992 research outputs found

    Non-blocking supervisory control for initialised rectangular automata

    Get PDF
    We consider the problem of supervisory control for a class of rectangular automata and more specifically for compact rectangular automata with uniform rectangular activity, i.e. initialised. The supervisory controller is state feedback and disables discrete-event transitions in order to solve the non-blocking forbidden state problem. The non-blocking problem is defined under both strong and weak conditions. For the latter maximally permissive solutions that are computable on a finite quotient space characterised by language equivalence are derived

    Reasoning about transfinite sequences

    Full text link
    We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on ω\omega-sequences but interact synchronously with the system in order to restrict their behaviors. We show that the satisfiability problem for the logics working on ωk\omega^k-sequences is EXPSPACE-complete when the integers are represented in binary, and PSPACE-complete with a unary representation. To do so, we substantially extend standard results about LTL by introducing a new class of succinct ordinal automata that can encode the interaction between the different quantitative temporal operators.Comment: 38 page

    Target control for hybrid systems with linear continuous dynamics

    Get PDF
    We consider the target control problem for hybrid systems with linear continuous dynamics. The system is modelled as a hybrid automaton. Control action is applied on the discrete level, while the continuous dynamics is subject to constant or set valued disturbance. The proposed controller ensures that the system can be transferred from any point of an initial set to a target set of the hybrid state space. A control design algorithm based on reachability analysis is proposed. For the implementation of the algorithm, approximate reachability analysis is employed. This involves under-approximation of reachable sets under linear continuous dynamics. The algorithm is applied to a batch control proble

    Model checking embedded system designs

    Get PDF
    We survey the basic principles behind the application of model checking to controller verification and synthesis. A promising development is the area of guided model checking, in which the state space search strategy of the model checking algorithm can be influenced to visit more interesting sets of states first. In particular, we discuss how model checking can be combined with heuristic cost functions to guide search strategies. Finally, we list a number of current research developments, especially in the area of reachability analysis for optimal control and related issues

    O-Minimal Hybrid Reachability Games

    Full text link
    In this paper, we consider reachability games over general hybrid systems, and distinguish between two possible observation frameworks for those games: either the precise dynamics of the system is seen by the players (this is the perfect observation framework), or only the starting point and the delays are known by the players (this is the partial observation framework). In the first more classical framework, we show that time-abstract bisimulation is not adequate for solving this problem, although it is sufficient in the case of timed automata . That is why we consider an other equivalence, namely the suffix equivalence based on the encoding of trajectories through words. We show that this suffix equivalence is in general a correct abstraction for games. We apply this result to o-minimal hybrid systems, and get decidability and computability results in this framework. For the second framework which assumes a partial observation of the dynamics of the system, we propose another abstraction, called the superword encoding, which is suitable to solve the games under that assumption. In that framework, we also provide decidability and computability results

    Parameterized Model Checking of Token-Passing Systems

    Full text link
    We revisit the parameterized model checking problem for token-passing systems and specifications in indexed CTL∗\X\textsf{CTL}^\ast \backslash \textsf{X}. Emerson and Namjoshi (1995, 2003) have shown that parameterized model checking of indexed CTL∗\X\textsf{CTL}^\ast \backslash \textsf{X} in uni-directional token rings can be reduced to checking rings up to some \emph{cutoff} size. Clarke et al. (2004) have shown a similar result for general topologies and indexed LTL\X\textsf{LTL} \backslash \textsf{X}, provided processes cannot choose the directions for sending or receiving the token. We unify and substantially extend these results by systematically exploring fragments of indexed CTL∗\X\textsf{CTL}^\ast \backslash \textsf{X} with respect to general topologies. For each fragment we establish whether a cutoff exists, and for some concrete topologies, such as rings, cliques and stars, we infer small cutoffs. Finally, we show that the problem becomes undecidable, and thus no cutoffs exist, if processes are allowed to choose the directions in which they send or from which they receive the token.Comment: We had to remove an appendix until the proofs and notations there is cleare

    Asynchronous Games over Tree Architectures

    Get PDF
    We consider the task of controlling in a distributed way a Zielonka asynchronous automaton. Every process of a controller has access to its causal past to determine the next set of actions it proposes to play. An action can be played only if every process controlling this action proposes to play it. We consider reachability objectives: every process should reach its set of final states. We show that this control problem is decidable for tree architectures, where every process can communicate with its parent, its children, and with the environment. The complexity of our algorithm is l-fold exponential with l being the height of the tree representing the architecture. We show that this is unavoidable by showing that even for three processes the problem is EXPTIME-complete, and that it is non-elementary in general
    • 

    corecore