95 research outputs found

    Existential Definability over the Subword Ordering

    Get PDF
    We study first-order logic (FO) over the structure consisting of finite words over some alphabet A, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the ?? (i.e., existential) fragment is undecidable, already for binary alphabets A. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if |A| ? 3, then a relation is definable in the existential fragment over A with constants if and only if it is recursively enumerable. This implies characterizations for all fragments ?_i: If |A| ? 3, then a relation is definable in ?_i if and only if it belongs to the i-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the ?_i-fragments for i ? 2 of the pure logic, where the words of A^* are not available as constants

    Existential Definability over the Subword Ordering

    Full text link
    We study first-order logic (FO) over the structure consisting of finite words over some alphabet AA, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the Σ1\Sigma_1 (i.e., existential) fragment is undecidable, already for binary alphabets AA. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if ∣A∣≥3|A|\ge 3, then a relation is definable in the existential fragment over AA with constants if and only if it is recursively enumerable. This implies characterizations for all fragments Σi\Sigma_i: If ∣A∣≥3|A|\ge 3, then a relation is definable in Σi\Sigma_i if and only if it belongs to the ii-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the Σi\Sigma_i-fragments for i≥2i\ge 2 of the pure logic, where the words of A∗A^* are not available as constants

    Advances and applications of automata on words and trees : abstracts collection

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 "Advances and Applications of Automata on Words and Trees" was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Existential Definability over the Subword Ordering

    Get PDF
    We study first-order logic (FO) over the structure consisting of finite words over some alphabet AA, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the Σ1\Sigma_1 (i.e., existential) fragment is undecidable, already for binary alphabets AA. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if ∣A∣≥3|A|\ge 3, then a relation is definable in the existential fragment over AA with constants if and only if it is recursively enumerable. This implies characterizations for all fragments Σi\Sigma_i: If ∣A∣≥3|A|\ge 3, then a relation is definable in Σi\Sigma_i if and only if it belongs to the ii-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the Σi\Sigma_i-fragments for i≥2i\ge 2 of the pure logic, where the words of A∗A^* are not available as constants

    On Relaxing Metric Information in Linear Temporal Logic

    Full text link
    Metric LTL formulas rely on the next operator to encode time distances, whereas qualitative LTL formulas use only the until operator. This paper shows how to transform any metric LTL formula M into a qualitative formula Q, such that Q is satisfiable if and only if M is satisfiable over words with variability bounded with respect to the largest distances used in M (i.e., occurrences of next), but the size of Q is independent of such distances. Besides the theoretical interest, this result can help simplify the verification of systems with time-granularity heterogeneity, where large distances are required to express the coarse-grain dynamics in terms of fine-grain time units.Comment: Minor change

    On shuffle products, acyclic automata and piecewise-testable languages

    Full text link
    We show that the shuffle L \unicode{x29E2} F of a piecewise-testable language LL and a finite language FF is piecewise-testable. The proof relies on a classic but little-used automata-theoretic characterization of piecewise-testable languages. We also discuss some mild generalizations of the main result, and provide bounds on the piecewise complexity of L \unicode{x29E2} F

    Languages ordered by the subword order

    Full text link
    We consider a language together with the subword relation, the cover relation, and regular predicates. For such structures, we consider the extension of first-order logic by threshold- and modulo-counting quantifiers. Depending on the language, the used predicates, and the fragment of the logic, we determine four new combinations that yield decidable theories. These results extend earlier ones where only the language of all words without the cover relation and fragments of first-order logic were considered

    10501 Abstracts Collection -- Advances and Applications of Automata on Words and Trees

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 ``Advances and Applications of Automata on Words and Trees\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    On the decidability and complexity of Metric Temporal Logic over finite words

    Full text link
    Metric Temporal Logic (MTL) is a prominent specification formalism for real-time systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with non-primitive recursive complexity. We also consider the model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTL--which includes invariance and time-bounded response properties--is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature
    • …
    corecore