943 research outputs found

    Defining determinism

    Get PDF
    The article puts forward a branching - style framework for the analysis of determinism and indeterminism of scientific theories, starting from the core idea that an indeterministic system is one whose present allows for more than one alternative possible future. We describe how a definition of determinism stated in terms of branching models supplements and improves current treatments of determinism of theories of physics. In these treatments, we identify three main approaches: one based on the study of (differential) equations, one based on mappings between temporal realizations, and one based on branching models. We first give an overview of these approaches and show that current orthodoxy advocates a combination of the mapping- and the equations - based approaches. After giving a detailed formal explication of a branching - based definition of determinism, we consider three concrete applications and end with a formal comparison of the branching- and the mapping-based approach. We conclude that the branching - based definition of determinism most usefully combines formal clarity, connection with an underlying philosophical notion of determinism, and relevance for the practical assessment of theories

    Querying the Guarded Fragment

    Full text link
    Evaluating a Boolean conjunctive query Q against a guarded first-order theory F is equivalent to checking whether "F and not Q" is unsatisfiable. This problem is relevant to the areas of database theory and description logic. Since Q may not be guarded, well known results about the decidability, complexity, and finite-model property of the guarded fragment do not obviously carry over to conjunctive query answering over guarded theories, and had been left open in general. By investigating finite guarded bisimilar covers of hypergraphs and relational structures, and by substantially generalising Rosati's finite chase, we prove for guarded theories F and (unions of) conjunctive queries Q that (i) Q is true in each model of F iff Q is true in each finite model of F and (ii) determining whether F implies Q is 2EXPTIME-complete. We further show the following results: (iii) the existence of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the finite model property of the clique-guarded fragment; (v) the small model property of the guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded bisimulation invariant PTIME.Comment: This is an improved and extended version of the paper of the same title presented at LICS 201

    Isomorphism of "Functional" Intersection Types

    Get PDF
    Type isomorphism for intersection types is quite odd, since it is not a congruence and it does not extend type equality in the standard interpretation of types. The lack of congruence is due to the proof theoretic nature of the intersection introduction rule, which requires the same term to be the subject of both premises. A partial congruence can be recovered by introducing a suitable notion of type similarity. Type equality in standard models becomes included in type isomorphism whenever atomic types have "functional" interpretations, i.e. they are equivalent to arrow types. This paper characterises type isomorphism for a type system in which the equivalence between atomic types and arrow types is induced by the initial projections of the Scott\u27s model via the correspondence between inverse limit models and filter lambda-models

    Quantum and non-signalling graph isomorphisms

    Get PDF
    We introduce the (G,H)-isomorphism game, a new two-player non-local game that classical players can win with certainty iff the graphs G and H are isomorphic. We then define quantum and non-signalling isomorphisms by considering perfect quantum and non-signalling strategies for this game. We prove that non-signalling isomorphism coincides with fractional isomorphism, giving the latter an operational interpretation. We show that quantum isomorphism is equivalent to the feasibility of two polynomial systems obtained by relaxing standard integer programs for graph isomorphism to Hermitian variables. Finally, we provide a reduction from linear binary constraint system games to isomorphism games. This reduction provides examples of quantum isomorphic graphs that are not isomorphic, implies that the tensor product and commuting operator frameworks result in different notions of quantum isomorphism, and proves that both relations are undecidable.Peer ReviewedPostprint (author's final draft
    • …
    corecore