49,616 research outputs found

    The Comparison Study Among Optimization Techniques In Optimizing A Distribution System State Estimation

    Get PDF
    State estimation considered the main core of the Energy Management System and plays an important role in stability analysis, control and monitoring of electric power systems. The state estimator actually depends on many factors, such as data sensitive regarding the sensors accuracy, the availability of raw data, the network database accuracy, and the time skew of data. Many researchers already been studied multi-area power system state estimation and most of them investigation of state estimation schemes including different state estimators for each a central coordinator and control area. Therefore, accurate and timely efficient state estimation algorithm is a prerequisite for a stable operation of modern power grids. This thesis introduce an intelligent decentralized State Estimation method based on Firefly algorithm for distribution power systems. The mathematical procedure of distribution system state estimation which utilizing the information collected from available measurement devices in real-time. A consensus based static state estimation strategy for radial power distribution systems is proposed in this research. This thesis concentrates on the balanced systems. There are buses acting as agents using which we can evaluate the local estimates of the entire system. Therefore each measurement model reduces to an underdetermined nonlinear system and in radial distribution systems, the state elements associated with an agent may overlap with neighboring agents. The states of these systems are first estimated through centralized approach using the proposed algorithm to compare with weighted least squares technique. At the end, the result will presented the application of the developed approach to a network based on IEEE 13 bus, 14 bus and 33 bus test System. The result a proved to be computational efficient and accurately evaluated the impact of distributed generation on the power system. From the result, it can observe that for decentralized is faster and less error for both WLS and FA. In addition, FA show faster and less error than WLS for both centralized and decentralized. In addition, the proposed FA show faster with increasing the number of buses

    Decentralized estimation and control for power systems

    Get PDF
    This thesis presents a decentralized alternative to the centralized state-estimation and control technologies used in current power systems. Power systems span over vast geographical areas, and therefore require a robust and reliable communication network for centralized estimation and control. The supervisory control and data acquisition (SCADA) systems provide such a communication architecture and are currently employed for centralized estimation and control of power systems in a static manner. The SCADA systems operate at update rates which are not fast enough to provide appropriate estimation or control of transient or dynamic events occurring in power systems. Packet-switching based networked control system (NCS) is a faster alternative to SCADA systems, but it suffers from some other problems such as packet dropouts, random time delays and packet disordering. A stability analysis framework for NCS in power systems has been presented in the thesis considering these problems. Some other practical limitations and problems associated with real-time centralized estimation and control are computational bottlenecks, cyber threats and issues in acquiring system-wide parameters and measurements. The aforementioned problems can be solved by a decentralized methodology which only requires local parameters and measurements for estimation and control of a local unit in the system. The cumulative effect of control at all the units should be such that the global oscillations and instabilities in the power system are controlled. Such a decentralized methodology has been presented in the thesis. The method for decentralization is based on a new concept of `pseudo-inputs' in which some of the measurements are treated as inputs. Unscented Kalman filtering (UKF) is applied on the decentralized system for dynamic state estimation (DSE). An extended linear quadratic regulator (ELQR) has been proposed for the optimal control of each local unit such that the whole power system is stabilized and all the oscillations are adequately damped. ELQR requires DSE as a prerequisite. The applicability of integrated system for dynamic estimation and control has been demonstrated on a model 16-machine 68-bus benchmark system

    CONTROL AND ESTIMATION ALGORITHMS FOR MULTIPLE-AGENT SYSTEMS

    Get PDF
    Tese arquivada ao abrigo da Portaria nº 227/2017 de 25 de julhoIn this thesis we study crucial problems within complex, large scale, networked control systems and mobile sensor networks. The ¯rst one is the problem of decomposition of a large-scale system into several interconnected subsystems, based on the imposed information structure constraints. After associating an intelligent agent with each subsystem, we face with a problem of formulating their local estimation and control laws and designing inter-agent communication strategies which ensure stability, desired performance, scalability and robustness of the overall system. Another problem addressed in this thesis, which is critical in mobile sensor networks paradigm, is the problem of searching positions for mobile nodes in order to achieve optimal overall sensing capabilities. Novel, overlapping decentralized state and parameter estimation schemes based on the consensus strategy have been proposed, in both continuous-time and discrete-time. The algorithms are proposed in the form of a multi-agent network based on a combination of local estimators and a dynamic consensus strategy, assuming possible intermittent observations and communication faults. Under general conditions concerning the agent resources and the network topology, conditions are derived for the stability and convergence of the algorithms. For the state estimation schemes, a strategy based on minimization of the steady-state mean-square estimation error is proposed for selection of the consensus gains; these gains can also be adjusted by local adaptation schemes. It is also demonstrated that there exists a connection between the network complexity and e±ciency of denoising, i.e., of suppression of the measurement noise in°uence. Several numerical examples serve to illustrate characteristic properties of the proposed algorithm and to demonstrate its applicability to real problems. Furthermore, several structures and algorithms for multi-agent control based on a dynamic consensus strategy have been proposed. Two novel classes of structured, overlapping decentralized control algorithms are presented. For the ¯rst class, an agreement between the agents is implemented at the level of control inputs, while the second class is based on the agreement at the state estimation level. The proposed control algorithms have been illustrated by several examples. Also, the second class of the proposed consensus based control scheme has been applied to decentralized overlapping tracking control of planar formations of UAVs. A comparison is given with the proposed novel design methodology based on the expansion/contraction paradigm and the inclusion principle. Motivated by the applications to the optimal mobile sensor positioning within mobile sensor networks, the perturbation-based extremum seeking algorithm has been modifed and extended. It has been assumed that the integrator gain and the perturbation amplitude are time varying (decreasing in time with a proper rate) and that the output is corrupted with measurement noise. The proposed basic, one dimensional, algorithm has been extended to two dimensional, hybrid schemes and directly applied to the planar optimal mobile sensor positioning, where the vehicles can be modeled as velocity actuated point masses, force actuated point masses, or nonholonomic unicycles. The convergence of all the proposed algorithms, with probability one and in the mean square sense, has been proved. Also, the problem of target assignment in multi-agent systems using multi-variable extremum seeking algorithm has been addressed. An algorithm which e®ectively solves the problem has been proposed, based on the local extremum seeking of the specially designed global utility functions which capture the dependance among di®erent, possibly con°icting objectives of the agents. It has been demonstrated how the utility function parameters and agents' initial conditions impact the trajectories and destinations of the agents. All the proposed extremum seeking based algorithms have been illustrated with several simulations

    Cooperative H-infinity Estimation for Large-Scale Interconnected Linear Systems

    Full text link
    In this paper, a synthesis method for distributed estimation is presented, which is suitable for dealing with large-scale interconnected linear systems with disturbance. The main feature of the proposed method is that local estimators only estimate a reduced set of state variables and their complexity does not increase with the size of the system. Nevertheless, the local estimators are able to deal with lack of local detectability. Moreover, the estimators guarantee H-infinity-performance of the estimates with respect to model and measurement disturbances.Comment: Short version published in Proc. American Control Conference (ACC), pp.2119-2124. Chicago, IL, 201
    corecore