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Abstract 
 

 We consider the problem of supervisory control for a class of rectangular automata and more specifically for compact 
rectangular automata with uniform rectangular activity, i.e. initialised. The supervisory controller is state feedback and 
disables discrete-event transitions in order to solve the non-blocking forbidden state problem. The non-blocking problem is 
defined under both strong and weak conditions. For the latter maximally permissive solutions that are computable on a finite 
quotient space characterised by language equivalence are derived. 
Key words: Rectangular automata, supervisory control, non-blocking supervisor. 

 
 

1. Introduction 
 

This paper concerns a language optimisation problem defined on a class of rectangular automata (linear hybrid systems) that 
was originally stated for finite-state automata [5] and then extended to timed automata in [2], [4]. A rectangular (hybrid) 
automaton is a model of a system that contains both continuous and discrete components. The control actions considered in 
this paper are exercised by preventing discrete events from occurring at particular states. The set of states of a hybrid 
automaton A is defined to be S  and the discrete event transitions are labelled by the finite set Σ . We define the supervisor 

}1,0{: →Σ×Sτ ; an event Σ∈σ  is permitted by τ  to occur at the state Ss ∈  if and only if 1),( =στ s . A state of A  is 
called τ -reachable if it can be reached from an initial state via a path all of whose events are permitted by τ . The problem 
definition involves partitioning the event set Σ  into two subsets, uc Σ∪Σ=Σ , the controllable and uncontrollable events 
respectively. The controllable events are characterised by the fact that they can at any point be prevented from occurring, 
whereas the uncontrollable events cannot be prevented from occurring; that is, always 1),( =στ s  if σ ∈Σ u . This definition 
was used in [5] and in this respect differs from the controller synthesis problem stated in [3, Def. 2.1.34] where all events 
except one at each state are prevented from occurring. Also a control problem under the hybrid games formalism has been 
considered in [6]. 

The supervisory control problem is defined as follows: A compact rectangular automaton A  with fixed activity rectangle and 
two sets of locations (states) TF ,  of A are given. Compute a supervisor τ  such that in the controlled hybrid automaton 

),( τA  a) the locations in F  are inaccessible, b) a location in T  can be reached from every τ -reachable state of A  (this 
latter condition we call the nonblocking condition) and c) the supervisor τ  is maximally permissive (this statement will be 
made precise later).  

Our main result is that the non-blocking supervisory problem is decidable and it is possible to compute the supervisor τ . We 
partition the state set into finitely many equivalence classes, based on language equivalence, and we show that if any two 
transitions with controllable events lead to equivalent states, then both or neither of these transitions should be permitted. The 
solution follows from the fact that the reachability problem, for the class of rectangular hybrid automata we are considering, 
can be solved by replacing the hybrid automaton by a timed automaton, in which the corresponding supervisory control 
problem can be solved. Moreover, the partition of the state space in equivalence classes allows us to derive the non-blocking 
supervisor by removing the blocking states. The non-blocking supervisory algorithm is decidable and computable and we 
derive the appropriate algorithm using the partition. In this respect the controller synthesis is computed by an exact (accurate) 



 

 

algorithm that terminates.  

Initialised rectangular automata are, together with timed automata, classes of hybrid automata for which the controller 
synthesis procedure terminates. Beyond that approximating schemes are needed, see [7]. If the hybrid automaton can be 
partitioned into a finite number of bisimulation classes (see [3, 2.1.18] for a definition and discussion of this term), like a 
timed automaton (see [1]), then the supervisory control problem is decidable and the supervisor computable, (see also [3, 
2.1.36]. However, for the class of rectangular hybrid automata that we consider, there is an uncountable number of 
bisimulation classes, except for some low-dimensional special cases (see [3, chapter 6]). Thus, although the reachability 
problem is decidable is not known whether the non-blocking supervisory problem is decidable as well. 

Decidability issues associated to hybrid automata have been studied in [9], [10] where the reader is referred for more details. 
In [9] initialised rectangular automata are stated as the boundary between decidability and undecidability of the reachability 
problem for hybrid automata. In [11] the problem of synthesis of controllers for generalised rectangular automata, named 
linear hybrid systems, has been addressed. Reachability was shown to be semidecidable for this class of systems and studies 
for zeno behaviour, time diverging and partial observability have been considered. The synthesis of controllers for hybrid 
systems, in general, and for safety and eventuality specifications, using optimal control and games theory , have been studied 
in [15] and [14] respectively. 

The main contribution of the paper is the study of the supervisory control problem for rectangular automata under the 
Ramadge-Wonham methodology, [5]. In relation to [3] our original contribution includes the introduction of uncontrollable 
events in the model and the detailed study, derivation and exact computation of the non-blocking (dead-lock free) maximum 
permissive supervisor using the partition of the state space in language equivalence classes. In particular, the effect of the 
synchronous (timed automata) and asynchronous (rectangular automata) semantics for the derivation of the non-blocking 
supervisor is demonstrated. 
This paper is organised as follows. In part 2 we give the essential definitions and a precise statement of the problems that we 
are attempting to solve. In parts 3 and 4 we prove the main results and in part 5 we state our conclusions. 
 
 
2. Definitions 
 
A rectangular hybrid automaton (RHA) A  is defined as in [3, 2.2] but with several necessary restrictions. Let R  be the set 
of real numbers. We define Βn  to be the set of all compact rectangles of dimension n ; that is, an element of nΒ  is a set 

n
n

i
ii UL R⊆∏

=1
],[  with each ii UL ,  an integer. In order to prove our results, we assume that the RHA A  is compact (that is, all 

rectangles given in the definition of an RHA are compact). A compact RHA A of dimension n is defined by the following 
sets; 
1) a finite alphabet Σ ; 
2) a finite directed graph ),( EV . Elements of V  are called  vertices (or locations); elements of E  are edges; 

3) a function nVinv Β→: . We call )(vinv  the invariant set of the vertex v . A state of A  is a pair ),( xvs =  with Vv ∈ , 

)(vinvx ∈ . We say x  is the continuous part, and v  the discrete part, of the state ),( xv . We write 

)),(()),,(( xvctsxxvdiscretev == . The invariant set specifies the allowable continuous states at each location. The set of 
states is S . We also define )(vS to be the set of states with discrete part Vv ∈ ; 

4) an activity rectangle nact Β∈ . The activity rectangle defines the rates at which the continuous part of a state changes. In 
[3] the general definition of a rectangular automaton assumes an activity rectangle for each vertex, but here we assume 
that each vertex has the same activity rectangle. In [3, 3.4] it was shown that basically the class of initialised rectangular 
automata is essentially equivalent to the class of rectangular automata with uniform dynamics. A rectangular automaton is 
called initialised if whenever the continuous dynamics of a variable ix change, due to a change in location, the value of  

ix is nondeterministically reinitialised. Also, we need to assume that no face of act  has a zero co-ordinate; that is, each 

L Ui i≠ ≠0 0,  when act  is expressed as given above. These restrictions are essential for proving our results; 

5) an initial state function )(: vinvVI → . We define )}(:),{( vIxSxvinit ∈∈= ; 
6) the functions   
       ;:,2:,: },,1{

n
n

n EpostguardEupdateEpreguard Β→→Β→ l  



 

 

7) a function Σ→Eevent :   
Functions 6) and 7) define when a discrete event can take place. 
 
The following set of binary relations is associated with A :  

For each element 0≥∪Σ∈ Rσ  there is a relation SS ×∈→
σ

. We write 21 ss
σ
→  to mean 

σ
→∈),( 21 ss . Next the relation; 

),(),( yvxv
t
→  holds if there is a differentiable function )(],0[: vinvtf →  with derivative in act  and ytfxf == )(,)0( , 

t ≥ 0 . This is equivalent to the condition that either x y=  or there is a function f  with constant derivative satisfying the 

conditions stated. Note that ),(),(
1

yvxv
t
→ , ),(),(

2

zvyv
t
→  implies ),(),(

21

zvxv
tt +

→ . We also write t
0≥
→=→

t

ttime
. The relation 

),(),( ywxv
σ
→  holds if there is an edge Ee ∈  from wv to  with )(eevent=σ , )(epreguardx ∈ , )(epostguardy ∈  and 

for all )(eupdatei ∉ , the ith component of x  is equal to the ith component of y . We write 21 ss
delayed
→
σ

 if ′→ 11 ss
t

 and 

21 ss →′
σ

 for some t ≥ 0  and Ss ∈′1 . For SQ ⊆  we write )(, Qpredelayed σ  to be the set of all states s  satisfying 

Qss
delayed

∈→ 1

σ
and )()( ,,, vSpreQpre delayeddelayedv ∩= σσ .  

The language *)( Σ⊆sL  (where *Σ  indicates the set of finite strings from Σ ) is defined as follows; if 

121
1

+→→ r
delayed

r
delayed

ssss
rσσ

mm  then )( 11 sLr ∈σσ m .  

Next we define the notion of language equivalence used below. Given a compact rectangle nR Β∈  and nyx R∈, , we say that 
x  and y  are language equivalent for R  if for every compact rectangular hybrid automaton A  with activity rectangle 

Ract =  and every location Vv ∈  we have ),(),( yvLxvL = . Two states of a hybrid automaton are language equivalent for 

R  if they have the same discrete part and their continuous parts are language equivalent. We now define an equivalence 
relation ≅  on nR  which is known to be at least as fine as language equivalence for act . Given 

n
nn x,xxx,xx R∈′′=′= )(),( 11 �� , assume that n

n

i
ii ULact R⊆=∏

=1
],[ and let λ be the least common multiple of the integers 

in the set },,,,{ 11 nn ULUL �  and define xx ′≅  if  

•  )()(,
i

i
i

i L
x

L
xni λλ ′↑=↑≤∀  and  

•  
).(

)(,,

i
i

j
j

i
i

j
j

L
x

U
x

L
x

U
xji,nji

λλ

λλ

′−′↓

=−↓≠≤∀

 

Here by ↑ we denote the ceiling and by ↓  the floor of ∈x nR . 
Note that owing to our hypotheses, there are no zero denominators. This is the only point in the paper at which every 

0,0 ≠≠ ii LU needs to be assumed. It should be observed that in every compact rectangle there are finitely many ≅ -classes. 

It is proved in [3, Corollary 7.3.2] that ≅ -equivalence implies language equivalence (sufficient condition). Given two states 

Sxvxv ∈),(),,( 2211  we write ∈≅)),(),,(( 2211 xvxv  to mean ∈≅),( 21 xx  and 21 vv = . 
 
Example 1: The partition of the continuous state space for a two dimensional rectangular automaton, based on language 
equivalence, as defined above is derived. This partition is used in section 4 as well, in order to clarify the notion of the so-
called good sets. Consider the rectangular automaton where the continuous dynamics at each location are given by 



 

 

]21[
.
=x and ]21[

.
=y . The partition of the state space based on language equivalence classes is shown in the figure 1. The 

families of sloping lines are given by the equations λ/**/ 212 UhxLUy −=  and λ/**/ 212 LkxULy +=  where h, k are 
integers. The family of the horizontal lines is given by the equations λ/* 2Lny =  and the family of the vertical lines by 

λ/* 1Lmx =  where m, n are integers. 
 
Let the event alphabet Σ  be partitioned as uc Σ∪Σ=Σ , the controllable and uncontrollable events respectively. Also, and in 

order to define clearly the supervisor, we require one further condition on A ; if σ ∈Σ c  and 'ss
σ
→  and ''ss

σ
→  then ''' ss = . 

Then we will say that A  is cΣ -deterministic. This condition can be enforced by assuming that )(epostguard  is a singleton 

if the edge e has label in Σc  and that no two edges with the same label in Σc  have the same starting vertex. 
 
Definition of the supervisory controller: We consider the supervisory controller to be the (static) state-feedback map 

Γ→S:τ  where Γ  is the set of control patterns defined to be }:{: uΣ⊇Σ⊆=Γ γγ . Thus a supervisor for A  is a function 

}1,0{: →Σ×× nV Rτ  satisfying 1),,( =στ xv  if uΣ∈σ . We write 2
,

1 ss
delayed
→
σ

τ
 if ′→ 11 ss

t
 and 21 ss →′

σ
 for some 0≥t  

and Ss ∈′1  and 1),( 1 =′ στ s ; also, we write 21 ss →
σ

τ
 if 21 ss →

σ
 and 1),( 1 =στ s . For any subset Σ⊆Σ′ , the relation 

delayed

Σ′
→  

is the union of the relations 
delayed

σ
→  for Σ′∈σ ; also, 

delayed,τ

Σ′
→  is defined similarly.  

For any relation → , the relation →*  is the transitive closure of the union of →  and equality. If ss
delayed

*

,0 )(
τ

Σ
→  with 

inits ∈0  then we say that s is τ -reachable and if sss
time

delayed
′→→

Σ
*

,0 )(
τ

 then ′s  is almost τ -reachable. 

 
The main problem of this paper is the following; assume that the sets VTF ⊆,  are given. The assumption that these sets are 
‘whole’ vertex sets (and not ‘part’ of them) is without loss of generality. 
 
Problem definition: Non-blocking Forbidden State Problem for Rectangular Hybrid Automata 
The supervisory control problem takes the following form: 
Find a supervisor τ  for A  satisfying: 

1. '*)(
,

s
delayed

s →
Σ

¬
τ

for all inits ∈  and Fsdiscrete ∈′)(  (that is, τ  avoids F . This defines the forbidden state problem or a 

safety property problem) and 

2. if Ss ∈  is any τ -reachable state, then ss
delayed

′→
Σ

*

,
)(

τ
 for Tsdiscrete ∈′)(  (that is, τ  avoids blocking. This defines an 

eventuality property problem or the non-blocking controller).  
We then say that τ solves the weak non-blocking forbidden state problem for the vertex sets F T, . We also define the strong 
non-blocking forbidden problem, in which the hypothesis on Ss ∈  is merely that s  is almost τ -reachable, and which in 
other respects is the same as the weak non-blocking problem. The latter problem appears to be more difficult to solve than the 
weak non-blocking forbidden problem, see section 4 below. In this paper we concentrate mostly on the weak non-blocking 
forbidden problem. It is not guaranteed that a solution to either problem exists. We prove that if a solution to the weak 
nonblocking problem exists, then there exists a solutionτ max , decidable and computable, which is maximally permissive; that 
is, if any supervisor τ  also solves the weak nonblocking problem and for some inits ∈0 , 0≥it  and Σ∈iσ  we have 

mm

t

sssss
mσ

µ

σ

µµ
→→→ ��110

11

 for τµ =  then this also holds for maxτµ = .  



 

 

We show that if ssss ′′′ →→
21

21 ,
σσ

 with cΣ∈21,σσ  and ′ ′′s s,  are ≅ -equivalent then ),(),( 22max11max στστ ss = . Based 

on this we then show that given a ≅ -class r  then ),( 1max στ s  is computable for any rssSs ∈′∈ →
σ

11 , . 

3. Main results 
 
3.1 Finite partition of the rectangular automaton 
 
In order to compute the required supervisor, it suffices to be able to construct a labelled transition system defined over a finite 

state set which enables us to establish, given a state Ss ∈1 , whether '*
1 )( ss

delayed

uΣ
→  for any Fs ∈' . It is this that motivates the 

following results in this section.  
 
First we consider the following lemma concerning language equivalence. 

Lemma 1. If �),(),( 2211
1

xvxv
delayed
→
σ

 ),( 11 ++→ mm
delayed

xv
mσ

m  and ′≅ 11 xx  then �),(),( 2211
1 ′′ → xvxv

delayed

σ
),( 11
′

++→ mm
delayed

xv
mσ

m  for 

elements n
ix R∈′ . (Note that we do not claim ′≅ ii xx  for 1>i .) 

Proof. Since ′≅ 11 xx  we must have �),(),( 2211
1 ′′′ → xvxv

delayed

σ
),( 11
′′

++→ mm
delayed

xv
mσ

m . To prove that each ′= ii νν , construct a 

hybrid automaton A  without loops in the directed graph defined by its vertex and edge sets, of dimension n  with activity 
rectangle act  and containing only the locations and edges of A  appearing in the statement 

�),(),( 221
1

xvxv
delayed
→
σ

1 ),( 11 ++→ mm
delayed

xv
mσ

m  (if this path passes through the same vertex more than once then duplicate vertices 

will have to be defined). The result now follows from the fact that ′≅ 11 xx  in A, implies ′≅ 11 xx  in A  , and so for the 

automaton A  ),(),( 11
′= xvLxvL .  

Definition 2.  A statement �),(),( 2211
1

xvxv
delayed
→
σ

  ),( 11 ++→ mm
delayed

xv
mσ

m  is called a path over the vertex-sequence v vm1 1, ,� + .  

Using language equivalence define a finite partitioning of nR  and let ≅r  be the corresponding function from nR  into the set 

≅/nR of equivalence classes. 

Definition 3.  We define the labelled transition system on the finite set ≅× /nV R  as follows. Given states ),(),,( 2211 xvxv  

we define ))(,())(,( 2211 xrvxrv ≅≅ ⇒

σ
 if 

),(),( 221 xvxv
delayed
→
σ

1 .  

Theorem 4.  Let 11)( rxr =≅ . Then ),(),(),( 112211
1

++⇒⇒ mm rvrvrv
mσσ

mm  for sets n
ir R⊆  iff there exists a path 

),(),(),( 11221
1

++→→ mm
delayeddelayed

xvxvxv
mσσ

m1 for n
ix R∈ .  

Proof. That the second assertion implies the first follows immediately from the definition of 
σ
⇒  . 



 

 

We assume the first assertion and prove the second using induction on m . For m=1, ),(),( 221
1 ′′ → xvxv

delayed

σ

1  for some 11 rx ∈′ , 

22 rx ∈′  by the definition of ⇒
σ

.  Let  ),(),( 1122
2 ′′

++→→ mm
delayeddelayed

xvxv
mσσ

mm  for n
ix R∈′  following the inductive hypothesis. 

The result now follows from Lemma 1 and the fact that 11 rx ∈′  implies ′≅ 11 xx . 
 
Remark: Note that 1)( >≠≅ iforrxr ii . This would be true if we had bisimulation equivalence. 
 
 
 
3.2 Forbidden state problem 
 
Next we consider the forbidden state problem (without involving non-blocking) and we show that this is decidable. This 
follows from the decidability of the associated reachability problem. We state this problem briefly in order to give some 
intuition and to clarify that the non-blocking forbidden problem is more involved. The latter is stated afterwards in 3.3 

Theorem 5 Assume that )( '*
0 )( ss

u

delayed
→
Σ

¬ for inits ∈0 , Fs ∈'  (otherwise no solution to the problem could exist). Define the 

supervisor τ  as follows; 0),( 1 =στ s  if there exists a state Ss ∈  with ss
σ
→1  and '*)( ss

delayed
u→ Σ  with the discrete part of 's in 

F  and σ ∈Σ c . In all other cases let 1),( 1 =στ s . Then given any other supervisor τ  that avoids the vertex set F , τ  is not 
maximally permissive.  

Also, if ),( 11
1

xvs
σ
→  and ),( 22

2

xvs
σ
→  with each σ i c∈Σ  and x x1 2≅  then ),(),( 2211 στστ ss = , and this means that if there 

exists a supervisor solving the forbidden state problem then this is constant on transitions mapping into the same ≅  class. 

Proof. Assume first that the defined supervisor does not solve the problem i.e. there exists a path '*

,
0 )( ss

delayed
→
Σ

τ
 with inits ∈0  

and Fs ∈' . Then since )( '*
0 )( ss

u

delayed
→
Σ

¬  by the hypothesis, we infer that '*

,

''

,

'
1 )( sss

u

delayedA
→→
Σ

τ

σ

τ
 with cΣ∈σ . However this is 

impossible, since we then have '*
,

'' )( ss
u

delayed

Σ
 → τ  and thus 0),( '

1 =στ s  by definition. 

Next assume that τ  is a supervisor and that 
mm

t
sssss

m

→→→
σ

µ

σ

µµ
��110

11  holds for τµ =  but not for τµ =  and m  is minimal such 

that this condition is satisfied. Thus cm Σ∈σ  and '*)( ss
u

delayedm

Σ

→  for some Fs ∈' , by the definition of τ , and this implies that 

a location in F  is accessible from inits ∈0  under τ , hence τ  is not a solution to the forbidden state problem.  

The last part of the theorem follows from lemma 1. This is an important property for the involved partition of ≅  classes. 
 

We next show that it is decidable whether we have 1),( 1 =στ s or 0 for a transition ),(1 xvs
σ
→ , where cΣ∈σ , r  is a ≅ -class, 

rx ∈ and Vv ∈ . Following the last part of Theorem 5, for each Ss ∈1  and event σ  the transition 

),(1 xvs
σ
→ mapping into the ≅ class ))(,(),( xrr ≅= νν  can be established as disabled or not, depending whether there exists a 

sequence of uncontrollable or not labelled transitions from the ≅  class to a forbidden state. The decidability follows from 

Theorem 6 showing that the condition '*)))((,( sxrv
u

⇒

Σ

≅  for some Fs ∈'  can be checked since the set ≅× /nV R  is finite. 

Theorem 6. It is decidable whether, given a ≅ -class r and Vv ∈  we have '*)( ss
delayed

u→ Σ  with Fs ∈'  for any (and hence all) 

states s  whose continuous part lies in r and whose discrete part is v . 



 

 

Proof (sketch). Choose any vector rx ∈  with rational components. We may assume that the components of rx ∈ are in fact 
integers; otherwise it is necessary to scale up all the dimensions of A . Let A′  be the rectangular hybrid automaton that is 
identical to A except that its initial state set is },{ xv and all controllable edges are deleted. In [3, Def. 3.2.2] a n2  
dimensional timed automaton AN ′  with 

vertex set V is constructed whose initial state set is },,{ xxv such that the path '*)(),( sxv
delayed

u→ Σ , with Fs ∈' , in A′ exists if 

and only if the path '*)(),,( sxxv
delayed

u→ Σ  in AN ′  exists, with rx ∈  The latter is a decidable reachability problem that can be 

checked on the (finite) region equivalence quotient space of the timed automaton using, for example, the untiming 
construction, see [1], [3]. 
 
Remark : In both [3] and [10] it is shown how to construct the timed automaton such that the transition systems of the timed 
automaton and the given initialised rectangular automaton are isomorphic. Then the timed automaton contains all the 
reachability information about the rectangular automaton. Here, given the finite partition on the rectangular automaton, the 
fact that the reachability problem is decidable may follow directly from the above arguments without using the timed 
automaton. 
 
 
3.3 Weak Non-blocking Forbidden State Problem 
 
Our main result is the computation of the non-blocking supervisor τ max  for each equivalent class ≅  of A. 
Intuitively due to the existence of the uncontrollable events we need to identify possible deadlock (blocking) states and 
remove them. State set backpropagation is needed and for decidability and computability reasons the notion of the so-called 
good sets is introduced. The reason for this is that the considered quotient space based on language equivalence is more 
‘subtle’ than bisimilation and thus some additional properties for this partition are required in order to solve the non-blocking 
forbidden state problem.  
 
Definition 7. A set of states SQ ⊆ , all with the same discrete part Vv ∈ , is called elementary if there are two sets of vertex-

sequences, UU ′′′, , all of whose members have the same first vertex, and such that given )(νSx ∈  we have Qx ∈),(ν  if and 

only if for every sequence Uu ′∈  there is a path over u  starting at the state x and for every sequence u U∈ ′′  there is no path 
over u  starting at x. We write ),( UUQ A ′′′Θ=  if this holds. If the state sets mQQ ,,1 �  are all elementary and all elements of 

mQQ ∪∪ l1  have the same discrete part, then this set is called good. 
By lemma 1, an elementary set is a union of language equivalence classes (and hence ≅ -classes) of states, thus there are 
finitely many elementary (and good) sets at each vertex. 
 
Lemma 8. Let AVv ∈  and let 21,QQ  be good sets at v . Then 2121 , QQQQ ∩∪  and 1)( QvS −  are all good sets. 

Proof. Clearly 21 QQ ∪  is a good set at v . To show that 21 QQ ∩  is a good set, assume first that 21,QQ  are elementary. 
Thus there are vertex-sequences ii UU ′′′ , such that ),( iiAi UUQ ′′′Θ= . Then ),( 212121 UUUUQQ A ′′∪′′′∪′Θ=∩  which is 
elementary. The general case follows from the fact that unions of good sets are good, and the fact that ∩  is distributive over 
∪ . 
To show that 1)( QvS −  is a good set, we assume first that ),(1 UUQ A ′′′Θ= . Then 

∪∅Θ=− ′∈ }){,()( 1 uQvS AUu� )},({ ∅Θ′′∈ uAUu� which is good. The general case follows from the fact that intersections of 

good sets are good.  
In the following lemma we show that the operator σν ,,delayedpre   commutes with the union. For simplicity we consider the 

continuous part of the operator in one discrete location, delayedpre ,ν , since clearly the result can be extended for the whole 
operation. 
Given i

n
i PP 1== t , where iP  are polyhedral sets then 
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1
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Lemma 10. Let SQ ⊆  be a good set with discrete part Vw ∈  and assume there is an edge wv e→ , with σ=)(eevent . 

Then )(,, Qpre delayedv σ  is good.  

Proof. We may assume that Q  is in fact elementary, since, following Lemma 9, σν ,,delayedpre  commutes with the union 
operator. Thus let ),( UUQ A ′′′Θ= . Let U ′  be the set of vertex-sequences obtained by preceding those in U ′  with v  and 

define U ′′  using U ′′  similarly. Then =)(,, Qpre delayedv σ ))},{(( UvUA ′′∪′Θ  which is elementary, as required. 
  
The next result is essential to show that the algorithm below can, in fact, be computed. This result can be directly derived from 
the lemma 10 above and the fact that we have a finite partition. However, for completeness and in order to relate it with 
theorem 6 we prove it involving the timed automaton. 

Lemma 11. Given a good set Q , and an edge v we → , with σ=)(eevent , it is possible to compute )(,, Qpre delayedv σ  as 

unions of ≅ -classes.  
Proof . This proof is sketchy since is using involved notions developed in [3]. We may assume that Q  is elementary i.e. 

),( UUQ A ′′′Θ= . In [3, Def. 3.2.2] a 2 n -dimensional timed automaton AN  is defined with the same vertex and edge sets and 

a computable mapping ξ  from ANS2  to S2  which preserves unions. The timed automaton AN  is an integral one-sided 

timed automaton with attractors, see [3, 3.1.10 and 7.2.3]. Then ),(),( UUUU AN A
′′′Θ=′′′Θξ  and 

=′′′Θ ),(,, UUpre
AN

delayedv σξ ),(,, UUpre
AN

delayedv ′′′Θξσ ; both these statements follow from [3, Lemma 3.2.8]. Furthermore, 

),( UUAN ′′′Θ  is a union of language equivalence classes, and by [3, Theorem 7.2.18], a language equivalence class is also an 
asynchronous (in which time is invisible) simulation class. This equivalence relation, called one-sided region equivalence 
(one-sided means that each continuous variable is either exclusively bounded from above, or exclusively bounded from below, 
by preguards), is considerably coarser than the known bisimilation relation, called region equivalence, that is a synchronous 
(time is visible) bisimulation. Following lemma 10 its preimage ),(,, UUpre AN

delayedv ′′′Θσ  is also a union of asynchronous 

simulation classes and this set can be computed. Consequently the set ),(,, UUpre
AN

delayedv ′′′Θξσ  can be computed as union 

of ≅ -classes as well.  

 
The pre-image of a bisimulation class under a transition is necessarily a union of bisimulation classes, whereas the 
equivalence classes we consider here do not satisfy this property, and this leads to decidability and computability problems 
when the non-blocking forbidden problem is considered. The result above is not true if Q  is merely assumed to be a union of 

≅ -classes; for in that case there is no guarantee that )(,, Qpre delayedv σ  is a union of ≅ -classes since a finite asynchronous 
bisimulation quotient does not exist, in general, for rectangular automata (see [3, Theorem 6.2.4]. Therefore the introduction 
of good sets of states is necessary. Using the fact that the backpropagation of these sets can be computed as a union of 
equivalent classes we can show the termination of the algorithm below in a finite number of steps. 
 
Example 2. In figure 1 it is shown some good sets and some not good sets (using dashed lines) that are unions of equivalence 
classes. The significance of introducing the good or elementary sets can clearly be demonstrated. Given the language 
equivalence partition, if the sets are not good or elementary further partition of the state space in order to calculate the 
backpropagated sets is necessary. Then, since more splitting is required, the decidability and computability of the involved 
algorithm cannot be shown. In figure 3 the set )(, Qpre delayedv  is derived in one location for the rectangular automaton 
considered in example 1, see [12]. This set is shown using the full black lines for the rectangular set Q . 
 
 
  
Computation of the non-blocking supervisor τ max  
 
The main algorithm proceeds as follows. It labels at each stage unions of ≅ -classes as acceptable , forbidden  or blank . 

These unions are all unions of good sets, since for any vertex V∈ν   the set ))},({()( ∅Θ= νν AS is elementary and therefore 
steps 1, 2 and 3 below (using lemmas 8, 10 and 11) label only unions of good sets. The notion of elementary and goods set is 



 

 

not an assumption for the stated problem but a property used to show computability of the involved algorithm in a finite 
number of steps. 
During the algorithm a ≅ -class which has been labelled may be relabelled; however a ≅ -class which has been labelled 

forbidden  will not subsequently change this label. 
 
1. Label all the ≅ -classes with discrete part in F  forbidden  and label all other ≅ -classes blank . 

2. Label all the ≅ -classes with discrete part in T acceptable  unless they have been labelled forbidden . 

3. Do steps (a) and (b) below until doing either step leaves unchanged the labelling of all ≅ -classes.  

(a) If there is an edge wv
e
→ , with ueevent Σ∈=σ)( , and SQ ⊆  is the union of ≅ -classes at w  which have been labelled 

forbidden , then label those in )(,, Qpre delayedv σ forbidden .  

 (b) If there is an edge wv e→ , with σ=)(eevent , and SQ ⊆  is the union of ≅ -classes at w  which have been labelled 

acceptable , and σ ∈Σ u , let SP ⊆  be the union of ≅ -classes at w  which have been labelled forbidden . Then label 

acceptable  the ≅ -classes in )(,, PQpre delayedv −σ . If on the other hand σ ∈Σ c  then label acceptable  the ≅ -classes in 

)(,, Qpre delayedv σ . 
4. Relabel forbidden  all ≅ -classes which are labelled blank , and relabel blank all ≅ -classes which are labelled 

acceptable . 
5.  Repeat steps 2, 3, 4 (in that order) repeatedly until there are no further changes in labelling. 
 
There are finitely many ≅ -classes and so all steps of the algorithm except step 5 obviously terminate. Step 5 either increases 

the number of ≅ -classes labelled forbidden  or keeps this number constant; and in the latter case step 5 has no effect; thus 
the algorithm eventually terminates. 

We then define the supervisor }1,0{:max →Σ×× nV Rτ by 0),(max =στ s  if σ ∈Σ c  and 'ss
σ
→  and 's  lies in a forbidden  

≅ -class at the end of the algorithm and 1),(max =στ s  otherwise. Since A  is cΣ -deterministic, τ max  is well defined. This 

is the only point in the paper at which Σc -determinism is needed.  

Corollary 12. If there are transitions ssss ′′′ →→
21

21 ,
σσ

 with cΣ∈21,σσ  and ′ ′′s s,  are ≅ -equivalent then 

),(),( 22max11max στστ ss = .  
Proof. Follows from lemma 1. 
 
Following the algorithm above and corollary 12 we conclude that given a ≅ -class r  then the derivation of ),( 1max στ s  is 

decidable for any rxxsSs ∈∈ → ),,(, 11 ν
σ

.  

Theorem 13. If a solution to the weak non-blocking forbidden state problem exists then τ max  is a maximally permissive 
solution to this problem.  
Proof. We first prove that τ max  is a solution to the weak non-blocking forbidden state problem.  

 Assume first that mm

t

sssss
mσ

τ

σ

ττ max

1

max

1

max
110 →→→ ��  with inits ∈0  and Fsdiscrete m ∈)( . At least one ci Σ∈σ , otherwise no 

solution to the weak non-blocking forbidden state problem could exist. Assume that i is maximal with this property; then the 
≅ -class containing si  would become forbidden  after repeated applications of step 3a in the algorithm, contradicting 

ii ss
iσ

τ max

→ . Next assume that mm

t

sssss
mσ

τ

σ

ττ max

1

max

1

max
110 →→→ ��  with inits ∈0 , and there is no path ss

t

m

σ

ττ max

1

max

→→ ��  with 

Tsdiscrete ∈)( . This implies that the ≅ -class containing sm  would have become forbidden  after repeated applications of 



 

 

step 5. Assume, in this case, that mi ≤  is maximal with ci Σ∈σ . (If no such mi ≤ exists, then no solution to the weak non-
blocking forbidden problem exists.)  Thus the ≅ -class containing is  would have become forbidden  after repeated 

applications of step 3a, once the ≅ -class containing sm  had become forbidden . This contradicts ii ss
iσ

τ max

→ . Thus τ max  

solves the weak non-blocking forbidden problem. The maximality assertion follows from the fact that in the computation of 
τ max  we only exclude states that are necessarily inaccessible.  
 
 
4. On the Strong Non-blocking Forbidden State Problem 
 
This is more difficult since the exact computation of such blocking states, using the introduced partition, becomes undecidable 
and removing them may occur on the expense of losing the least-restrictive controlled behaviour. The finite quotient based on 
language equivalence is defined on the asynchronous transition system where time is treated as a ‘silent’ or invisible action. 
However, in timed automata, a synchronous transition system is used, time is visible and is modelled as the event {time}, that 
subsumes all real-valued time durations. This event can be controllable or uncontrollable, see [8]. The time-abstract 
transition system (where the time it takes to reach one discrete state from another is ignored) has the event set }{time∪Σ and 
involves on the region equivalence quotient space where there exists a finite number of bisimulation classes. It follows that in 
timed automata the (strong) non-blocking forbidden problem is solvable, see [8], [2], [4]. 
To explain this further we introduce an illustrative example shown in Figure 3, where within a discrete location some blocking 
states are shown, two of then are τ -reachable and one is almost τ -reachable. It is clear that the discrete transitions that lead 
to the first two states can be associated and these transitions can be disabled. The third state is almost τ -reachable and 
following the fact that the transition system is asynchronous this state cannot be associated with any discrete transition. Thus, 
if we need to avoid this deadlock state, we should disable all transitions leading to the discrete location. However, this will 
result in a conservative (not maximal permissive) controlled behaviour.  
It is worth mentioning one case in which a solution to the weak non-blocking problem also solves the strong non-blocking 
forbidden problem for initialised rectangular automata.  
Theorem 14. Assume that nR∈0  is an interior point of the activity rectangle act . Then if the supervisor τ  solves the weak 
non-blocking forbidden problem, it also solves the strong non-blocking forbidden problem.  

Proof.  This follows from the fact that if 21 ss
time
→  with ii xscts =)(  then atxx += 12  with 0, ≥∈ tacta . Choose 0>λ  small 

enough so that acta ∈−λ ; since ))((21 λ
λ taxx −+= , we have 12 ss

time
→ . Assume that a state ′s is almost τ -reachable; that 

is, that sss
time

delayed
′→→

Σ
*

,
0 )(

τ
 for some inits ∈0 . Thus s  is τ -reachable and so ss

delayed
′′→

Σ
*

,
)(

τ
 for Tsdiscrete ∈′′ )( . Since 

ss
time
→′ , we have ss

delayed
′′→′

Σ
*

,
)(

τ
, as required.  

 
 

5.  Conclusions  
 
We have derived an algorithm that solves a language optimisation problem. The non-blocking supervisor satisfies safety 
specifications and is computed using the language equivalence partition for initialised rectangular automata under weak and 
strong blocking conditions. The compactness condition on A  was introduced in order to employ the results in [3] for 
Theorem 6 and Lemma 11. This condition can be relaxed, see [3, 3.3]. Also, the Σc -determinism condition may be 
unnecessary. 
In [16] the supervisory control problem for timed automata has been studied without the use of the bisimulation partition. 
Here, the supervisory algorithm is derived using a partition. However, having shown its decidability and computability, it is 
expected that it can be derived without the partition, similar to [16]. Also, the backpropagated sets can be computed using 
associated techniques involving the software environment of Hytech, see [13], [12].  
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Figure 1: A partition with some good and not good (dashed lines) sets 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
 
 
 
 
 
 

 

Figure 2: Computation of )(, Qpre delayedv  
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