U . We consider the set C of
remaining actions in Γ2(s), i.e., for all a2 ∈ C we have Ma,a2 6= U .

Satisfying Equation 1 in Ai2. We have that Ma,a2 6= W , for all a2 ∈ Γ2(s), because otherwise the
guess of action a would have been rejected, in (Reject 1). We also have that LPre(s,W,U,B′, C),
for B′ ⊆ (Γ1(s) \ {a}) must return an distribution ξ′1 over B′ and a set A′ ⊆ C, such that for all
a2 ∈ A′, the action a2 and the distribution ξ′1 satisfies Equation 1 (by Accept property a of LPre).
In the last iteration the set Ai2 is the set returned by LPre(s,W,U, ((Ai−1

1 ∩ Bi−1
1) \ {a}), C), and

the distribution ξε,i1 satisfies Equation 1 for all actions in Ai2 (again by Accept property a of LPre
since Ai2 is the returned subset of C). Since ξε1 only plays a with high probability and only scales the
distribution ξε,i1 it follows (similarly to Case 1 of Lemma 1) that ξε1 satisfies Equation 1 for all actions
in Ai2.

Satisfying Equation 2 or Equation 3 in (C \Ai2). By definition ofBi
1 andAi1 (Step 4 (a) and Step 4 (b)

of the algorithm), and that Ai1 ⊆ Bi
1 (from Accept 2 of the algorithm), it follows that the distribution

ξε1 is such that for all a2 ∈ (C \ Ai2) and a1 ∈ Supp(ξε1) ∪ {a} = Ai1 we have Ma1,a2 6= W . Also
for all a2 ∈ (C \ Ai2) and all a1 such that ξε1(a1) > 0, we have from Accept property b of LPre that
Ma1,a2 6= W andMa1,a2 6= U . Notice that therefore for all a1 ∈ Supp(ξε1) and a2 ∈ (C\Ai2) we have
Ma1,a2 ∈ {X,Y, Z0, Z1}, which implies that Succ(s, ξε1, a2)(X) = 1. For all a2 ∈ (C \Ai2) we have
that either (i) Ma,a2 = Z1; or (ii) ξε1 assigned positive probability to some a1 such that Ma1,a2 = Y ,
because otherwise (C \ Ai2) 6= Bi

2 and we would have rejected this choice of a (by Reject 4 of the
algorithm). Notice that Ma,a2 = Z1 implies that Succ(s, a, a2)(Z) = 1 and that r(s, a, a2) = 1, thus,
since the distribution the algorithm returned was a-large, we get that we reach Z in one step with
probability at least 1− ε · δmin and get reward 1 with probability at least 1− ε · δmin, hence Equation 3
is satisfied. If the second case holds (i.e., Ma1,a2 = Y), we have Succ(s, ξε1, a2) ∩ (Y \ U) 6= ∅ (i.e.,
Y is reached with positive probability in one step), thus implying that Equation 2 is satisfied.

Therefore the distribution ξε1 is a witness distribution to satisfy the required conditions for 0 < ε < 1
2

for LimAvgPre. It follows that s ∈ LimAvgPre(W,U,X, Y, Z).
Patience. The distribution returned by LPre over |Γ1(s)| − 1 actions has patience at most(
ε·δmin

2

)−(|Γ1(s)|−2)
. Hence it is clear from the algorithm that the distribution returned by the algorithm

has patience at most
(
ε·δmin

2

)−(|Γ1(s)|−1)
.

Our next goal is to present a lemma that complements the previous lemma. In other words, we would
show that if ALGOPRED rejects an action a, then there would be no a-large distributions as witnesses for
LimAvgPre. The algorithm rejects an action a at four places, and we will show that all the rejections are
sound (i.e., if a is rejected, then there is no a-large witness distribution). We first show that the first rejection
is sound.
Soundness of Reject 1. We consider the case of Reject 1. In this case, there exists an action a2 such that
Ma,a2 = W . Given an a-large distribution ξε1, the one step probability to reach W (i.e., δ(s, ξε1, a2)(W)) is
at least x = (1− ε · δmin) · δmin > ε, since ε < 1

2 and δmin ≤ 1, and even if U is reached with the remaining
probability (i.e., even if δ(s, ξε1, a2)(U) = 1 − x), it follows that Equation 1 is violated, for all 0 < ε < 1

2 .

15

The remaining two expressions cannot be satisfied because X ⊆ W and since we leave W with positive
probability we as well leave X with positive probability. It follows that the rejection of action a is sound for
Reject 1.

Rejects in iteration. The other places the algorithm can reject action a, i.e., (Reject 2), (Reject 3), (Reject 4),
and (Reject 5), are part of the iterative procedure. To prove soundness of these rejects we will define a loop
invariant and prove the loop invariant inductively. We will also show that with the loop invariant we can
establish soundness of the rejects in the iterative procedure as well as the termination of the algorithm.

The loop invariant. The loop invariant is as follows:

• Any a-large witness distribution ξε1 for LimAvgPre only plays actions in (Ai1∩Bi
1)∪{a}with positive

probabilities, for all i ≥ 0, i.e., Supp(ξε1) ⊆ (Ai1 ∩Bi
1) ∪ {a}.

We will also establish the monotonicity (strictly decreasing till a fixpoint is reached) property that (Ai1 ∩
Bi

1) ∪ {a} ⊆ (Ai−1
1 ∩Bi−1

1) ∪ {a}, for all i > 0; and equality implies termination in iteration i.

Inductive proof of loop invariant. We present the basic inductive argument for the loop invariant:

• The base case, i = 0. The base case, for i = 0 is trivial, since A0
1 = B0

1 = (Γ1(s) \ {a}), thus
implying that (Ai1 ∩Bi

1) ∪ {a} = Γ1(s).

• The induction case, i > 0. By inductive hypothesis, any a-large witness distribution ξε1 only plays
actions in (Ai−1

1 ∩ Bi−1
1) ∪ {a} with positive probabilities, and we need to establish for i. We will

show that any a-large witness distribution can only play actions in Ai1 ∪{a} = Ai1, (see the following
description of Ai1 which uses the inductive hypothesis). We refer to this as required property 1 for
loop invariant. Similarly, we establish the same for Bi

1 (see the following description of Bi
1 which

uses the inductive hypothesis). We refer to this as required property 2 for loop invariant. Hence any
witness a-large distribution can only play actions in (Ai1 ∩Bi

1) ∪ {a}.

The above proof requires to establish the key properties of Ai1 and Bi
1. Before establishing them we first

show the monotonicity property.

Monotoncity property. We will show that we have (Ai1 ∩ Bi
1) ∪ {a} ⊆ (Ai−1

1 ∩ Bi−1
1) ∪ {a}, for all

i > 0, and equality implies termination of the inner loop in iteration i. Notice that this implies that for
any choice of a the inner loop rejects a or finds a distribution after at most |Γ1(s)| iterations. We have
that Ai1 = Supp(ξε1) ∪ {a} (by Step 4 (a) of ALGOPRED), where ξε1 is a witness distribution returned by
LPre(s,W,U, ((Ai−1

1 ∩ Bi−1
1) \ {a}), C). Since Supp(ξε1) ⊆ ((Ai−1

1 ∩ Bi−1
1) \ {a}), if LPre accepts, we

have thatAi1 ⊆ (Ai−1
1 ∩Bi−1

1)∪{a}. Thus we get that (Ai1∩Bi
1)∪{a} ⊆ Ai1∪{a} ⊆ (Ai−1

1 ∩Bi−1
1)∪{a}.

This establish monotonicity and now we show the termination. Assume that (Ai1 ∩ Bi
1) ∪ {a} = (Ai−1

1 ∩
Bi−1

1) ∪ {a}. Therefore we have that ξε1 can only use actions in ((Ai−1
1 ∩ Bi−1

1) \ {a}), which is thus also
((Ai1 ∩ Bi

1) \ {a}). But then either (i) a 6∈ Bi
1 or (ii) Supp(ξε1) ∪ {a} = Ai1 ⊆ (Ai1 ∩ Bi

1) ∪ {a}; which
implies that Ai1 ⊆ Bi

1. But in the first case we reject (in (Reject 5)) and in the second case we accept (in
(Accept 2)). This establishes the termination property.

The properties of the sets for loop invariant. We now present the associated properties of the sets Ai1, Ai2,
Bi

1, and Bi
2 to complete the inductive proof of the loop invariant.

1. The property of the set Ai2. We first argue that Ai2 has certain properties which will imply the key
properties for Ai2.

16

(a) Since LPre(s,W,U, ((Ai−1
1 ∩Bi−1

1) \ {a}), C) accepts, we have that Ai2 is a subset of C. There
exists a witness parametrized distribution ξε1, over ((Ai−1

1 ∩Bi−1
1)\{a}) such that for all a2 ∈ Ai2

we have that ξε1 and a2 satisfies Equation 1 (by Accept property a of LPre).

(b) Also for all a2 ∈ (C \Ai2) we have that Ma1,a2 6= W for all a1 ∈ Supp(ξε1) (Accept property b
of LPre).

(c) Notice also that for any action a2 ∈ C, if a distribution overAi−1
1 ∩Bi−1

1 cannot satisfy a2 using
Equation 1, then no distribution over (Ai−1

1 ∩ Bi−1
1) ∪ {a} can either, since Ma,a2 6= U (from

the definition of the set C) and hence U cannot be reached as long as the distribution plays
a. For an distribution ξ′1 to be a witness distribution, all actions in Γ2(s) must satisfy either
(i) Equation 1; or (ii) Equation 2; or (iii) Equation 3. But if an action a2 must satisfy either
Equation 2 or Equation 3, we must have that ξ′1 ensures that X is reached with probability 0
(i.e., Succ(s, ξ′1, a2) ⊆ X). Hence, since X ⊆ W we also must have that W is reached with
probability 0.

By Accept property d of LPre we have that, since Ai2 is returned by LPre, no a-large witness distribu-
tion ξ′1 can satisfy any action a2 in (C \Ai2) using Equation 1, while satisfying all actions in C using
Equation 1, or Equation 2, or Equation 3. Also, for all a2 in (C \Ai2) and all a1 ∈ Supp(ξε1) we have
that Ma1,a2 6= U (by Accept property b of LPre). Furthermore, by definition of C for all a2 ∈ C we
have that Ma,a2 6= U . Therefore we have established the following key properties for Ai2:

• Any a-large witness distribution ξ′1 must satisfy all actions a2 in (C\Ai2) using either Equation 2
or Equation 3.

• For all a2 ∈ (C \Ai2) and a1 ∈ Supp(ξε1) ∪ {a} = Ai1 we have that Ma1,a2 6= U .

2. The property of the setAi1. By accept property c of LPre and since we did not reject in Reject 1, the set
Ai1 is the largest set, such that for all a1 ∈ Ai1 there exists no a2 in (C\Ai2) withMa1,a2 = W . But this
means that any distribution that satisfies for all actions in (C \ Ai2) either Equation 2 or Equation 3,
must play only actions in Ai1. But from our description of Ai2 we obtain that all a-large witness
distributions must ensure that all actions in (C\Ai2) are satisfied using either Equation 2 or Equation 3.
Therefore we have established the following key property for Ai1: All a-large witness distributions
must play only actions in Ai1 with positive probability. This proves the required property 1 of the loop
invariant.

3. The property of the set Bi
2. From the first key property of Ai2 we have that any a-large witness

distribution must ensure that all actions in (C \Ai2) satisfy either Equation 2 or Equation 3. From the
second key property of Ai2, for all a1 ∈ Ai1 and all a2 ∈ (C \Ai2), we have that Ma1,a2 6= U . The key
property of Ai1 implies that any a-large witness distribution must play only actions in Ai1.

Hence, for an a-large witness distribution ξ′1, for all a2 in (C\Ai2) we must have that either (i)Ma,a2 =
Z1 (to satisfy Equation 3); or (ii) there is an action a1 in Ai1 such that Ma1,a2 = Y (to satisfy
Equation 2 — it would also be satisfied if Ma1,a2 = U but we know that Ma1,a2 6= U by Accept
property b of LPre). But that is precisely the definition of Bi

2 (Step 4 (c) of ALGOPRED). Therefore,
we have the following key property for Bi

2: Actions a2 in (C \ (Ai2 ∪ Bi
2)) cannot be satisfied by

Equation 1 or Equation 2 or Equation 3 by any a-large witness distribution.

4. The property of the set Bi
1. We know from the first key property of Ai2 that all actions in (C \ Ai2)

must satisfy Equation 2 or Equation 3. But to do so we must leaveX with probability 0. But Bi
1 is the

17

largest set of actions such that for all actions a1 in Bi
1 and for all actions a2 in (C \Ai2), we have that

Ma1,a2 6= W (Step 4 (b) of ALGOPRED). Hence we have that an a-large distribution that plays an
action in (Γ1(s) \ Bi

1) with positive probability violates both Equation 2 and Equation 3 for some a2

in (C \ Ai2). Therefore, we have the following key property for Bi
1: All a-large witness distributions

only plays actions in Bi
1. This also proves the required property 2 of the loop invariant.

This establishes the inductive proof of the loop invariant.

Lemma 3. For a given U ⊆ Y ⊆ Z ⊆ X ⊆ W , if Algorithm ALGOPRED rejects state s, then
s 6∈ LimAvgPre(W,U,X, Y, Z). Also, algorithm ALGOPRED accepts or rejects a choice of action a as
a candidate for the existence of a-large witness distributions at most min(|Γ1(s)|, |Γ2(s)|) iterations of the
inner loop.

Proof. In the algorithm there are five places where a choice of a might get rejected. We have already argued
the soundness of Reject 1. We prove the soundness of the other rejects below.

1. (Reject 2). If LPre(s,W,U, ((Ai−1
1 ∩Bi−1

1) \ {a}), C) is rejected, then for all actions a1 in ((Ai−1
1 ∩

Bi−1
1) \ {a}), there exists an action a2 in C such that Ma1,a2 = W , by the reject property of LPre.

But then consider any distribution ξ1 over ((Ai−1
1 ∩ Bi−1

1) \ {a}), some action a1 is played with
probability at least 1

m . Hence the action a2 such that Ma1,a2 = W , cannot be satisfied using neither
(i) Equation 1; nor (ii) Equation 2; nor (iii) Equation 3. The latter two because W is entered with
positive probability in one step and hence X is left with positive probability in one step. The first is
because we reach W with probability at least x = δmin

m and even if we reach U with probability 1−x,
we still do not satisfy Equation 1. Now consider some distribution ξ′1 over (Ai−1

1 ∩ Bi−1
1) ∪ {a}.

Either it plays a with probability 1 or not. If it does, then it cannot be a witness distribution, since
it otherwise would have been accepted in Accept 1. If it does not then the argument is similar to
the previous argument (in the case of Equation 1, the argument also uses that Ma,a2 6= U from the
definition of C). Hence no witness distribution exists that only uses actions in (Ai−1

1 ∩Bi−1
1) ∪ {a}.

Thus Reject 2 is a sound reject, by the loop invariant.

2. (Reject 3). If a is not accepted by Accept 1, then a could not be played with probability 1. For
Reject 3, the condition ((Ai1 ∩ Bi

1) \ {a}) = ∅ is satisfied. Thus no a-large witness distribution can
play anything but a by the loop invariant. Therefore no a-large witness distribution can exist in this
case. Thus, Reject 3 is a sound reject.

3. (Reject 4). Consider an a-large witness distribution ξε1. The key property ofBi
2 implies that any action

a2 ∈ (C \ (Ai2 ∪Bi
2)) cannot be satisfied using either of the equations. But since Bi

2 ⊆ (C \Ai2) we
must have that Bi

2 = (C \ Ai2) for any a-large witness distribution to exists. Therefore we can reject
the choice of a if (C \Ai2) 6= Bi

2. Hence Reject 4 is a sound reject.

4. (Reject 5). From the key property of the set Bi
1, we have that if a 6∈ Bi

1, then no a-large witness
distribution can play a with positive probability, which implies that no a-large witness distribution
can exist. Hence Reject 5 is also a sound reject.

Termination. We have already established (in ”monotonicity and termination for loop invariant”) that
(Ai1 ∩ Bi

1) ∪ {a} ⊆ (Ai−1
1 ∩ Bi−1

1) ∪ {a}, for all i > 0 and equality implies termination of the inner
loop in iteration i. Notice that this implies that for any choice of a the inner loop rejects a or finds a
distribution after at most |Γ1(s)| iterations. We will now show that Ai2 ⊆ Ai−1

2 , for all i > 0 and equality

18

implies termination in iteration i. Notice that this implies that for any choice of a the inner loop rejects a
or finds a distribution after at most |Γ2(s)| iterations. We have that Ai2 ⊆ Ai−1

2 , because ξε,i1 could also
be returned in iteration i − 1 and LPre maximizes the number of a1’s for which ξε,i1 (a1) > 0 (Accept
property c). Assume that Ai2 = Ai−1

2 . Then (C \ Ai2) = (C \ Ai−1
2) and thus Bi

1 = Bi−1
1 . We also have

that Ai1 ⊆ (Ai−1
1 ∩Bi−1

1)∪ {a}, thus implying that Ai1 ⊆ (Ai−1
1 ∩Bi

1)∪ {a}. Therefore Ai1 ⊆ Bi
1, since if

Bi
1 does not contain a, neither does Bi−1

1 and thus we would have rejected the choice of a in iteration i− 1,
because of (Reject 5). The desired result follows.

Lemma 4. Given U ⊆ Y ⊆ Z ⊆ X ⊆ W and a state s, ALGOPRED terminates in time O(|Γ1(s)|2 ·
|Γ2(s)|2 +

∑
a1∈Γ1(s),a2∈Γ2(s) |Supp(s, a1, a2)|). Alternatively, if M is given as input, the running time is

O(|Γ1(s)|2 · |Γ2(s)|2).

Proof. The calculation of M can be done in time
∑

a1∈Γ1(s),a2∈Γ2(s) |Supp(s, a1, a2)|. As mentioned in
the definition of M , we could alternatively use M as input to LPre since it encodes all information needed.
There are |Γ1(s)| different choices for which action a to play with high probability. Given a, there are at
most min(|Γ1(s)|, |Γ2(s)|) iterations of the inner loop, see Lemma 3. Each iteration of the inner loop can
be done in O(|Γ1(s)| · |Γ2(s)|) time, and is dominated by the running time of LPre, which runs in time
O(Γ1(s)| · |Γ2(s)|) on M , see [13]. Hence, if M is given as input we get a running time of O(|Γ1(s)| ·
min(|Γ1(s)|, |Γ2(s)|) · |Γ1(s)| · |Γ2(s)|), which is less than O(|Γ1(s)|2 · |Γ2(s)|2).

Combining Lemma 2, Lemma 3 and Lemma 4 we get the following lemma.

Lemma 5. The algorithm ALGOPRED, for a given state s and sets U ⊆ Y ⊆ Z ⊆ X ⊆
W , correctly computes if s ∈ LimAvgPre(W,U,X, Y, Z) and runs in time O(|Γ1(s)|2 · |Γ2(s)|2 +∑

a1∈Γ1(s),a2∈Γ2(s) |Supp(s, a1, a2)|).

3.2 Iterative algorithm for value 1 set computation

In this section we will present the nested iterative algorithm for the value 1 set computation. The nested
iterative algorithm is succinctly represented as the following nested fixpoint formula (µ-calculus formula)
that uses the LimAvgPre one-step predecessor operator. Let

W ∗ = νW.µU.νX.µY.νZ.LimAvgPre(W,U,X, Y, Z) .

We will show that W ∗ = val1(LimInfAvg,ΣF
1) (also see the appendix, Section 6, for an algorith-

mic description of computation of the µ-calculus formula). First in the next subsection we show that
W ∗ ⊆ val1(LimInfAvg,ΣS

1) ⊆ val1(LimInfAvg,ΣF
1); and in the following subsection will establish the

other inclusion.

3.2.1 First inclusion: W ∗ ⊆ val1(LimInfAvg,ΣS
1)

Let Θi denote the random variable for the reward at the i-th step of the game. We will show that for all states
s in W ∗ for all ε > 0, there exists a stationary (hence finite-memory) strategy σε1 for player 1 such that for
all positional strategies σ2 for player 2 we have that

lim
t→∞

∑t
i=0 E

σε1,σ2
s [Θi]

t
≥ 1− ε .

19

This will show that W ∗ ⊆ val1(LimInfAvg,ΣS
1) ⊆ val1(LimInfAvg,ΣF

1). Notice that the statement is
trivially satisfied if W ∗ = ∅, and hence we will assume that this is not so.

Computation of W ∗. We first analyze the computation of W ∗. Since W ∗ is a fixpoint, we can replace W
by W ∗ and get rid of the outer most ν operator, and the rest of the µ-calculus formula also computes W ∗.
In other words, we have

W ∗ = µU.νX.µY.νZ.LimAvgPre(W ∗, U,X, Y, Z) ,

Thus the computation of W ∗ is achieved as follows: U0 is the empty set; and Ui =
νX.µY.νZ.LimAvgPre(W ∗, Ui−1, X, Y, Z), for i ≥ 1. Let ` be the least index such that U` = W ∗. For any
i ≥ 0, we also have that Yi,0 is the empty set and that Yi,j = νZ.LimAvgPre(W ∗, Ui−1, Ui, Yi,j−1, Z), for
j ≥ 1. For a state s ∈ W ∗, let the rank of state s (denoted rk(s) = (i, j)) be the tuple of (i, j) such that i is
the least index with s ∈ Ui (i.e., s ∈ Ui \Ui−1); and j is the least index with s ∈ Yi,j (i.e., s ∈ Yi,j \Yi,j−1).
For 1 ≤ i ≤ `, let rk(i) = j be the least index when the fix point converges for Ui, i.e., the least j such that
Yi,j = Yi,j+1. By definition of W ∗, for all states s ∈ W ∗, if rk(s) = (i, j), then we must have that for all
ε > 0 there is a distribution ξε1 over Γ1(s) such that for all actions a2 ∈ Γ2(s) for player 2 we have that(

ε · δ(s, ξε1, a2)(Ui−1) > δ(s, ξε1, a2)(W
∗
)
)

(4)

∨
(
δ(s, ξε1, a2)(Ui) = 1 ∧ δ(s, ξε1, a2)(Yi,j−1) > 0

)
(5)

∨
(
δ(s, ξε1, a2)(Ui) = 1 ∧ ExpRew(s, ξε1, a2) ≥ 1− ε ∧ δ(s, ξε1, a2)(Yi,j) ≥ 1− ε

)
; (6)

where W ∗ = S \ W ∗ is the complement of W ∗. We refer to the above as Equation 4, Equation 5, and
Equation 6, respectively.

The construction of stationary witness strategy σε1. Fix 0 < ε < 1
2 . The desired witness stationary

strategy σε1 will be constructed from a finite sequence of stationary strategies,

σε,1,01 , σε,1,11 , . . . , σ
ε,1,rk(1)
1 , σε,2,01 , . . . , σ

ε,2,rk(2)
1 , . . . , σε,`,01 , . . . , σ

ε,`,rk(`)
1 .

The strategies will be constructed inductively. First we will construct it for states in U1 and (U` \U`−1), and
then we will present the inductive construction for (Ui \ Ui−1), for 2 ≤ i ≤ `− 1.

• (Base case). We will first describe the construction of the strategy σε,1,01 (resp. σε,`,01).

1. The stationary strategy σε,1,01 (resp. σε,`,01) is arbitrary except for states in (Y1,rk(1) \ Y1,rk(1)−1)
(resp. (Y`,rk(`) \ Y`,rk(`)−1)).

2. For states s in (Y1,rk(1)\Y1,rk(1)−1) (resp. (Y`,rk(`)\Y`,rk(`)−1)) the strategy plays the distribution
ξη1 over Γ1(s), for η = ε

2 .

3. We next describe the construction of the strategy σε,1,j1 (resp. σε,`,j1), for j ≥ 1, using induction
in j.

(a) The strategy σε,1,j1 (resp. σε,`,j1) plays as σε,1,j−1
1 (resp. σε,`,j−1

1) except for states in
(Y1,rk(1)−j \ Y1,rk(1)−(j+1)) (resp. (Y`,rk(`)−j \ Y`,rk(`)−(j+1))).

(b) For states s in (Y1,rk(1)−j \ Y1,rk(1)−(j+1)) (resp. (Y`,rk(`)−j \ Y`,rk(`)−(j+1))) the strategy

plays the distribution ξη1 over Γ1(s), for η =
(
ε·δmin

4

)(2m)j

.

20

• (Inductive case). We will next construct the strategy for the remaining states, in two steps, first for
σε,i,01 and then for σε,i,j1 , for 2 ≤ i ≤ `− 1 and j ≥ 1. We will do so using induction backwards in i.
That is the base case is i = ` and we then proceed downward.

1. The strategy σε,i,01 plays as the strategy ση,i+1,rk(i+1)
1 , for η =

(
ε·δmin

4

)(2m)rk(i)

, except for states
in (Yi,rk(i) \ Yi,rk(i)−1).

2. For states s in Yi,rk(i) \ Yi,rk(i)−1 the strategy plays ξη1 over Γ1(s), for η = ε
2 .

3. We now finally construct σε,i,j1 , for 2 ≤ i ≤ `− 1, using induction in j.

(a) The strategy σε,i,j1 plays as σε,i,j−1
1 except for states in (Yi,rk(i)−j \ Yi,rk(i)−(j+1)).

(b) For states s in (Yi,rk(i)−j \ Yi,rk(i)−(j+1)) the strategy plays ξη1 over Γ1(s), for η =(
ε·δmin

4

)(2m)j

.

• (The entire strategy). Let σε,i1 = σ
ε,i,rk(i)
1 for all i. Let σε1 play as σβ,11 in U1 and σβ,21 , for β = ε

2 , in
the remaining states.

Lemma 6. The patience of σε,i1 (s) for states s of rank (i, rk(i)− j) is at most
(
ε·δmin

4

)−(
(2m)j+1

2
−1)

.

Proof. By construction, the patience σε,i1 (s) of states s of rank (i, rk(i)) is
(
ε·δmin

4

)−(m−1)
(by Lemma 2).

Also for j ≥ 1, the patience σε,i1 (s) of states s of rank (i, rk(i)− j) is at most
(
ε·δmin

4

)(2m)j

· δmin

2

−(m−1)

=

(
ε · δmin

4

)−(2m)j ·(m−1)

·
(
δmin

2

)−(m−1)

=

(
ε · δmin

4

)−(2m)j ·(m−1)

·
(
δmin

2

)−m
·
(
δmin

2

)
=

(
ε · δmin

4

)−(2m)j ·m
·
(
ε · δmin

4

)(2m)j

·
(
δmin

2

)−m
·
(
δmin

2

)
≤
(
ε · δmin

4

)−(2m)j ·m
·
(
ε · δmin

4

)

=

(
ε · δmin

4

)−(
(2m)j+1

2
−1)

,

where the inequality is as follows:
(
ε·δmin

4

)(2m)j

·
(
δmin

2

)−m
=
(
ε
2

)(2m)j ·
(
δmin

2

)(2m)j

·
(
δmin

2

)−m
≤ ε

2

since (2m)j ≥ m ≥ 1 and ε < 1. The desired result follows.

Lemma 7. Let 0 < ε < 1
2 be given. The patience of the witness stationary strategy σε1 is less than(

ε·δmin
4

)−(2m)n

.

21

Proof. We first present the bound for U1 (also U2) and then for other states.
The patience of σε,11 for states in U1 (also similar for U2). For each state s in U1, the corresponding

distribution σε,11 (s) has patience at most
(
ε·δmin

4

)−(
(2m)rk(1)

2
−1)

, since no states are in Y1,0. Similarly for s in

U2 and the corresponding distribution σε,11 (s).

The η for which the strategy σε,21 follows ση,i1 : Inductive statement. We will argue using induction that
for each state S ∈ (W ∗ \ Ui−1), for i ≥ 3, we have that the strategy σε,21 follows the strategy ση,i1 , for

η ≥
(
ε · δmin

4

)∑i−1
k=2

∏i−1
k′=k(2m)rk(k

′)

.

Base case. For each state s ∈ (S \U2), the strategy σε,21 follows the strategy ση,31 , for η ≥
(
ε·δmin

4

)(2m)rk(2)

,
by construction, which is the wanted expression.
Induction case i + 1. For i ≥ 4, for each state s ∈ (S \ Ui−1), the strategy σε,21 follows the strategy ση,i1 ,

for η ≥
(
ε·δmin

4

)∑i−1
k=2

∏i−1
k′=k(2m)rk(k

′)

, by induction. In each state s ∈ (S \ Ui), the strategy ση,i1 follows the

strategy ση
′,i+1

1 , for η′ ≥
(
η·δmin

4

)(2m)rk(i)

, by construction. Thus, the strategy σε,21 follows ση
′,i+1

1 for

η′ ≥
(
η · δmin

4

)(2m)rk(i)

≥

(
ε·δmin

4

)∑i−1
k=2

∏i−1
k′=k(2m)rk(k

′)

· δmin

4

(2m)rk(i)

≥

(ε · δmin

4

)1+
∑i−1
k=2

∏i−1
k′=k(2m)rk(k

′)
(2m)rk(i)

=

(
ε · δmin

4

)∑i
k=2

∏i
k′=k(2m)rk(k

′)

.

The first inequality comes from our preceding explanation. The second inequality uses the inductive hy-
pothesis. The third uses that δmin

4 > ε·δmin
4 . The last equality is the inductive hypothesis for i+1 and follows

from

(2m)rk(i) + (2m)rk(i) ·
i−1∑
k=2

i−1∏
k′=k

(2m)rk(k′) = (2m)rk(i) +
i−1∑
k=2

i∏
k′=k

(2m)rk(k′)

=

i∑
k=2

i∏
k′=k

(2m)rk(k′) .

Patience of σε,21 (s) for states in Ui, for i ≥ 3. We see that for i ≥ 3 and for each s in Ui we have that

ση,i1 (s) follows ξη
′

1 for η′ ≥
(
η·δmin

4

)(2m)rk(i)−1

(since Yi,0 is empty), by construction. Hence, we get that

22

σε,21 (s) = ξη
′

1 for η′ ≥
(
ε·δmin

4

)∑i
k=2

∏i
k′=k(2m)rk(k

′)

2m , using a similar argument as the one used in the inductive

case. Since rk(i) ≥ 1 and m ≥ 1, we see that each term in the sum
∑i

k=2

∏i
k′=k(2m)rk(k′) is at least twice

as large as the following. Thus, we have that

i∑
k=2

i∏
k′=k

(2m)rk(k′) < 2 ·
i∏

k′=2

(2m)rk(k′) = 2 · (2m)
∑i
k′=2 rk(k′) ≤ 2 · (2m)n−1 ≤ (2m)n .

The first inequality is because U1 must contain at least 1 state. The second comes from m ≥ 1. Hence,

η′ ≥
(
ε·δmin

4

)(2m)n−1

. Using an argument similar to the one used to prove Lemma 6, we get that the patience

for ξη
′

1 is then at most
(
ε·δmin

4

)−(
(2m)n

2
−1)

.

Patience of σε1. We now need to consider the strategy σε1. It follows σβ,11 in U1 and σβ,21 elsewhere, for
β = ε

2 , We see that

(
β · δmin

4

)−(
(2m)n

2
−1)

=

(
ε · δmin

8

)−(
(2m)n

2
−1)

<

(
ε · δmin

4

)−(2m)n

The inequality is because 42 = 16 > 8 (and the last expression more than squares the preceding). This
completes the proof.

Basic overview of the proof. We first present the basic overview of the proof. Let σ1 be a stationary strategy
that follows distribution ξη1 over Γ1(s) in state s ∈ W ∗ for some η > 0 and let σ2 be a positional counter-
strategy for player 2. For state s in W ∗, σ1(s) and σ2(s) satisfies at least one of Equation 4, Equation 5, or
Equation 6 in s. Let Cσ1,σ21 ⊆ W ∗ (resp. Cσ1,σ22 ⊆ W ∗ and Cσ1,σ23 ⊆ W ∗) be the set of states in W ∗ that
satisfies Equation 4 (resp. Equation 5 and Equation 6). We will prove that σε1 ensures value at least 1− ε for
each states s in W ∗. We will split the proof into four parts, first we will show some properties for states in
U1, then for states in U` \ U`−1, and finally for states in Ui \ Ui−1 for 2 ≤ i ≤ `− 1. In the fourth part, we
will then combine the three properties to establish the desired result. The three properties are as follows

• (Property 1). For all states s in U1 we will show that σε,11 ensures Safe(U1) with probability 1 and

mean-payoff at least 1 − ε (i.e., for all positional strategies σ2 we have limt→∞
∑t
i=0 E

σ
ε,1
1 ,σ2
s [Θi]
t ≥

1− ε).

• (Property 2). For all states s in (U` \ U`−1) we will show that σε,`1 ensures that against all positional
strategies σ2 we have that

1. given the event Safe(U` \ U`−1), the mean-payoff is at least 1− ε;

2. Pr
σε,`1 ,σ2
s (Safe(U` \ U`−1) ∪ Reach(U`−1 ∪W

∗
)) = 1; and

3. Pr
σε,`1 ,σ2
s (Safe(U` \ U`−1) ∪ Reach(U`−1)) ≥ 1− ε.

23

• (Property 3). For all states s in (U` \U`−(i+1)), for 1 ≤ i ≤ `− 2, we will show that σε,i1 ensures that
against all positional strategies σ2 we have that

1. given the event
⋃
j≤i coBuchi(U`−j \ U`−(j+1)), the mean-payoff is at least 1− ε;

2. Pr
σε,`−i1 ,σ2
s (

⋃
j≤i coBuchi(U`−j \ U`−(j+1)) ∪ Reach(U`−(i+1) ∪W

∗
)) = 1; and

3. Pr
σε,`−i1 ,σ2
s (

⋃
j≤i coBuchi(U`−j \ U`−(j+1)) ∪ Reach(U`−(i+1))) ≥ 1− ε.

In Lemma 8, Lemma 9, and Lemma 12 we establish Properties 1, 2, and 3, respectively. We first present the
basic intuition of the proof of Lemma 8.
The basic intuition of Lemma 8. The key idea of the proof is as follows. Once we fix the strategies for both
the players we have a Markov chain. Let C2 and C3 denote the set of states in U1 that satisfy Equation 5 and
Equation 6, respectively. Since U0 is empty, no state in U1 can satisfy Equation 4. For states s in C2 of rank
(1, j), the fact that Equation 5 is satisfied ensures that a state of rank (1, j′), for j′ < j, is visited from s
with positive probability. Let pat(j) denote the patience of the strategy σε,11 for states of rank (1, rk(1)− j).
We now consider the following case analysis.

1. First we consider the set of states in (Y1,rk(1) \Y1,rk(1)−1) and show that if we stay in the set (Y1,rk(1) \
Y1,rk(1)−1), then the mean-payoff is at least 1− ε. The argument is as follows: By Markov property 5,
we must reach a recurrent class with probability 1. A recurrent class contained in (Y1,rk(1)\Y1,rk(1)−1)
must consist of only states in C3 (since from states in C2 we reach lower rank states with positive
probability), and since Equation 6 is satisfied for states in C3 it follows that the mean-payoff value is
at least 1− ε. Hence, if we have a recurrent class of the Markov chain contained in (U1 \Y1,rk(1)−1) =
(Y1,rk(1) \ Y1,rk(1)−1), then the mean-payoff of the recurrent class is at least 1− ε. This completes the
argument. Also, if the set (Y1,rk(1) \Y1,rk(1)−1) is left, then we can bound the number of visits to states
in C2 (and in the worst case each such visit gives reward 0) in expectation encountered before leaving
the set (Y1,rk(1) \ Y1,rk(1)−1). This bound on the number of visits in expectation to C2 (which we say
has not been accounted for by visits to C3) is κ(0) = (δmin)−1 · pat(0). There is an illustration of this
base case in Figure 6.

2. Now we consider that we are at some intermediate part of the computation, i.e., in some state in
(Y1,rk(1)−j \ Y1,rk(1)−(j+1)), for j ≥ 1. Inductively we have an upper bound κ(j) on the number of
times that states inC2 were visited (in the worst case each such visit gives reward 0) in expectation that
has not been accounted for by visits to states inC3 till we reach the set (Y1,rk(1)−j\Y1,rk(1)−(j+1)) from
any state in Y1,rk(1)−j+1. The one-step probability distribution ξη1 is chosen such that η · κ(j) ≤ ε.
In other words, η decreases rapidly as i increases, and the small η ensures that if the play stays
in (U1 \ Y1,rk(1)−(j+1)), then the mean-payoff is at least 1 − ε, i.e., if we have a recurrent class L
contained in (U1 \ Y1,rk(1)−(j+1)) and (L∩ Y1,rk(1)−j) is non-empty, then all states in (L∩ Y1,rk(1)−j)
belong to C3, and the mean-payoff of the recurrent class is at least 1− ε. Moreover, we can also upper
bound the number of visits to states in C2 in expectation that has not been accounted for by visits
to states in C3 before reaching the set Y1,rk(1)−(j+1) if we leave (U1 \ Y1,rk(1)−(j+1)) by κ(j + 1) =
(κ(j) + 1) · (δmin)−1 · pat(j), and then proceed inductively. There is an illustration of this inductive
case in Figure 7.

Lemma 8. (Property 1). Let 0 < ε < 1
2 . The strategy σε,11 ensures that for all s ∈ U1 and all positional

strategies σ2 for player 2 we have Pr
σε,11 ,σ2
s (Safe(U1)) = 1 and limt→∞

∑t
i=0 E

σ
ε,1
1 ,σ2
s [Θi]
t ≥ 1− ε.

24

w2
Pr = δmin · ε

Pr = 1− δmin · ε

w3

Pr = 1− ε,r = 1

Pr = ε

Y1,rk(1) = U1
Y1,rk(1)−1

Figure 6: Pictorial illustration of the intuitive explanation of the base case of Lemma 8.

w2

Pr = η Pr = 1− η

w3

Pr = 1− η
r = 1

Pr = η

κ(i)× (#C2)

Y1,rk(1)−i
Y1,rk(1)−(i+1)

U1

Figure 7: Pictorial illustration of the intuitive explanation of the inductive case of Lemma 8.

25

Proof. Given σε,11 , let σ2 be an arbitrary positional counter-strategy for player 2. Let Cσ
ε,1
1 ,σ2

i ∩ U1 = Ci,
i.e., given σε,11 and σ2, we have that C1, C2, C3 are the set of states of U1 that satisfy Equation 4, Equation 5,
Equation 6, respectively. Notice that since U0 is the empty set we have that C1 is also empty. Therefore we
cannot leave U1 if player 1 follows σε,11 (because both Equation 5 and Equation 6 require that we stay in
U1). This ensures that Safe(U1) is satisfied with probability 1. We now focus on the mean-payoff.

Basic notations. Let us consider the Markov chain obtained given σε,11 and σ2. For a state s ∈ U1, let the
rank of s be rk(s) = (1, j), and then we denote j by rk2(s) (the second component of the rank). Given a
play P in the Markov chain, and a number t ∈ N, let r̃(P, t) be the expected number of times we get reward
0 in the first t steps of P . This implies that r̃(P, 0) = 0. For each state s ∈ U1, let P js be (a prefix of)
a play in the Markov chain, which ends if a state in Y1,j is reached after the starting point s (i.e., the play
does not end at s if s ∈ Y1,j), and if Y1,j is not reached, then the walk does not end. We will also use the

following notations: for 0 ≤ j ≤ rk(1) − 1, let us denote by κ(j + 1) = ε
2 ·
(
ε·δmin

4

)−(2m)j+1

; and let

pat(j) =
(
ε·δmin

4

)−(
(2m)j+1

2
−1)

, the patience of σε,11 for states in U1 of rank (1, rk(1)− j) (by Lemma 6).

Using recurrent class property. First, observe that since Y1,0 is the empty set, the set Y1,0 can never be
reached, and hence P 0

s represents the entire play from the start state s, for s ∈ U1. By Markov property 5
in the Markov chain, the recurrent classes are reached in a finite number of steps with probability 1, and
given a recurrent class L is reached, every state in L is reached with probability 1 in a finite number of steps.
Given a recurrent class L in U1, and consider a state s∗ in L that has the maximum rank among states in
L (i.e., rk2(s∗) = maxs′∈L rk2(s′)). Then all states visited after s∗ has rank at most the rank of s∗. Hence
every play P 0

s with probability 1, after finitely many steps reaches a state s∗ such that all states s′ visited
after s∗ satisfy that rk2(s′) ≥ rk2(s∗). Since the mean-payoff is invariant under finite prefixes, we only need
to obtain bounds for the mean-payoff of P rk(s∗)−1

s∗ (and this play has infinite length by definition as no state
with smaller rank is reached in the Markov chain after s∗).

Inductive proof statement. We will show, inductively, that for all 0 ≤ j ≤ rk(1), all t ≥ 1, and all states
s ∈ U1, if rk2(s) = rk(1)− j, then

r̃(P rk2(s)−1
s , t) ≤ t · ε+

κ(j + 1)

2
= t · ε+

ε

4
·
(
ε · δmin

4

)−(2m)j+1

This will imply the desired result, since then the mean-payoff of P rk2(s∗)−1
s∗ is at least 1 − ε: the play

P
rk2(s∗)−1
s∗ has infinite length and therefore the expected number of reward 1’s must be t− r̃(P rk2(s∗)−1

s∗ , t)

in the first t steps for all t, because all rewards are either 0 or 1, and hence the mean-payoff of P rk2(s∗)−1
s∗ is

inft→∞
t−r̃(P rk2(s

∗)−1

s∗ ,t)

t ≥ 1− ε.

Splitting the play. Consider a play P rk2(s)−1
s for s ∈ U1. We will split up the play P rk2(s)−1

s into a (possible
infinite) sequence of rank preserving plays (P

rk2(si)
si)i≥0, such that s0 = s, and for i ≥ 0, the play P rk2(si)

si

ends in state si+1 (which is formally a random variable and must be such that rk2(si) = rk2(si+1) by
definition of P rk2(si)

si and since if a state of lower rank than rk2(s) is reached, then the play P rk2(s)−1
s ends).

In other words, the next play begins where the previous play ends, and all the starting points of the play
has the same rank. Similarly, we will split up plays P js , for 0 ≤ j < rk2(s), into a finite sequence of rank
decreasing plays (P

rk2(si)−1
si)i≥0, such that s0 = s, and for i ≥ 0, the play P rk2(si)−1

si ends in state si+1

(which must be such that rk2(si) > rk2(si+1) > j). Note that since the play sequence is decreasing, the

26

Y1,rk(s0)−1 Y1,rk(s0) Y` = U1

Steps

s0

s1

s2

Figure 8: Pictorial illustration of a play P rk(s0)−1
s0 split into a finite sequence

(
P

rk(si)
si

)
i≥0

of rank preserv-

ing plays. Straight line segments indicate that all states are shown on them, while non-straight segements
indicate that there might be states which are not shown.

sequence of plays is finite and the length of the sequence is at most rk2(s)− j. Pictorial illustrations of rank
preserving (both when the sequence is finite and infinite) and rank decreasing plays are given in Figure 8,
Figure 9, and Figure 10, respectively.
(Base case). We first consider the base case, where j = 0, i.e., we consider s such that rk2(s) = rk(1).
Consider the rank preserving split up of the play P rk2(s)−1

s into the sequence of plays (P
rk2(si)
si)i≥0, men-

tioned above. As already mentioned, safety in U1 = Y1,rk(1) is guaranteed, and hence each play P rk2(si)
si has

length 1. We will consider r̃(P rk2(s′)
s′ , t), for all s′ such that rk(s′) = rk(s). We will now split the proof into

the following two cases: (1) s′ ∈ C2; and (2) s′ ∈ C3; (as already argued at the start of the proof of this
lemma, the set C1 is empty).

1. In each state s′ in (C2 ∩ (Y1,rk(1) \ Y1,rk(1)−1)) we reach a state s′′ of rank rk2(s′′) = rk2(s) − 1 in

the next step with probability at least
(
ε·δmin

4

)m−1
· δmin = 4

ε ·
(
ε·δmin

4

)m
(since

(
ε·δmin

4

)−(m−1)
is

an upper bound on the patience of states of rank (1, rk(1)) in σε,11 by Lemma 6), otherwise we reach

a state of rank rk(s). Hence the expected number of visits to states in C2 is at most ε
4 ·
(
ε·δmin

4

)−m
before we reach Y1,rk(1)−1. In the worst case we get a reward of 0 in each such step.

2. In each step we are in state s′ in (C3 ∩ (Y1,rk(1) \Y1,rk(1)−1)) we get reward 1 with probability at least
1− ε (by Equation 6).

For the play P rk2(s)−1
s = (P

rk2(si)
si)i≥0, the expected number of indices i such that si ∈ C2 is at most

ε
4 ·
(
ε·δmin

4

)−m
(by the first item above). The remaining (in the worst case, at least t − ε

4 ·
(
ε·δmin

4

)−m
in

27

Y1,rk(s0)−1 Y1,rk(s0) Y` = U1

Steps

s0

s1

s2

...

Figure 9: Pictorial illustration of a play P rk(s)−1
s0 split into an infinite sequence

(
P

rk(si)
si

)
i≥0

of rank pre-

serving plays. Note that the last play could be infinite (which is not pictorially illustrated). Straight line
segments indicate that all states are shown on them, while non-straight segements indicate that there might
be states which are not shown.

Y1,`−j Y1,rk(si)−2 Yrk(si)−1 Yrk(si) Y` = U1

Steps

s0

si

si+1

Figure 10: Pictorial illustration of a play P `−js0 split into a (always finite) sequence
(
P

rk(si)−1
si

)
i≥0

of rank

decreasing plays. Note that the last play could be infinite (which is not pictorially illustrated). Straight line
segments indicate that all states are shown on them, while non-straight segements indicate that there might
be states which are not shown.

28

expectation) indices i′ are such that si′ ∈ C3, for which the expected reward is at least 1− ε (by the second
item above). Thus we have

r̃(P rk(s)−1
s , t) ≤ t · ε+

ε

4
·
(
ε · δmin

4

)−m
≤ t · ε+

ε

4
·
(
ε · δmin

4

)−2m

= t · ε+
κ(1)

2
,

as desired.
(Inductive case). We now consider the inductive case for j ≥ 1, i.e., we now consider s such that rk2(s) =

rk(1) − j. Consider the rank preserving split of the play P rk2(s)−1
s as (P

rk2(si)
si)i≥0 as explained before the

base case. We will consider r̃(P rk2(s′)
s′ , t), for all s′ with rk(s′) = rk(s). As in the base case, we will split

the proof into the two cases: (1) s′ ∈ C2; and (2) s′ ∈ C3; (and recall C1 is empty). Before we consider the
case analysis, we first present the use of the inductive hypothesis.
Use of inductive hypothesis. The inductive hypothesis will be used in the same way for both cases in the
case analysis. Let t ∈ N be given. For all states s′′ ∈ U1 such that rk2(s′′) > rk2(s) = rk(1) − j, we will
use the inductive hypothesis to upper bound r̃(P rk(1)−j

s′′ , t). Consider the rank decreasing split of P rk(1)−j
s′′

as (P
rk2(s′i)−1

s′i
)i≥0. There are most j such plays in the sequence, one for each rank strictly higher than

rk(1)− j. We only argue about the worst case, and in the worst case, s′i is such that rk2(s′i) = rk(1)− i. Let
ti be the random variable indicating the number of steps among the first t steps such that P rk(1)−j

s′′ is exactly

P
rk2(s′i)−1

s′i
. We see that r̃(P rk(1)−j

s′′ , t) =
∑j−1

i=0 r̃(P
rk2(s′i)−1

s′i
, ti). By the inductive hypothesis we have that

r̃(P
rk(s′i)−1

s′i
, t′) ≤ t′ · ε+ κ(i+1)

2 for each t′ ≥ 1. Thus, we get that

r̃(P
rk(1)−j
s′′ , t) =

j−1∑
i=0

r̃(P
rk(s′i)−1

s′i
, ti) ≤

j−1∑
i=0

(
ti · ε+

κ(i+ 1)

2

)
≤ t · ε+ κ(j)

The first inequality is the inductive hypothesis, and we now argue that
∑j−1

i=0
κ(i+1)

2 ≤ κ(j). We have

j−1∑
i=0

κ(i+ 1)

2
=
ε

4
·
j−1∑
i=0

(
ε · δmin

4

)−(2m)i+1

≤ ε

2
·
(
ε · δmin

4

)−(2m)j

= κ(j) ,

because each term of the sum is over 4 times as large as the preceding (because (2m)i+1 ≥ 1 + (2m)i, for
m ≥ 2 and i ≥ 0 and the factor of 4) and thus, the last term is over 2 times larger than the sum of all the
other terms (we just use that it is larger). We now consider the case analysis.

• (States in C2). In this case we consider r̃(P rk2(s′)
s′ , t), for s′ ∈ C2, such that rk(s′) = rk(s). We

know that σε,11 , has patience pat(j) for states s′′ ∈ U1 such that rk2(s′′) = rk2(s) = rk(1) − j (from
Lemma 6). In expectation the play P rk2(s)−1

s is therefore in a state s′′ in C2 such that rk(s′′) = rk(s)
at most pat(j) · (δmin)−1 times before reaching a state with lower rank (i.e., before the play ends). If
the play does not end, whenever we have been in C2, we reach some state s′′ in U1 (as safety to U1 is
guaranteed). Also, in the worst case we get a reward of 0 in the every step we are in a state of rank
rk2(s) in C2. There are two sub-cases. Either rk2(s′′) = rk2(s) or rk2(s′′) > rk2(s) (because if the
rank is lower the walk ends). In the first sub-case the play P rk2(s′)

s′ has length 1. In the other case, we
have already given an upper bound on r̃(P rk(1)−j

s′′ , t′), for all t′ ≥ 1, using the inductive hypothesis.
We therefore have that

r̃(P
rk(s′)
s′ , t) ≤ 1 + r̃(P

rk(1)−j
s′′ , t− 1) ≤ 1 + (t− 1) · ε+κ(j) = t · ε+ (1− ε) +κ(j) ≤ t · ε+ 2 ·κ(j)

29

where we have just explained the first inequality. The second inequality is our use of the inductive

hypothesis as previously explained. The last inequality uses that κ(j) = ε
2 ·
(
ε·δmin

4

)−(2m)j

> 8 > 1

(since 4(2m)j ≥ 16 and hence
(
ε·δmin

4

)−(2m)j

≥ 16
ε for i,m ≥ 1) and 1− ε < 1.

• (States in C3). In this case we consider r̃(P rk2(s′)
s′ , t), for s′ ∈ C3, such that rk(s′) = rk(s). By

construction, the strategy σε,11 plays the distribution ξη1 over Γ1(s′), for η =
(
ε·δmin

4

)(2m)j

= ε
2 ·

1
κ(j) .

For the play P rk2(s′)
s′ , the next state s1 after the start state s′ is in U1 with probability 1; the reward

is 1 with probability at least 1 − η, and as well s′ ∈ Y1,rk(1)−i with probability at least 1 − η (since

Equation 6 is ensured). With the remaining probability of at most η, the play P rk2(s′)
s′ goes to a state

s′′ in U1. As before the worst case (for the proof) is that with the remaining probability of at most η
the state s′′ is such that rk2(s′′) > rk2(s), for which we have a upper bound by inductive hypothesis
on r̃(P rk(1)−i

s′′ , t′), for all t′ ≥ 1. Thus we have that

r̃(P
rk2(s′)
s′ , t) ≤ η + η · r̃(P rk(1)−i

s′′ , t− 1) ≤ η + η · ((t− 1) · ε+ κ(j))

= η + (t− 1) · η · ε+
ε

2
≤ η + (t− 1) · ε+

ε

2
≤ t · ε .

The first inequality is by the preceding explanation. The second inequality uses the inductive hypoth-
esis as previously described. In the first equality, we use that by definition we have η · κ(j) = ε

2 . In
the third inequality we use that η · ε ≤ ε since η ≤ 1 and t ≥ 1; and the final inequality uses that since
η ≤ ε

4 we have η + ε
2 < ε and η · ε < ε, for ε < 1; for i,m ≥ 1 which ensures η ≤ ε

4 .

We now combine the above case analysis to establish the inductive proof. We will now consider
r̃(P

rk2(s)−1
s , t) and our rank preserving split (P

rk2(si)
si)i≥0 of P rk2(s)−1

s . For all i ≥ 0, let ti be the ran-
dom variable indicating the number of steps P rk2(s)−1

s is exactly P rk2(si)
si among the first t steps of P rk2(si)

si .
We see that r̃(P rk2(s)−1

s , t) =
∑k

i=0 r̃(P
rk2(si)
si , ti) (the random variable k indicates the highest index such

30

that tk ≥ 1, implying that ti ≥ 1 for 0 ≤ i ≤ k). Hence, we have that

r̃(P rk2(s)−1
s , t) =

k∑
i=0

r̃(P rk2(si)
si , ti)

=
∑

si∈C2, i≤k
r̃(P rk2(si)

si , ti) +
∑

si∈C3, i≤k
r̃(P rk2(si)

si , ti)

≤
∑

si∈C2, i≤k
(ti · ε+ 2 · κ(j)) +

∑
si∈C3, i≤k

(ti · ε)

=
k∑
i=0

(ti · ε) +
∑

si∈C2, i≤k
(2 · κ(j))

≤ t · ε+ pat(j) · (δmin)−1 · 2 · κ(j)

= t · ε+ (δmin)−1 · ε ·
(
ε · δmin

4

)−(
(2m)j+1

2
−1+(2m)j)

≤ t · ε+ (δmin)−1 · ε ·
(
ε · δmin

4

)−((2m)j+1−1)

≤ t · ε+
ε

4
·
(
ε · δmin

4

)−(2m)j+1

= t · ε+
κ(j + 1)

2
.

The first equality follows from our preceding explanation. The first inequality uses our bound on
r̃(P

rk2(si)
si , ti) from the respective items above, depending on whether si ∈ C2 or si ∈ C3. The second

inequality uses that there are at most pat(j) · (δmin)−1 indices i such that si ∈ C2, from the first item above,
and that t =

∑k
i=0 ti. The third inequality uses that (2m)j ≤ (2m)j+1

2 for m ≥ 2 and j ≥ 1. The last
follows from ε·δmin

4 < δmin
4 and gives the expression we required to establish our inductive claim for j.

This completes the inductive proof and gives us the desired result.

The combinatorial property established in Lemma 8. The proof of Lemma 8 shows that the strategy
σε,11 against all positional counter-strategies of the opponent ensures that in the resulting Markov chain all
recurrent classes that intersect with U1 are contained in U1, all states in U1 have successors only in U1; (i.e.,
the recurrent classes in U1 are reached with probability 1 from all states in U1); and in every recurrent class
in U1 the mean-payoff value is at least 1− ε.

Lemma 9. (Property 2). Let 0 < ε < 1
2 . The strategy σε,`1 ensures that against all positional strategies σ2

for all states s ∈ (U` \ U`−1) we have that

1. given the event Safe(U` \ U`−1), the mean-payoff is at least 1− ε;

2. Pr
σε,`1 ,σ2
s (Safe(U` \ U`−1) ∪ Reach(U`−1 ∪W

∗
)) = 1; and

3. Pr
σε,`1 ,σ2
s (Safe(U` \ U`−1) ∪ Reach(U`−1)) ≥ 1− ε.

31

Proof. Given σε,`1 , let σ2 be an arbitrary positional counter-strategy for player 2. We see that σε,`1 is stationary

and follows the distribution ξη over Γ1(s) for some 0 < η < ε in state s ∈ (W ∗ \U`−1). Let Cσ
ε,`
1 ,σ2

i = Ci,
i.e., given σε,`1 and σ2, we have that C1, C2, C3 are the set of states of (U` \ U`−1) that satisfy Equation 4,
Equation 5, Equation 6, respectively. LetRS be the set of states in (U`\U`−1), from which (C1∩(U`\U`−1))

is not reachable in the Markov chain (i.e., in the graph of the Markov chain given σε,`1 and σ2, the set RS is
the set of states in (U` \ U`−1) from which no state in (C1 ∩ (U` \ U`−1)) is reachable). Equivalently, RS
is the set from which (U`−1 ∪W

∗
) cannot be reached (the definitions are equivalent, because, from each

state s in (U` \ U`−1) = (S \ (U`−1 ∪W
∗
)), the set (U`−1 ∪W

∗
) can be reached in one-step iff s ∈ C1).

Consider now the segment of the play from state s in (U` \ U`−1) till the play leaves (U` \ U`−1).

1. First we consider the case when s ∈ RS . This corresponds to the proof of correctness for states in
U1 (note that in the correctness proof of U1 the set C1 was empty; and if C1 is not reached, then the
proof is identical to Lemma 8, by construction of the strategy). Hence we have that Safe(U` \ U`−1)
is ensured with probability 1 (because (U` \ U`−1) can only be left from states in C1 ∩ (U` \ U`−1))

and limt→∞
∑t
i=0 E

σ
ε,`
1 ,σ2
s [Θi]
t ≥ 1− ε (as in Lemma 8). This establishes all the required conditions of

the lemma.

2. By Markov property 2, we have that Reach(U`−1∪W
∗∪RS) happens with probability 1 (sinceRS is

the set from which (U`−1∪W
∗
) cannot be reached). Note that since (S\(U`−1∪W

∗
)) = (U`\U`−1),

it follows that Reach(U`−1∪W
∗∪RS) with probability 1 implies Reach(U`−1∪W

∗
)∪Safe(U`\U`−1)

is also ensured with probability 1, since (U` \ U`−1) cannot be left once RS is reached. This also
shows that every recurrent class contained in (U` \ U`−1) must be contained in RS (and by the first
item has mean-payoff value at least 1 − ε). This shows that given the event Safe(U` \ U`−1), the
mean-payoff is at least 1 − ε. From every state in (U` \ U`−1), in the Markov chain, we have that
δ(s)(U`−1) · ε ≥ δ(s)(W

∗
) (from states which are not in C1, both probabilities are 0 and C1 by

Equation 4). Hence, Markov property 7 implies that event Reach(U`−1∪RS) happens with probability

1−ε (sinceRS is the set from which (U`−1∪W
∗
) cannot be reached), i.e., we have Pr

σε,`1 ,σ2
s (Safe(U`\

U`−1) ∪ Reach(U`−1)) ≥ 1− ε.

The desired result follows.

Remark 10. Lemma 9 proves the desired result only for states in (U` \ U`−1) and can be considered as the
base case of Lemma 12 which proves a similar result for states in (U`−i \U`−(i+1)), for 1 ≤ i ≤ `− 2. The
case for states (U1 \ U0) = U1 is handled by Lemma 8. Note that Safe(U` \ U`−1) ⊆ coBuchi(U` \ U`−1)
and since mean-payoff objectives are independent of finite prefixes, it also follows from Lemma 9 that given
the event coBuchi(U` \ U`−1), we have that the mean-payoff is at least 1− ε.

Before presenting the proof for Property 3 we first present a lemma that we will use to prove the property.

Lemma 11. Given 0 ≤ x ≤ 1
2 and 0 ≤ ε, η ≤ 1, consider the four-state Markov chain Gx,ε,η4 shown in

Figure 11. The probability to eventually reach s1 from s2 and s3 is x
η+(1+ ε

2
)·x·(1−η) and x·(1−η)

η+(1+ ε
2

)·x·(1−η) ,
respectively.

Proof. Let y2 and y3 denote the probability to reach s1 from s2 and s3, respectively. Then we have

y2 = x+ (1− (1 +
ε

2
) · x) · y3; y3 = (1− η) · y2 .

32

(U`−(i+1) ∪RS) (U`−i \ (U`−(i+1) ∪RS)) (U` \ (U`−i ∪RS)) W
∗

s1 s2 s3 s4

ε
2 · x

x

1− (1 + ε
2) · x

1− η

η

Figure 11: Pictorial illustration of the Markov chain Gx,ε,η4 .

Hence we have
y2 = x+ (1− (1 +

ε

2
) · x) · (1− η) · y2 .

Solving for y2, and then inserting into y3 = (1− η) · y2, we obtain the desired result.

Lemma 12. (Property 3). Let 0 < ε < 1
2 and 1 ≤ i ≤ ` − 2. The strategy σε,`−i1 ensures that against all

positional strategies σ2 for all states s ∈ (U` \ U`−(i+1)) we have that

1. given the event
⋃
j≤i coBuchi(U`−j \ U`−(j+1)), the mean-payoff is at least 1− ε;

2. Pr
σε,`−i1 ,σ2
s (

⋃
j≤i coBuchi(U`−j \ U`−(j+1)) ∪ Reach(U`−(i+1) ∪W

∗
)) = 1; and

3. Pr
σε,`−i1 ,σ2
s (

⋃
j≤i coBuchi(U`−j \ U`−(j+1)) ∪ Reach(U`−(i+1))) ≥ 1− ε.

Proof. Given σε,`−i1 , let σ2 be an arbitrary positional counter-strategy for player 2. Let Cσ
ε,`−i
1 ,σ2

i = Ci, i.e.,
given σε,`−i1 and σ2, we have that C1, C2, C3 are the set of states of (U` \ U`−(i+1)) that satisfy Equation 4,
Equation 5, Equation 6, respectively. This proof is similar to the proof of Lemma 9. The proof will be by
induction in i, where i = 0 is the base case. Hence, the base case is settled by Lemma 9. We see that
σε,`−i1 is stationary and follows the distribution ξη1 over Γ1(s) for some η > 0 in state s ∈ (W ∗ \ U`−(i+1)).
We consider the Markov chain obtained by fixing the two strategies. In the worst case, states in W ∗ are
absorbing with reward 0; and since the target is to reach U`−(i+1) we consider that the plays end if they
leave T = (W ∗ \ U`−(i+1)), i.e., we are interested in the segment of the play in (W ∗ \ U`−(i+1)). The play
can only end from a state in C1∩T because T =

⋃
j≤i(U`−j \U`−(j+1)) and if a state s in (U`−j \U`−(j+1))

satisfies either Equation 5 (in C2) or Equation 6 (in C3), then the set (U`−j \ U`−(j+1)) is not left from s in
one-step. Now consider a play P in the Markov chain. Let RS be the subset of T , from which C1 ∩T is not
reachable in the Markov chain. There are two cases

1. (P starts in s ∈ RS). Let (` − i′, j′) = rk(s). Note that i′ ≤ i, by definition of RS . Precisely,
like in the proof of Lemma 9, we have that Safe(U`−i′ \ U`−(i′+1)) is ensured with probability 1,

33

because the set (U`−i′ \ U`−(i′+1)) cannot be left from states in C2 or C3. Hence, if i′ < i, then
we are done, by induction, since σε,`−i1 follows ση,`−i+1

1 in such states, by construction of σε,`−i1 , for

η =
(
ε·δmin

4

)(2m)rk(`−i)

and we have that η < ε, for m ≥ 2 and rk(`− i) ≥ 1. If i′ = i, then, precisely
like in the proof of Lemma 9, the set (U`−i \U`−(i+1)) cannot be left in C2 or C3 and hence, using an

argument like Lemma 8, we have that limt→∞
∑t
i=0 E

σ
ε,`−i
1 ,σ2
s [Θi]
t ≥ 1− ε, because of the similarities

between the construction of the strategy σε,i1 and σε,11 for states in (U`−i \ U`−(i+1)) and states in U1,
respectively. Observe that this case is the same as the corresponding case in Lemma 9 and ensures all
the required items of the lemma.

2. (P starts outside RS: Item (1) of the lemma statement). First observe that we can only ensure
Safe(U`−j \ U`−(j+1)), for some j ≤ i, from states in RS , since from all other states C1 is reachable
and for every j, states in (C1 ∩ (U`−j \ U`−(j+1))), can reach U`−(j+1) in one-step with positive
probability, by Equation 4. Hence, if

⋃
j≤i coBuchi(U`−j \U`−(j+1)) is ensured, then given the event⋃

j≤i coBuchi(U`−j \ U`−(j+1)) a recurrent class that is reached must be contained in RS . Hence
given the event

⋃
j≤i coBuchi(U`−j \U`−(j+1)), the set RS is reached in a finite number of steps with

probability 1. Since mean-payoffs are independent of finite-prefixes, the finite prefix to reachRS does
not change the mean-payoff. Moreover, since if we start in RS the mean-payoff is at least 1 − ε, it
follows that given the event

⋃
j≤i coBuchi(U`−j \ U`−(j+1)) we have that the mean-payoff is at least

1− ε.

3. (P starts outsideRS: Item (2) of the lemma statement). For 0 ≤ i′ ≤ i, let Ei′ denote the following
event,

Ei′ =
⋃
j≤i′

coBuchi(U`−j \ U`−(j+1)) ∪ Reach(U`−(i′+1) ∪W
∗
).

Let SP(s, ` − i′) = Pr
σε,`−i

′
1 ,σ2
s (Ei′), for all 0 ≤ i′ ≤ i, denote the success probability of the event

Ei′ . We need to argue that SP(s, ` − i) = 1, for all states in (U` \ U`−(i+1)). By induction we
have that SP(s, ` − (i − 1)) = 1, from states in (U` \ U`−i). Since σε,`−i1 has the same support
as σε,`−(i−1)

1 for all states in (U` \ U`−i), it follows that for each state s in (U` \ U`−i) we have
SP(s, ` − i) = 1. If the event

⋃
j≤`−(i+1) coBuchi(U`−j \ U`−(j+1)) ∪ Reach(W

∗
) happens, then

we are done. Thus, in the worst case we have that Pr
σε,`−i1 ,σ2
s (Reach(U`−i)) = 1 from state s in

(U`\U`−i) (clearly, from such statesU`−i is reachable in the Markov chain since they are reached with
probability 1). We only need to argue about the worst case. LetR′S be the subset of (U`−i \U`−(i+1)),
from which (C1 ∩ (U`−i \ U`−(i+1))) cannot be reached in the Markov chain. Hence, for each state
s in (U`−i \ U`−(i+1)), the state s must either be in R′S (in which case R′S is reachable) or the set
(C1 ∩ (U`−i \ U`−(i+1))) must be reachable from s. From the set (C1 ∩ (U`−i \ U`−(i+1))), the set
U`−(i+1) is reached in one-step with positive probability. We therefore get that from any state in T =
((U` \U`−i)∪ (U`−i \U`−(i+1))), the set (U`−(i+1)∪R′S) is reachable, by transitivity of reachabillity.

Hence, by Markov property 8 we have that Pr
σε,`−i1 ,σ2
s Reach((S \ T) ∪ U`−(i+1) ∪ R′S) = 1, from

any state s ∈ T . Note that from states in R′S no state in C1 ∩ (U`−i \ U`−(i+1)) is reachable, and the
set (U`−i \U`−(i+1)) can be left only from states in C1 ∩ (U`−i \U`−(i+1)). Hence reachability to R′S

34

ensures coBuchi((U`−i \ U`−(i+1))). Thus we have that

Reach((S \ T) ∪ U`−(i+1) ∪R′S) = Reach(U`−(i+1) ∪W
∗ ∪ U`−(i+1) ∪R′S)

= Reach(U`−(i+1) ∪W
∗ ∪R′S)

⊆ Reach(U`−(i+1) ∪W
∗
) ∪ coBuchi(U`−i \ U`−(i+1)) ⊆ Ei .

The first equality uses that (S \ T) = (U`−(i+1) ∪ W
∗
). The first inclusion uses that Reach(R′S)

ensures coBuchi(U`−i \ U`−(i+1)). Hence, from each state s ∈ T we have that SP(s, ` − i) = 1 as
desired.

4. (P starts outside (RS ∩ T): Item (3) of the lemma statement.). We will now show that the proba-
bility of the event (

⋃
j≤i coBuchi(U`−j \U`−(j+1))∪Reach(U`−i)) is at least 1− ε. We will do so by

modeling the worst case using the Markov chain Gx,ε,η4 of Lemma 11. There is an illustration of the
Markov chain Gx,ε,η4 in Figure 11. We have one state representing each of the following sets

(1) (U`−(i+1) ∪RS)

(2) (U`−i \ (U`−(i+1) ∪RS))

(3) (U` \ (U`−i ∪RS))

(4) W ∗

We will refer to the states as s1, s2, s3 and s4, respectively. We will now argue about the transition
probabilities, and first consider the absorbing states.

The state s1. We are interested in the probability that (U`−(i+1) ∪ RS) is eventually reached. This
probability does not depend on what happens after (U`−(i+1) ∪ RS) is reached. Hence, we consider
s1 as absorbing, like in Gx,ε,η4 .

The state s4. In the worst case W ∗ cannot be left, once reached. Thus s4 is an absorbing state, like
in Gx,ε,η4 .

The state s2. For each state s ∈ (U`−i \ (U`−(i+1) ∪ RS)) ⊆ (U`−i \ U`−(i+1)), we must eventually
reach a state in either (C1 ∩ (U`−i \ U`−(i+1))) = ((C1 ∩ T) ∩ (U`−i \ U`−(i+1))) or (RS ∩ (U`−i \
U`−(i+1))), with probability 1, by Markov property 3 (recall that we cannot reach states outside (U`−i\
U`−(i+1)), except from states in (C1 ∩ (U`−i \ U`−(i+1))) by Equation 4, Equation 5 and Equation 6.
Also, (RS ∩ (U`−i \ U`−(i+1))) is the subset of (U`−i \ U`−(i+1)) from which (C1 ∩ T) cannot be
reached). If we reach RS , an argument similar to the first item in the proof of this lemma shows that
we satisfy the desired statement. Thus, in the worst case we always reach (C1 ∩ (U`−i \ U`−(i+1))).
For each state s in (C1 ∩ (U`−i \ U`−(i+1))), let xs = δ(s, σε,`−i1 , σ2)(U`−(i+1)) be the one-step
transition probability to U`−(i+1). By Equation 4, and the construction of the strategy, we have that
ε
2 · xs > δ(s, σε,`−i1 , σ2)(W

∗
). Clearly, in the worst case we have that ε2 · xs = δ(s, σε,`−i1 , σ2)(W

∗
)

(recall that W ∗ is absorbing). Also, the fact xs > δ(s, σε,`−i1 , σ2)(W
∗
) implies that xs > 0 and

therefore we have that xs ≥ δmin
pat(`−i) , where pat(`− i) =

(
ε·δmin

4

)−(
(2m)rk(`−i)

2
−1)

, is an upper bound

on the patience of the distribution σε,`−i1 (s), by Lemma 6. Thus with probability xs we go to U`−(i+1),
with probability ε

2 · xs we go to W ∗, and with the remaining probability of (1− (1 + ε
2) · xs) we go

to a state in T , which in the worst case is a state in (U` \ (U`−i ∪ RS)). This is so, because, in

35

the worst case, to reach (U`−(i+1) ∪ RS) from (U` \ (U`−i ∪ RS)) we must go through a state in
(U`−i \ (U`−(i+1) ∪ RS)), and hence the probability to reach U`−(i+1) is minimized when xs is as
small as possible, for all s. That is, xs = δmin

pat(`−i) , for all s ∈ (C1 ∩ (U`−i \ U`)). Let x = δmin
pat(`−i) .

Thus, the transition probabilities are as follows: (i) from s2 to s4 is ε
2 · x; (ii) from s2 to s1 is x; and

(iii) from s2 to s3 is 1− (1 + ε
2) · x. Thus, s2 is like in Gx,ε,η4 .

The state s3. For each state s ∈ (U`\(U`−i∪RS)) ⊆ (U`\U`−i), by induction and since σε,`−i1 follows

ση,`−i1 , we satisfy that Pr
σε,`−i1 ,σ2
s (

⋃
j≤i−1 coBuchi(U`−j \U`−(j+1))∪Reach(U`−i)) ≥ 1− η, where

η is
(
ε·δmin

4

)(2m)rk(`−i)

. By item (2) of the lemma statement, we enter W ∗ with the remaining proba-

bility (which is absorbing). Hence, the worst case must be where Pr
σε,`−i1 ,σ2
s (

⋃
j≤i−1 coBuchi(U`−j \

U`−(j+1)) ∪ Reach(U`−i)) = 1 − η (and thus Pr
σε,`−i1 ,σ2
s (Reach(W

∗
)) = η). As previously argued,

in the first item and second item of this lemma, the event
⋃
j≤i−1 coBuchi(U`−j \ U`−(j+1)) ensures

reachability to RS (i.e., ensures Reach(RS)). In the worst case for the proof the probability to reach

(RS∪U`−i−1) is minimized, and thus in the worst case we have Pr
σε,`−i1 ,σ2
s (Reach((U`−i\(U`−(i+1)∪

RS))) = 1 − η and Pr
σε,`−i1 ,σ2
s (Reach(W

∗
)) = η. Thus, from s3 the transition probability to s2 and

s4 are 1− η and η, respectively. Thus, s3 is like in Gx,ε,η4 .

The probability to eventually reach s1 from s2 or s3. We have that x ≤ 1
2 (since pat(` − i) ≤ 1

2 ,
for m ≥ 2 and rk(`− i) ≥ 1). Also, 0 < η, ε < 1 (in the case of η, because m ≥ 2 and rk(`− i) ≥ 1).
Hence we can apply Lemma 11 and get that the probability to eventually reach s1 from s2 and s3 is

x
η+(1+ ε

2
)·x·(1−η) and x·(1−η)

η+(1+ ε
2

)·x·(1−η) , respectively. Cleary, the probability from s3 is the smallest. We
will show that it is greater than 1− ε. We have that

x · (1− η)

η + (1 + ε
2) · x · (1− η)

=
1

η
x·(1−η) + 1 + ε

2

≥ 1

1 + ε
≥ 1− ε .

We will argue about the first inequality last. The second inequality follows from 1 > 1 − ε2 =
(1 + ε) · (1 − ε) ⇒ 1

1+ε > 1 − ε. To show the first inequality we will argue that η
x·(1−η) ≤

ε
2 or,

equivalently, that 2·η
x·(1−η)·ε ≤ 1, since ε > 0. We have that

2 · η
x · (1− η) · ε

<
4 · η
x · ε

=
4 · η · pat(`− i)

δmin · ε
= η ·

(
ε · δmin

4

)− (2m)rk(`−i)
2

= η
1
2 < 1 .

The inequalities comes from η < 1
2 (which is the case because m ≥ 2 and rk(` − i) ≥ 1). The

first equality is because x = δmin
pat(`−i) , by definition. The second equality is because pat(` − i) =(

ε·δmin
4

)−(
(2m)rk(`−i)

2
−1)

, by definition. The third equality uses that η =
(
ε·δmin

4

)(2m)rk(`−i)

, by defini-
tion.

Ensuring item (3) of the lemma statement. We see that the probability to reach (U`−(i+1) ∪ RS)
from T is more than 1− ε (by recalling the definition of s1, s2 and s3) and thus item (3) of the lemma
statement is ensured, because from states in RS the event

⋃
j≤i Safe(U`−j \ U`−(j+1)) is ensured (as

argued in the beginning of the lemma) and hence reachingRS ensures
⋃
j≤i coBuchi(U`−j\U`−(j+1)).

36

The desired result follows.

Lemma 13. Let 0 < ε < 1
2 . The stationary strategy σε1 ensures that for all states s ∈W ∗ and all strategies

σ2 we have Eσ
ε
1,σ2
s [LimSupAvg] ≥ Eσ

ε
1,σ2
s [LimInfAvg] ≥ 1− ε.

Proof. By construction σε1 plays as σβ,11 in U1 and σβ,21 , for β = ε
2 , in the remaining states. Therefore

σε1 ensures that the mean-payoff of any play that starts in U1 is at least 1 − β, by Lemma 8. Since σε1 is
stationary, once σε1 is fixed we obtain an MDP for player 2, and in MDPs positional strategies always suffice
to minimize mean-payoff objectives [18]. Hence, Lemma 12 shows that if the play starts in s ∈ (U` \ U1),
then with probability 1− β the play either stays in (Uj \Uj−1) for some j ≥ 2 and ensures mean-payoff of
at least 1 − β or reaches U1, from which we will get mean-payoff 1 − β. By simple multiplication (using
that rewards are at least 0) we therefore see that we get mean-payoff at least

(1− β)2 = 1 + β2 − 2β ≥ 1− ε.

The desired result follows.

Lemma 13 implies the following inclusion.

Lemma 14. We have W ∗ ⊆ val1(LimInfAvg,ΣS
1) ⊆ val1(LimSupAvg,ΣS

1).

3.2.2 Second inclusion: W ∗ ⊆ S \ val1(LimInfAvg,ΣF
1)

We will now show that for all states s ∈ W ∗ that there exists a constant c > 0 such that no finite-memory
strategy σ1 for player 1 can ensure value more than 1 − cn

n . Again the statement is trivially true if W ∗ is
empty, and hence we assume that this is not the case.
Computation of W ∗. We first analyze the computation of W ∗. To analyze the computation of W ∗ we
consider the iterative computation W ∗

• Let W0 be S and Wi be µU.νX.µY.νZ.LimAvgPre(Wi−1, U,X, Y, Z).

• Let Xi,0 be S and Xi,j be νX.µY.νZ.LimAvgPre(Wi−1,Wi, Xi,j−1, Y, Z).

• Also let Zi,j,0 be S and Zi,j,k be LimAvgPre(Wi−1,Wi, Xi,j−1, Xi,j , Zi,j,k−1).

Let ` ≥ 0 be the smallest number such that W` = W`+1 = W ∗. Let rk(i), be the smallest number j such
that Xi,j = Xi,j+1. Also, let rk(i, j), be the smallest number k such that Zi,j,k = Zi,j,k+1. We have that
for any state s in W ∗, there must be some smallest number i such that s is not in Wi (since W0 is S, we
have that i > 0). Also, there must be some smallest j such that s is not in Xi,j and similar for k and Zi,j,k.
We define the rank of a state s ∈ W ∗ as rk(s) = (i, j, k), where i (resp. j, and k) is the smallest number
such that s not in Wi (resp. Xi,j and Zi,j,k). By definition of W ∗, there exists a constant c > 0, such that
for a state s, with rk(s) = (i, j, k), for all distributions ξ1 over Γ1(s) there must exist an counter-action
as,ξ12 ∈ Γ2(s) for player 2 such that all the following conditions hold (i.e., the negation of the conditions of
LimAvgPre hold):

(c · δ(s, ξ1, a
s
2)(Wi) ≤ δ(s, ξ1, a

s
2)(W i−1))

∧(δ(s, ξ1, a
s
2)(Xi,j−1) < 1 ∨ δ(s, ξ1, a

s
2)(Xi,j) = 0)

∧(δ(s, ξ1, a
s
2)(Xi,j−1) < 1 ∨ ExpRew(s, ξ1, a

s
2) < 1− c ∨ δ(s, ξ1, a

s
2)(Zi,j,k−1) < 1− c) .

37

If the above conditions hold, then one of the following three conditions hold as well. We first explain the
following cases: (i) if δ(s, ξ1, a

s,ξ1
2)(Wi) > 0, then c · δ(s, ξ1, a

s,ξ1
2)(Wi) ≤ δ(s, ξ1, a

s,ξ1
2)(W i−1) must

hold to ensure the first condition above (this corresponds to Case (3) below); (ii) if δ(s, ξ1, a
s,ξ1
2)(Wi) = 0,

then the first condition above is satisfied; then we have two sub-cases: (a) if δ(s, ξ1, a
s,ξ1
2)(Xi,j−1) < 1,

then both the second and third condition is satisfied (this corresponds to Case (2) below); (b) otherwise
we must have δ(s, ξ1, a

s,ξ1
2)(Xi,j) = 0 to satisfy the second condition above and (ExpRew(s, ξ1, a

s,ξ1
2) <

1−c ∨ δ(s, ξ1, a
s,ξ1
2)(Z1,j,i−1) < 1−c) to satisfy the third condition above (this corresponds to Case (1)

below). Thus we have that either

• Case (1). There is a as,ξ12 such that

δ(s, ξ1, a
s,ξ1
2)(Wi) = 0

∧ δ(s, ξ1, a
s,ξ1
2)(Xi,j) = 0

∧
(
ExpRew(s, ξ1, a

s,ξ1
2) < 1− c ∨ δ(s, ξ1, a

s,ξ1
2)(Z1,j,i−1) < 1− c

)
or;

• Case (2). There is a as,ξ12 such that(
δ(s, ξ1, a

s,ξ1
2)(Wi) = 0

)
∧

(
δ(s, ξ1, a

s,ξ1
2)(Xi,j−1) < 1

)
or;

• Case (3). There is a as,ξ12 such that(
c · δ(s, ξ1, a

s,ξ1
2)(Wi) ≤ δ(s, ξ1, a

s,ξ1
2)(W i−1)

)
∧

(
δ(s, ξ1, a

s,ξ1
2)(Wi) > 0

)
.

We will use the above three cases explicitly in our proof.
The counter-strategy σ2 given σ1. Fix an arbitrary finite-memory strategy σ1 for player 1. Let the finite
set of memories used by σ1 be Mem. A counter-strategy σ2 given σ1 is defined as follows: given the current
state s of the game, and current memory state m ∈ Mem, let ξ1 be the distribution played by σ1. The
strategy σ2 for player 2 plays an action as,ξ12 (if there are more than one option for as,ξ12 , pick one arbitrarily)
with probability one. If σ1 uses memory set Mem, then σ2 also uses the memory set Mem and has the same
memory update function.
Upper bound on value ensured by σ1. We will show that given σ1 and the counter-strategy σ2 the mean-
payoff value is at most 1 − cn

n for all starting states in W ∗. Also note that the upper bound on the value is
independent of the size of the memory, and this shows that in the complement of W ∗ the values achievable
by finite-memory strategies is strictly bounded below 1.
The game G ×Mem. Consider the game G and a product with any deterministic automaton A with state
space Q. Every state in W ∗ × Q in the synchronous product game belongs to the set W ∗ computed in
the product game and the ranks also coincide (by the properties of µ-calculus formulae). Consider the
synchronous product game G × Mem of G and the memories of σ1 and σ2, where states corresponds to
pairs in (S,Mem) and where δ((t,m), a, b)((t′,m′)) = δ(s, a, b)(t) where σu1 (t, a, b,m) = m′ and hence
also σu2 (t, a, b,m) = m′. In this game the strategy corresponding to σ1 can be interpreted as a stationary
strategy σ′1. Also the strategy corresponding to σ2 can be interpreted as a positional strategy σ′2 inG×Mem.
Hence given the strategies σ1 and σ2 we can obtain a Markov chain on G×Mem, considering the stationary

38

strategies σ′1 and σ′2 on the product game. Also for all states t ∈W ∗ inG, all the corresponding states (t,m)
in G×Mem belong to W ∗ computed in the product game and has the same rank as t in G.

Upper bound on value ensured by σ1. We show that given σ1 and the counter-strategy σ2 the mean-payoff
value is at most 1 − cn

n for all starting states in W ∗. The proof is split in the following cases, and the basic
intuitive arguments are as follows:

1. Consider a play that starts inX1,1. We show that the play always stays inX1,1 and Case (1) is satisfied
always. Thus we show that from every state there is a path of length at most n where reward 0 occurs
at least once.

2. For a play that starts in W 1 \X1,1, we always satisfy either Case (1) or Case (2). First we establish
that the event of Case (2) being satisfied infinitely often has probability 0. Hence from some point on
Case (1) is always satisfied, and then the argument is similar to the previous case.

3. Finally we consider a play that starts in W ∗ \W 1. Whenever Case (3) is satisfied, and if the current
state is W j , for j > 1, then W j−1 is reached with positive probability in one-step. We establish that
either (i) we are similar to the previous case or (ii) reach W or W 1 and the probability to reach W 1 is
at least cn.

Intuitively, in the first two cases above, we reach a recurrent class that consists of states satisfying Case (1)
only, and in such recurrent classes the mean-payoff value is at most 1− cn. In the last case, either we reach
a recurrent class of the above type, or whenever we satisfy Case (3) with positive probability c > 0 we make
progress to a recurrent class of the above type. The above case analysis establish the proof. We now present
the formal proof.

Lemma 15. Fix an arbitrary finite-memory strategy σ1 and consider the counter-strategy σ2 given σ1. For
all states in W ∗ we have that Eσ1,σ2s [LimSupAvg] ≤ 1− cn

n .

Proof. In game G ×Mem, let Ci be the set of states where Case (i) is satisfied3. That is C1, C2, and C3

satisfy Case (1), Case (2), and Case (3), respectively. We consider the Markov chain given σ1 and σ2, and
consider a play P s starting from state s. We will consider three cases to establish the result.

1. Plays starting in s ∈ X1,1. Recall that X1,1 is the complement of X1,1. Consider state s in Z1,1,k,
for some k ≥ 1 (that is: states in X1,1). Since W0 = X1,0 = S, we have that the play corresponding
to P s in G ×Mem is always in C1 (note that only in Case (1) do we have probability 0 to go to W 0

and X1,0). Hence the play P s always stays in X1,1. Hence, from states in Z1,1,k, if player 1 plays
according to σ1 and player 2 plays σ2, with probability c we either (i) reach a state in Z1,1,k−1, or
(ii) get a reward of 0. Since Z1,1,0 = S we must get a reward of 0 with at least probability c when in
Z1,1,1. Hence, for all states in X1,1, given player 1 follows σ1 and player 2 follows σ2, there is a path
of play of length at most rk(1, 1) > rk(1) where each step happens with probability at least c and the
reward 0 happens at least once. Thus, for any state s in X1,1, the play P s stays in X1,1 and gives a
expected average reward of at most 1 − cj

j , with probability 1, where j = rk(1). In other words, we
have established the following property: in the Markov chain all recurrent classes that intersect with
(X1,1 ×Mem) are contained in (X1,1 ×Mem) and have mean-payoff at most 1− cn

n .

2. Plays starting in s ∈ (W 1 \X1,1). Consider now state s in (W 1 \X1,1). Since W0 = S, we have
that the play P sMem, corresponding to P s inG×Mem, is always in (C1∪C2) (note that in Case (3) we
have positive probability to goto W0). This is the only property of (W 1 \X1,1) we will use. Notice

3Note that Ci 6= (S \Ci), for i ∈ {1, 2, 3}, in general, where Ci is the set defined in Subsection 3.2.1, but this notation is used
because C1, C2, C3 serve similar roles for properties of W

∗
as C1, C2, C3 did for properties of W ∗

39

that this ensures that P s always stays in W 1. Let RS be the set of states from which no state in C2

can be reached. There are now two cases, either P sMem reaches a state in RS or it does not.

• The play P sMem reaches a state in RS . Let j = rk(1). Then the mean-payoff is at most 1− cj

j

after reachingRS , by a argument similar to the one for states inX1,1. Therefore, in this case, the
mean-payoff of P s is at most 1− cj

j , since the mean-payoff is independent of the finite-prefix.

• The play P sMem does not reach a state in RS . In this case, we must visit states in C2 infinitely
often with probability 1, by Markov property 1. Whenever we are in a state s′ in C2 ∩ ((X1,j ×
Mem) \ (X1,j−1 × Mem)), we have probability at least p · δmin to reach (X1,j−1 × Mem) in
one-step where 1

p is the maximum patience of any distribution played by σ1. Whenever we
are in a state s′ in C1 ∩ ((X1,j × Mem) \ (X1,j−1 × Mem)), we have probability 0 to leave
((X1,j ×Mem) \ (X1,j−1 ×Mem)) in one-step. Therefore we must reach (X1,1 ×Mem) in a
finite number of steps with probability 1 and from (X1,1 × Mem) we get a mean-payoff of at
most 1− cj

j , where j = rk(1), as we have already established in the first item4.

Therefore, in both cases we get a mean-payoff of at most 1− cj

j with probability 1, where j = rk(1),

i.e., all recurrent classes have mean-payoff of at most 1− cj

j .

3. Plays starting in s ∈ (W
∗ \W 1). Consider now state s in (W

∗ \W 1). Consider the play P s in
G and the corresponding play P sMem in G × Mem. For i ≥ 1, let Li = Wi ∪W i−1 and note that
Li = W i \W i−1. Let Ri be the set of states in Li from which no state in C3 ∩ Li is reachable; (note
that Ri ⊆ Li ∩ (C1 ∪C2)). Note that from Li, the set Li can be left only from states in C3 ∩ Li. We
now consider two sub-cases.

• We first consider the case where we reach Ri. Let j = rk(i). In this case, the mean-payoff is at
most 1− cj

j by an argument similar to the argument for s in W 1 \X1,1. The argument for s in
W 1 \X1,1 only uses that states in C1 ∪ C2 are visited. Once Ri is reached we are guaranteed
that only states in Ri are visited, and hence the recurrent classes in Ri has mean-payoff of at
most 1− cn

n .

• If Ri is not reached, then since from every state C3 ∩ Li we have positive transition probability
to Li, it follows that Li is reached with probability 1, by Markov property 4. But if we reach
either Wi or W i−1, we have a probability of at least c that it will be W i−1 (since it can only be
done whenever P sMem is in C3 ∩ Li, which ensures so).

Each time we repeat the second case, all states in Li, will never be visited again, in the worst case.
Since each set Li must contain atleast one state, we see that, if we repeat the second case k times and
thereafter enter Ri′ (and are thus in the first case), then n − k ≥ rk(i′). We have a probability of ck

to follow such a play and we then get value at most 1− cn−k

n−k . Even if we got mean-payoff 1 with the
remaining probability of 1− ck, we still have a expected mean-payoff of at most 1− cn

n−k . Thus, we
see that in the worst case k = 0 with probability 1, in which case we get mean-payoff at most 1− cn

n .

The desired result follows.
4In fact, alternatively we can prove this case using contradiction, since (X1,1×Mem) ⊆ C1 and therefore (X1,1×Mem) ⊆ RS ,

since (X1,1 ×Mem) cannot be left in the Markov chain

40

Lemma 15 implies the following inclusion.

Lemma 16. We have val1(LimSupAvg,ΣF
1) ⊆W ∗.

4 Improved Rank-Based Algorithm

In this section we present an improved rank-based algorithm, which is based on the same principle as the
small-progress measure algorithm [24] (for parity games). While the naive computation of the µ-calculus
formula for the value 1 set requires O(n4) iterations, the improved algorithm will require O(n2) iterations.

Basic idea. The basic idea of the algorithm is to consider the ranking function rk from Section 3.2.1 and use
that to obtain an algorithm. Notice that rk(s) for s ∈W ∗ is always a pair (i, j) such that 2 ≤ i+ j ≤ n+ 1
and where 1 ≤ i, j ≤ n. We see that for any number k there are k − 1 pairs (i, j) such that i + j = k and
such that 1 ≤ i, j ≤ k− 1. Hence, there are

∑n
k=1 k = n(n+1)

2 such pairs (i, j) such that 2 ≤ i+ j ≤ n+ 1
and where 1 ≤ i, j ≤ n. Furthermore we also have a special rank > for not being in W ∗. The ranks are
lexicographically ordered as follows

(1, 1) < (1, 2) < · · · < (1, n) < (2, 1) < · · · < (n, 1) < > .

We will thus say that (i, j) < > for all i, j and (i, j) < (i′, j′) if i < i′ or i = i′ and j < j′; (and for
(i, j) ≤ (i′, j′) we change j ≤ j′). To distinguish with the ranking function in Section 3.2.1, we denote the
ranking function of the improved algorithm as rk′(s).

Definition of matrix. Consider a given assignment of ranks to states. Let s be some state of rank rk′(s) 6= >
and therefore of rank (i, j) for some i and j; and also consider a state s′ of rank (i′, j′). We define some
sets, Us, Ys, Zs, Xs,Ws as follows:

1. The state s′ is in Us, if i > i′.

2. The state s′ is in Ys, if i > i′ or i′ = i and j > j′.

3. The state s′ is in Zs, if i > i′ or i′ = i and j ≥ j′.

4. The state s′ is in Xs, if i ≥ i′.

5. The state s′ is in Ws independent of s.

Also if a state s′′ has rank >, then it is in the set W s. This set also does not depend on s. Let M s
a1,a2 ∈

{W s, Us,Ws, Ys, Xs, Z
1
s , Z

0
s}, for a1 ∈ Γ1(s) and a2 ∈ Γ2(s), be the matrix similar to the matrix M from

Section 3.1, except that instead of set W use W s and similar for U , Y , Z, X and W .

The RANKALGO algorithm. We will refer to our algorithm as RANKALGO and the description is as
follows:

1. For each state s set rk′(s)← (1, 1)

2. Let i← 0 and S0 ← S.

3. (Iteration) While Si is not the empty set:

(a) Let Qi = Si ∪ {s | ∃a1 ∈ Γ1(s),∃a2 ∈ Γ2(s). Succ(s, a1, a2) ∩ Si 6= ∅} be the set of states in
Si and their predecessors.

41

(b) For each state s ∈ Qi such that rk′(s) 6= >, run ALGOPRED on M s (if M s has not changed
since the last time ALGOPRED was run on M s, then use the result from the last time instead of
rerunning ALGOPRED). Let Si+1 be the set of states which ALGOPRED rejected.

(c) Increment the rank (according to the lexicographic ordering) of all states in Si+1.
(d) Let i← i+ 1.

4. Return the set of states which does not have rank >.

4.1 Running time of algorithm RANKALGO

We now analyze the running time of the algorithm. We first analyze the work done for updating matrices
M s and then analyze the work done for ALGOPRED computation.

• Work to update matrix. For a state s of rank (i, j), notice that we do not need to recalculate the
entire M s whenever some successor s′ of s changes rank, but only the entries (a1, a2) such that
s′ ∈ Succ(s, a1, a2). Also notice that we do not need to change M s at all whenever s′ changes rank
to ranks other than in {(i, 1), (i, j), (i, j + 1), (i+ 1, 1),>}. Hence, as long as s has some rank (i, j),
we can do all updates of M s in time O(

∑
a∈Γ1(s),b∈Γ2(s) |Supp(s, a, b)|). We also recalculate M s

whenever s changes rank, and since each state has at most O(n2) different ranks therefore we use
O(n2 ·

∑
s∈S

∑
a∈Γ1(s),b∈Γ2(s) |Supp(s, a, b)|) time to do all updates of M s for all states s.

• Work of ALGOPRED. Note that each entry of M s can take at most 7 different values, and as long as s
has a fixed rank each update makes some entry worse than before. Hence as long as s has some fixed
rank (i, j) we can do no more than 6 · |Γ1(s)| · |Γ2(s)| updates of M s. Hence we run ALGOPRED at
most n(n+1)

2 · 6 · |Γ1(s)| · |Γ2(s)| times for a fixed s.

Therefore, we get a total running time of O(n2 ·
∑

s∈S(|Γ1(s)|3 · |Γ2(s)|3 +∑
a1∈Γ1(s),a2∈Γ2(s) |Supp(s, a1, a2)|)), using Lemma 4.

4.2 Proof of correctness of algorithm RANKALGO

The correctness proof is similar to the results of [24]. The proof of [24] shows the equivalence of µ-
calculus formula and a rank-based algorithm (called small-progress measure algorithm) for parity games;
and the crucial argument of the correctness was based on the fact that the predecessor operator is monotonic.
Our correctness proof is similar and uses that LimAvgPre is monotonic. We just present the proof of one
inclusion and the other inclusion is similar. For simplicity we will say that the rank of s is rk(s) = > if
s ∈W ∗. Let W̃ ∗ be the output of the algorithm. We show that W̃ ∗ = W ∗.
W̃ ∗ ⊆ W ∗ : rk′(s) ≤ rk(s). We only need to show the statement for rk(s) 6= > since otherwise the
statement follows by definition. Hence, assume towards contradiction that rk′(s) > rk(s) and let rk(s) =
(i, j). Also, we can WLOG assume that s gets assigned a rank higher than rk(s) in the first iteration for
which any state s′ gets assigned rank higher than rk(s′) by the algorithm. Therefore in that iteration all states
s′ are such that the rank assigned by the algorithm is at most rk(s′) and s has rank rk(s) assigned. Therefore
W ∗ ⊆Ws,Ui−1 ⊆ Us,Ui ⊆ Xs, Yi,j−1 ⊆ Ys, Yi,j ⊆ Zs. But s is in LimAvgPre(W ∗, Ui−1, Ui, Yi,j−1, Yi,j)
by definition since s is such that rk(s) = (i, j). By monotonicity of LimAvgPre we have that s is also in
LimAvgPre(Ws, Us, Xs, Ys, Zs), contradicting that s changes rank.

Lemma 17. The algorithm RANKALGO correctly computes the set val1(LimInfAvg,ΣF
1) of states in time

O(n2 ·
∑

s∈S(|Γ1(s)|3 · |Γ2(s)|3 +
∑

a1∈Γ1(s),a2∈Γ2(s) |Supp(s, a1, a2)|)).

42

5 Main result and Concluding Remarks

We now summarize the main result, and conclude with an open question.

Theorem 18. The following assertions hold for concurrent mean-payoff games.

1. (Value 1 set characterization). Let W ∗ = νW.µU.νX.µY.νZ.LimAvgPre(W,U,X, Y, Z), then we
have

W ∗ = val1(LimSupAvg,ΣS
1) = val1(LimSupAvg,ΣF

1)

= val1(LimInfAvg,ΣS
1) = val1(LimInfAvg,ΣF

1)

2. (Running time). The value 1 sets val1(LimSupAvg,ΣS
1) = val1(LimInfAvg,ΣF

1) can be computed in
time O(n2 ·

∑
s∈S(|Γ1(s)|3 · |Γ2(s)|3 +

∑
a1∈Γ1(s),a2∈Γ2(s) |Supp(s, a1, a2)|)).

3. (Optimal patience). For all ε > 0, there exist stationary ε-optimal strategies in the set

val1(LimSupAvg,ΣS
1) with patience at most

(
ε·δmin

4

)−(2m)n

.

Proof. The first item follows from Lemma 16 together with Lemma 14. The second item comes from
Lemma 17. The third item follows from Lemma 7.

Notice that the patience closely matches the patience obtained for the concurrent reachability game
Purgatory, by Hansen, Ibsen-Jensen and Miltersen [20, Theorem 10] (the bound for m = 2 is also in [22]).
Concurrent reachability games is a subclass of concurrent mean-payoff games and always have ε-optimal
stationary strategies, for all ε > 0, and all states in Purgatory have value 1. Thus the example provides a
closely matching lower bound for patience.

Robustness. Our results show that the value 1 set computation can be achieved by an iterative algorithm
with the LimAvgPre operator. Our algorithm for the LimAvgPre operator computation is based on the matrix
constructionM , and observe that the entries in the matrix depends only on the support set, but not the precise
probabilities. It follows that given two concurrent games where the support sets of the transition functions
match, but the precise transition probabilities may differ, the value 1 set remains unchanged.

Concluding remarks. In this work we considered concurrent mean-payoff games and presented a
polynomial-time algorithm to compute the value 1 set for finite-memory strategies for player 1. An in-
teresting open question is whether the value 1 set with infinite-memory strategies can also be computed in
polynomial time.

Acknowledgement. The research was partly supported by FWF Grant No P 23499-N23, FWF NFN Grant
No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows award.

References

[1] T. Bewley and E. Kohlberg. The asymptotic behavior of stochastic games. Math. Op. Res., (1), 1976.

[2] D. Blackwell and T.S. Ferguson. The big match. AMS, 39:159–163, 1968.

[3] T. Brázdil, V. Brozek, Kousha Etessami, A. Kucera, and D. Wojtczak. One-counter markov decision
processes. In SODA, pages 863–874, 2010.

43

[4] K. Chatterjee. Concurrent games with tail objectives. Theor. Comput. Sci., 388(1-3):181–198, 2007.

[5] K. Chatterjee, L. de Alfaro, and T.A. Henzinger. Qualitative concurrent parity games. ACM ToCL,
2011.

[6] K. Chatterjee, R. Majumdar, and T. A. Henzinger. Stochastic limit-average games are in exptime. Int.
J. Game Theory, 37(2):219–234, 2008.

[7] K. Chatterjee and M. Tracol. Decidable problems for probabilistic automata on infinite words. In
LICS, pages 185–194, 2012.

[8] Krishnendu Chatterjee. Qualitative concurrent parity games: Bounded rationality. In CONCUR 2014
- Concurrency Theory - 25th International Conference, CONCUR 2014, Rome, Italy, September 2-5,
2014. Proceedings, pages 544–559, 2014.

[9] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Qualitative concurrent parity
games, 2008.

[10] Krishnendu Chatterjee, Arkadeb Ghosal, Thomas A. Henzinger, Daniel T. Iercan, Christoph M. Kirsch,
Claudio Pinello, and Alberto L. Sangiovanni-Vincentelli. Logical reliability of interacting real-time
tasks. In Design, Automation and Test in Europe, DATE 2008, Munich, Germany, March 10-14, 2008,
pages 909–914, 2008.

[11] Krishnendu Chatterjee and Rasmus Ibsen-Jensen. Qualitative analysis of concurrent mean-payoff
games, arxiv:1409.5306, 2014.

[12] A. Condon. The complexity of stochastic games. I&C, 96(2):203–224, 1992.

[13] L. de Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachability games. In FOCS’98, pages
564–575. IEEE, 1998.

[14] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. Int. Journal of Game
Theory, 8(2):109–113, 1979.

[15] K. Etessami and M. Yannakakis. Recursive concurrent stochastic games. In ICALP’06 (2), LNCS
4052, Springer, pages 324–335, 2006.

[16] H. Everett. Recursive games. In CTG, volume 39 of AMS, pages 47–78, 1957.

[17] N. Fijalkow, H. Gimbert, and Y. Oualhadj. Deciding the value 1 problem for probabilistic leaktight
automata. In LICS, pages 295–304, 2012.

[18] J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.

[19] D. Gillette. Stochastic games with zero stop probabilitites. In CTG, pages 179–188. Princeton Univer-
sity Press, 1957.

[20] K. A. Hansen, R. Ibsen-Jensen, and P. B. Miltersen. The complexity of solving reachability games
using value and strategy iteration. In CSR, pages 77–90, 2011.

[21] K. A. Hansen, M. Koucký, N. Lauritzen, P. B. Miltersen, and E. P. Tsigaridas. Exact algorithms for
solving stochastic games: extended abstract. In STOC, pages 205–214, 2011.

44

[22] K. A. Hansen, M. Koucký, and P. B. Miltersen. Winning concurrent reachability games requires
doubly-exponential patience. In LICS, pages 332–341, 2009.

[23] R. Ibsen-Jensen. Strategy complexity of two-player, zero-sum games. PhD thesis, Aarhus University,
2013.

[24] M. Jurdzinski. Small progress measures for solving parity games. In STACS’00, pages 290–301. LNCS
1770, Springer, 2000.

[25] J.F. Mertens and A. Neyman. Stochastic games. Int. J. Game Theory, 10:53–66, 1981.

[26] L.S. Shapley. Stochastic games. PNAS, 39:1095–1100, 1953.

[27] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems. In FOCS’85, pages
327–338. IEEE Computer Society Press, 1985.

[28] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical Computer
Science, 158:343–359, 1996.

45

6 Appendix — Expanded mu-calculus formula

Description of algorithm. Note that we established that if

W ∗ = νW.µU.νX.µY.νZ.LimAvgPre(W,U,X, Y, Z);

thenW ∗ = {s ∈ S | val(LimInfAvg(r),ΣF
1)(s) = 1}. The µ-calculus formula is a very succinct description

of an algorithm. The expanded iterative algorithm is presented as Algorithm 1.

Algorithm 1: Naive µ-calculus Algorithm
Input: A concurrent mean-payoff game G over the set of states S
Output: The set of states W ∗

W ← S
repeat

W ′ ←W
U ← ∅
repeat

U ′ ← U
X ←W
repeat

X ′ ← X
Y ← U
repeat

Y ′ ← Y
Z ← X
repeat

Z ′ ← Z
Z←ALGOPRED(W,U,X, Y, Z)

until Z = Z ′;
Y ← Z

until Y = Y ′;
X ← Y

until X = X ′;
U ← X

until U = U ′;
W ← U

until W = W ′;
return W

46

7 Technical appendix — Computation of LPre

We now present the details of the computation of LPre(s,W,U,A1, A2). We will establish the Reject
property and Accept properties a—d of LPre. We first recall the properties:
(Accept properties of LPre). Accepts and returns the set A3 ⊆ A2 and a parametrized distribution ξε1, for
0 < ε < 1

2 , with support Supp(ξε1) ⊆ A1, such that the following properties hold:

• (Accept property a). For all a2 ∈ A3, the distribution ξε1 satisfies Equation 1 for a2.

• (Accept property b). For all a2 ∈ (A2 \A3), we have Succ(s, ξε1, a2) ∩W = ∅ and Succ(s, ξε1, a2) ∩
U = ∅.

• (Accept property c). For all a1 ∈ (A1 \ Supp(ξε1)), there exists an action a2 in (A2 \ A3) such that
Succ(s, a1, a2) ∩W 6= ∅.

• (Accept property d). The set A3 is largest in the sense that for all a2 ∈ (A2 \ A3) and for all
parametrized distributions ξε1 over A1, the Equation 1 cannot be satisfied, while satisfying actions in
A2 using Equation 1, or Equation 2, or Equation 3, for anyX,Y, Z such that U ⊆ Y ⊆ Z ⊆ X ⊆W .

The computation of LPre(s,W,U,A1, A2) will be done similar to the computation of the similar named
LPre(s,W,U) in [13, 9], and we will follow notations from [9]. We will use the two methods Stay and
Cover, defined as follows:

Stay(s,W,A1, A2, A) = {a1 ∈ A1 | ∀a2 ∈ (A2 \A).
[
(Succ(s, a1, a2) ∩W) = ∅

]
}

Cover(s, U,A1, A2, A) = {a2 ∈ A2 | ∃a1 ∈ (A1 ∩A).
[
(Succ(s, a1, a2) ∩ U) 6= ∅

]
}

The algorithm LPre(s,W,U,A1, A2) is then as follows:

1. Let A∗ ← µA.
[
Stay(s,W,A1, A2, A)∪Cover(s, U,A1, A2, A)

]
and for all a1 ∈ (A∗ ∩A1) let `(a1)

be the level of a1 in the formula.

2. If (A∗ ∩ A1) is empty, return reject. Otherwise, return accept and (A∗ ∩ A2, ξ
ε
1), where ξε1 is the

parametrized distribution, with support (A∗ ∩ A1), and the ranking function of a1 ∈ (A∗ ∩ A1) is
`(a1)−1

2 .

The algorithm for LPre(s,W,U) of [13, 9] can be obtained as a special case of our description above as
follows:

1. Let (A3, ξ
ε
1) ← LPre(s,W,U,Γ1(s),Γ2(s)). If either (i) LPre(s,W,U,Γ1(s),Γ2(s)) rejects; or

(ii) A3 6= Γ2(s), then return reject, otherwise return accept and ξε1.

We will now show that LPre(s,W,U,A1, A2) satisfies the desired properties.

Lemma 19. The algorithm LPre(s,W,U,A1, A2) satisfies the Reject property of LPre and Accept properties

a—d. Also, the patience of ξε1 is at most
(
ε·δmin

2

)|A1|−1
.

Proof. We establish the desired properties.
The reject property of LPre. We see that LPre(s,W,U,A1, A2) only rejects if (A∗ ∩ A1) is empty. By
definition of Stay(s,W,A1, A2, A) we have (A∗∩A1) is empty iff for all a1 ∈ A1 there exists a2 ∈ (A2\A∗)

47

such that (Succ(s, a1, a2) ∩W) 6= ∅. We also see the reverse, since we see that also (A2 ∩ A∗) is empty if
(A∗ ∩ A1) is empty by definition of Cover(s, U,A1, A2, A). This implies that the empty set is a fixpoint of
µA.

[
Stay(s,W,A1, A2, A) ∪ Cover(s, U,A1, A2, A)

]
and thus must be A∗. Since A∗ is empty, it follows

that for all a1 ∈ A1 there exists a2 ∈ (A2 \ A∗) = A2 such that (Succ(s, a1, a2) ∩W) 6= ∅. Hence, if
LPre(s,W,U,A1, A2) rejects, then the reject property of LPre is satisfied.
Properties of the set A∗. We have that if LPre(s,W,U,A1, A2) returns (A3, ξ

ε
1), then A∗ = (Supp(ξε1) ∪

A3) and A∗ is a fixpoint of µA.
[
Stay(s,W,A1, A2, A) ∪ Cover(s, U,A1, A2, A)

]
.

Accept property a. We note that if we restrict the set of actions of player 1 to A∗ ∩ A1 and actions of
player 2 to A3, then LPre(s,W,U) would return accept and the same parametrized distribution, and then
the proof of [9, Lemma 4] ensures Accept property a and the desired patience.
Accept property b. We see that for an action a1 to be in (A∗ ∩ A1) = Supp(ξε1), by definition of
Stay(s,W,A1, A2, A

∗), for all a2 in (A∗ ∩ A2) = A3 we have that (Succ(s, a1, a2) ∩W) = ∅ (or equiv-
alently that (Succ(s, ξε1, a2) ∩ W) = ∅). This establishes the first half of Accept property b. Also, we
see that if an an action a2 is in (A2 \ A∗) = (A2 \ A3), then by definition of Cover(s, U,A1, A2, A

∗)
for all a1 in (A∗ ∩ A1) = Supp(ξε1) we have that (Succ(s, a1, a2) ∩ U) = ∅ (or equivalently that
(Succ(s, ξε1, a2) ∩ U) = ∅). This establishes the second half of Accept property b.
Accept property c. For A∗ to be a fixpoint we must have, by definition of Stay(s,W,A1, A2, A

∗), that for
each action a1 ∈ (A1 \ A∗) = (A1 \ Supp(ξε1)) that the condition to be in Stay(s,W,A1, A2, A

∗) must be
violated and thus, there exists a2 ∈ (A2 \ A∗) = (A2 \ A3) such that (Succ(s, a1, a2) ∩W) 6= ∅. This
establishes Accept property c.
Accept property d. Along with U and W consider any X,Y, Z such that U ⊆ Y ⊆ Z ⊆ X ⊆ W .
Consider a real number 0 < ε < δmin

|A1| and a distribution ξ1 over A1. We will show that if Equation 1 is
satisfied by ξ1 for some action a2 ∈ (A2 \ A3), then there is some action a′2 ∈ A2 which is not satisfied by
either (i) Equation 1; or (ii) Equation 2; or (iii) Equation 3. The proof will be by contradiction and assume
towards contradiction that such an action a2 exists. Let A4 ⊆ A2 be the set of actions which does satisfy
Equation 1 by ξ1 and let the remaining actions be satisfied by either Equation 2 or Equation 3. Notice that
A4 6⊆ A3, since a2 ∈ A4 and a2 6∈ A3.

We consider two cases depending on whether or not Supp(ξ1) ⊆ Supp(ξε1) to establish the result.

• We first consider the case, where Supp(ξ1) ⊆ Supp(ξε1). Then Equation 1 is violated for all a′2 ∈
(A2 \ A3), since U cannot be reached by Accept property b. In particular, it must be violated for a2.
That is a contradiction.

• We next consider the case, where Supp(ξ1) 6⊆ Supp(ξε1). Let a1 ∈ (Supp(ξ1) \ Supp(ξε1)) be an
action, such that a1 ∈ arg maxa′1∈(Supp(ξ1)\Supp(ξε1)) ξ1(a′1). By Accept property c, there exists an
action a′2 ∈ (A2 \ A3) such that Succ(s, a1, a

′
2) ∩W 6= ∅, since a1 ∈ (Supp(ξ1) \ Supp(ξε1)) ⊆

(A1 \ Supp(ξε1)). We again split into two cases. Either a′2 is in A4 or not.

– We first consider the case then a′2 ∈ A4. We will show that we go toW with too high probability,
compared to the probability with which we go to U . We see that δ(s, ξ1, a

′
2)(W) ≥ δmin ·ξ1(a1),

by definition of a′2. Each action a′1 in Supp(ξε1) ensures that Succ(s, a′1, a
′
2)∩U = ∅ by Accept

property b, since a′2 6∈ A3. It follows that δ(s, ξ1, a
′
2)(U) ≤ ξ1(a1) · (|A1| − 1). This is because

each action a′1 such that ξ(a′1) > ξ(a1) are in Supp(ξε1) by definition of a1 and there are at
most |A1| − 1 actions in (Supp(ξ1) \ Supp(ξε1)) (since ξ1 and ξε1 are distributions over A1 and
|Supp(ξε1)| ≥ 1). But then δ(s, ξ1, a

′
2)(U) · ε < δ(s, ξ1, a

′
2)(W) and thus Equation 1 is violated

by ξ1 and a′2. This contradicts either that a′2 ∈ A4 or the definition of A4.

48

– We next consider the case then a′2 ∈ (A2 \ A4). Recall that Succ(s, ξ1, a
′
2) ∩W 6= ∅. Hence,

Equation 2 and Equation 3 are violated, since Succ(s, ξ1, a
′
2) ∩X 6= ∅ (because X ⊆ W and if

W is reached with positive probability, then X is reached with positive probability). Moreover,
Equation 1 cannot be satisfied either, since a′2 6∈ A4. Thus we have a contradiction.

Thus, in all cases we reach contradiction and, hence Accept property d is satisfied.
The desired result follows.

49

