6 research outputs found

    Decentralized Robust Control of Robot Manipulators with Harmonic Drive Transmission and Application to Modular and Reconfigurable Serial Arms

    Get PDF
    In this paper, we propose a decentralized robust control algorithm for modular and reconfigurable robots (MRRs) based on Lyapunov’s stability analysis and backstepping techniques. In using decentralized control schemes with robot manipulators, each joint is considered as an independent subsystem, and the dynamical effects from the other links and joints are treated as disturbance. However, there exist many uncertainties due to unmodeled dynamics, varying payloads, harmonic drive (HD) compliance, HD complex gear meshing mechanisms, etc. Also, while the reconfigurability of MRRs is advantageous, modifying the configuration will result in changes to the robot dynamics parameters, thereby making it challenging to tune the control system. All the above mentioned disturbances in addition to reconfigurability present a challenge in controlling MRRs. The proposed controller is well-suited for MRR applications because of its simple structure that does not require the exact knowledge of the dynamic parameters of the configurations. Desired tracking performance can be achieved via tuning a limited set of parameters of the robust controller. If the numbers of degrees of freedom are held constant, these parameters are shown to be relatively independent of the configuration, and can be held constant between changes in configuration. This strategy is novel compared to existing MRR control methods. In order to validate the controller performance, experimental setup and results are also presented

    Adaptive fuzzy sliding mode algorithm-based decentralised control for a permanent magnet spherical actuator

    Get PDF
    <p>The dynamic model of multi-degree-of-freedom permanent magnet (PM) spherical actuators is multivariate and nonlinear due to strong inter-axis couplings, which affects the trajectory tracking performance of the system. In this paper, a decentralised control strategy based on adaptive fuzzy sliding mode (AFSM) algorithm is developed for a PM spherical actuator to enhance its trajectory tracking performance. In this algorithm, the coupling terms are separated as subsystems from the entire system. The AFSM algorithm is applied in such a way that the fuzzy logic systems are used to approximate the subsystem with uncertainties. A sliding mode term is introduced to compensate for the effect of coupling terms and fuzzy approximation error. The stability of the proposed method is guaranteed by choosing the appropriate Lyapunov function. Both simulation and experimental results show that the proposed control algorithm can effectively handle various uncertainties and inter-axis couplings, and improve the trajectory tracking precision of the spherical actuator.</p

    Adaptive Control for a Class of Non-affine Nonlinear Systems via Neural Networks

    Get PDF

    Model based fault diagnosis and prognosis of nonlinear systems

    Get PDF
    Rapid technological advances have led to more and more complex industrial systems with significantly higher risk of failures. Therefore, in this dissertation, a model-based fault diagnosis and prognosis framework has been developed for fast and reliable detection of faults and prediction of failures in nonlinear systems. In the first paper, a unified model-based fault diagnosis scheme capable of detecting both additive system faults and multiplicative actuator faults, as well as approximating the fault dynamics, performing fault type determination and time-to-failure determination, is designed. Stability of the observer and online approximator is guaranteed via an adaptive update law. Since outliers can degrade the performance of fault diagnostics, the second paper introduces an online neural network (NN) based outlier identification and removal scheme which is then combined with a fault detection scheme to enhance its performance. Outliers are detected based on the estimation error and a novel tuning law prevents the NN weights from being affected by outliers. In the third paper, in contrast to papers I and II, fault diagnosis of large-scale interconnected systems is investigated. A decentralized fault prognosis scheme is developed for such systems by using a network of local fault detectors (LFD) where each LFD only requires the local measurements. The online approximators in each LFD learn the unknown interconnection functions and the fault dynamics. Derivation of robust detection thresholds and detectability conditions are also included. The fourth paper extends the decentralized fault detection from paper III and develops an accommodation scheme for nonlinear continuous-time systems. By using both detection and accommodation online approximators, the control inputs are adjusted in order to minimize the fault effects. Finally in the fifth paper, the model-based fault diagnosis of distributed parameter systems (DPS) with parabolic PDE representation in continuous-time is discussed where a PDE-based observer is designed to perform fault detection as well as estimating the unavailable system states. An adaptive online approximator is incorporated in the observer to identify unknown fault parameters. Adaptive update law guarantees the convergence of estimations and allows determination of remaining useful life --Abstract, page iv

    Hierarchical Adaptive Control of Modular and Reconfigurable Robot Manipulator Platforms

    Get PDF
    Within the rapidly growing interest in today's robotics industry, modular and reconfigurable robots (MRRs) are among the most auspicious systems to expand the adaptability of robotic applications. They are adaptable to multiple industrial field applications but they also have additional advantages such as versatile hardware, easier maintenance, and transportability. However, such features render the controller design that manages a variety of robot configurations with reliable performance more complex since their system dynamics involve not only nonlinearities and uncertainties but also changing dynamics parameters after the reconfiguration. In this thesis, the motion control problem of MRR manipulators is addressed and hierarchical adaptive control architecture is developed for MRRs. This hierarchical structure allows the adjustment of the nominal parameters of an MRR system for system parameter identification and control design purposes after the robot is reconfigured. This architecture simplifies the design of adaptive control for MRRs which is effective in the presence of dynamic parameter uncertainty, unmodeled dynamics, and disturbance. The proposed architecture provides flexibility in choosing adaptive algorithms applicable to MRRs. The developed architecture consists of high-level and low-level modules. The high-level module handles the dynamic parameters changes and reconstructs the parametric model used for on-line parameter identification after the modules are reassembled. The low-level structure consists of an adaptive algorithm updated by an on-line parameter estimation to handle the dynamic parameter uncertainties. Furthermore, a robust adaptive term is added into this low-level controller to compensate for the unmodeled dynamics and disturbances. The proposed adaptive control algorithms guarantee uniformly ultimate boundedness (UUB) of the MRR trajectories in terms of robust stability despite the dynamic parameter uncertainty, unmodeled dynamics, changes in the system dynamics, and disturbance

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems
    corecore