29 research outputs found

    Algebraic classifications for fragments of first-order logic and beyond

    Full text link
    Complexity and decidability of logics is a major research area involving a huge range of different logical systems. This calls for a unified and systematic approach for the field. We introduce a research program based on an algebraic approach to complexity classifications of fragments of first-order logic (FO) and beyond. Our base system GRA, or general relation algebra, is equiexpressive with FO. It resembles cylindric algebra but employs a finite signature with only seven different operators. We provide a comprehensive classification of the decidability and complexity of the systems obtained by limiting the allowed sets of operators. We also give algebraic characterizations of the best known decidable fragments of FO. Furthermore, to move beyond FO, we introduce the notion of a generalized operator and briefly study related systems.Comment: Significantly updates the first version. The principal set of operations change

    The Fluted Fragment with Transitivity

    Get PDF
    We study the satisfiability problem for the fluted fragment extended with transitive relations. We show that the logic enjoys the finite model property when only one transitive relation is available. On the other hand we show that the satisfiability problem is undecidable already for the two-variable fragment of the logic in the presence of three transitive relations

    Quine’s Fluted Fragment is Non-elementary

    Get PDF
    We study the fluted fragment, a decidable fragment of first-order logic with an unbounded number of variables, originally identified by W.V. Quine. We show that the satisfiability problem for this fragment has non-elementary complexity, thus refuting an earlier published claim by W.C. Purdy that it is in NExpTime. More precisely, we consider, for all m greater than 1, the intersection of the fluted fragment and the m-variable fragment of first-order logic. We show that this sub-fragment forces (m/2)-tuply exponentially large models, and that its satisfiability problem is (m/2)-NExpTime-hard. We round off by using a corrected version of Purdy\u27s construction to show that the m-variable fluted fragment has the m-tuply exponential model property, and that its satisfiability problem is in m-NExpTime

    Complexity Classifications via Algebraic Logic

    Get PDF
    Complexity and decidability of logics is an active research area involving a wide range of different logical systems. We introduce an algebraic approach to complexity classifications of computational logics. Our base system GRA, or general relation algebra, is equiexpressive with first-order logic FO. It resembles cylindric algebra but employs a finite signature with only seven different operators, thus also giving a very succinct characterization of the expressive capacities of first-order logic. We provide a comprehensive classification of the decidability and complexity of the systems obtained by limiting the allowed sets of operators of GRA. We also discuss variants and extensions of GRA, and we provide algebraic characterizations of a range of well-known decidable logics

    On the Limits of Decision: the Adjacent Fragment of First-Order Logic

    Get PDF
    We define the adjacent fragment AF of first-order logic, obtained by restricting the sequences of variables occurring as arguments in atomic formulas. The adjacent fragment generalizes (after a routine renaming) two-variable logic as well as the fluted fragment. We show that the adjacent fragment has the finite model property, and that its satisfiability problem is no harder than for the fluted fragment (and hence is Tower-complete). We further show that any relaxation of the adjacency condition on the allowed order of variables in argument sequences yields a logic whose satisfiability and finite satisfiability problems are undecidable. Finally, we study the effect of the adjacency requirement on the well-known guarded fragment (GF) of first-order logic. We show that the satisfiability problem for the guarded adjacent fragment (GA) remains 2ExpTime-hard, thus strengthening the known lower bound for GF

    Craig Interpolation for Decidable First-Order Fragments

    Full text link
    We show that the guarded-negation fragment (GNFO) is, in a precise sense, the smallest extension of the guarded fragment (GFO) with Craig interpolation. In contrast, we show that the smallest extension of the two-variable fragment (FO2), and of the forward fragment (FF) with Craig interpolation, is full first-order logic. Similarly, we also show that all extensions of FO2 and of the fluted fragment (FL) with Craig interpolation are undecidable.Comment: Submitted for FoSSaCS 2024. arXiv admin note: substantial text overlap with arXiv:2304.0808

    Finite Satisfiability of Unary Negation Fragment with Transitivity

    Get PDF
    We show that the finite satisfiability problem for the unary negation fragment with an arbitrary number of transitive relations is decidable and 2-ExpTime-complete. Our result actually holds for a more general setting in which one can require that some binary symbols are interpreted as arbitrary transitive relations, some as partial orders and some as equivalences. We also consider finite satisfiability of various extensions of our primary logic, in particular capturing the concepts of nominals and role hierarchies known from description logic. As the unary negation fragment can express unions of conjunctive queries, our results have interesting implications for the problem of finite query answering, both in the classical scenario and in the description logics setting
    corecore