4,793 research outputs found

    Begin, After, and Later: a Maximal Decidable Interval Temporal Logic

    Full text link
    Interval temporal logics (ITLs) are logics for reasoning about temporal statements expressed over intervals, i.e., periods of time. The most famous ITL studied so far is Halpern and Shoham's HS, which is the logic of the thirteen Allen's interval relations. Unfortunately, HS and most of its fragments have an undecidable satisfiability problem. This discouraged the research in this area until recently, when a number non-trivial decidable ITLs have been discovered. This paper is a contribution towards the complete classification of all different fragments of HS. We consider different combinations of the interval relations Begins, After, Later and their inverses Abar, Bbar, and Lbar. We know from previous works that the combination ABBbarAbar is decidable only when finite domains are considered (and undecidable elsewhere), and that ABBbar is decidable over the natural numbers. We extend these results by showing that decidability of ABBar can be further extended to capture the language ABBbarLbar, which lays in between ABBar and ABBbarAbar, and that turns out to be maximal w.r.t decidability over strongly discrete linear orders (e.g. finite orders, the naturals, the integers). We also prove that the proposed decision procedure is optimal with respect to the complexity class

    The intuitionistic temporal logic of dynamical systems

    Get PDF
    A dynamical system is a pair (X,f)(X,f), where XX is a topological space and f ⁣:XXf\colon X\to X is continuous. Kremer observed that the language of propositional linear temporal logic can be interpreted over the class of dynamical systems, giving rise to a natural intuitionistic temporal logic. We introduce a variant of Kremer's logic, which we denote ITLc{\sf ITL^c}, and show that it is decidable. We also show that minimality and Poincar\'e recurrence are both expressible in the language of ITLc{\sf ITL^c}, thus providing a decidable logic expressive enough to reason about non-trivial asymptotic behavior in dynamical systems

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    On model checking data-independent systems with arrays without reset

    Full text link
    A system is data-independent with respect to a data type X iff the operations it can perform on values of type X are restricted to just equality testing. The system may also store, input and output values of type X. We study model checking of systems which are data-independent with respect to two distinct type variables X and Y, and may in addition use arrays with indices from X and values from Y . Our main interest is the following parameterised model-checking problem: whether a given program satisfies a given temporal-logic formula for all non-empty nite instances of X and Y . Initially, we consider instead the abstraction where X and Y are infinite and where partial functions with finite domains are used to model arrays. Using a translation to data-independent systems without arrays, we show that the u-calculus model-checking problem is decidable for these systems. From this result, we can deduce properties of all systems with finite instances of X and Y . We show that there is a procedure for the above parameterised model-checking problem of the universal fragment of the u-calculus, such that it always terminates but may give false negatives. We also deduce that the parameterised model-checking problem of the universal disjunction-free fragment of the u-calculus is decidable. Practical motivations for model checking data-independent systems with arrays include verification of memory and cache systems, where X is the type of memory addresses, and Y the type of storable values. As an example we verify a fault-tolerant memory interface over a set of unreliable memories.Comment: Appeared in Theory and Practice of Logic Programming, vol. 4, no. 5&6, 200

    On the decidability and complexity of Metric Temporal Logic over finite words

    Full text link
    Metric Temporal Logic (MTL) is a prominent specification formalism for real-time systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with non-primitive recursive complexity. We also consider the model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTL--which includes invariance and time-bounded response properties--is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature
    corecore