225 research outputs found

    QuTE: decentralized multiple testing on sensor networks with false discovery rate control

    Full text link
    This paper designs methods for decentralized multiple hypothesis testing on graphs that are equipped with provable guarantees on the false discovery rate (FDR). We consider the setting where distinct agents reside on the nodes of an undirected graph, and each agent possesses p-values corresponding to one or more hypotheses local to its node. Each agent must individually decide whether to reject one or more of its local hypotheses by only communicating with its neighbors, with the joint aim that the global FDR over the entire graph must be controlled at a predefined level. We propose a simple decentralized family of Query-Test-Exchange (QuTE) algorithms and prove that they can control FDR under independence or positive dependence of the p-values. Our algorithm reduces to the Benjamini-Hochberg (BH) algorithm when after graph-diameter rounds of communication, and to the Bonferroni procedure when no communication has occurred or the graph is empty. To avoid communicating real-valued p-values, we develop a quantized BH procedure, and extend it to a quantized QuTE procedure. QuTE works seamlessly in streaming data settings, where anytime-valid p-values may be continually updated at each node. Last, QuTE is robust to arbitrary dropping of packets, or a graph that changes at every step, making it particularly suitable to mobile sensor networks involving drones or other multi-agent systems. We study the power of our procedure using a simulation suite of different levels of connectivity and communication on a variety of graph structures, and also provide an illustrative real-world example.Comment: This paper appeared in the IEEE CDC'17 conference proceedings. The last two sections were then developed in 2018, and it is now being put on arXiv simply for easier acces

    How Physicality Enables Trust: A New Era of Trust-Centered Cyberphysical Systems

    Full text link
    Multi-agent cyberphysical systems enable new capabilities in efficiency, resilience, and security. The unique characteristics of these systems prompt a reevaluation of their security concepts, including their vulnerabilities, and mechanisms to mitigate these vulnerabilities. This survey paper examines how advancement in wireless networking, coupled with the sensing and computing in cyberphysical systems, can foster novel security capabilities. This study delves into three main themes related to securing multi-agent cyberphysical systems. First, we discuss the threats that are particularly relevant to multi-agent cyberphysical systems given the potential lack of trust between agents. Second, we present prospects for sensing, contextual awareness, and authentication, enabling the inference and measurement of ``inter-agent trust" for these systems. Third, we elaborate on the application of quantifiable trust notions to enable ``resilient coordination," where ``resilient" signifies sustained functionality amid attacks on multiagent cyberphysical systems. We refer to the capability of cyberphysical systems to self-organize, and coordinate to achieve a task as autonomy. This survey unveils the cyberphysical character of future interconnected systems as a pivotal catalyst for realizing robust, trust-centered autonomy in tomorrow's world

    Spectrum sensing, spectrum monitoring, and security in cognitive radios

    Get PDF
    Spectrum sensing is a key function of cognitive radios and is used to determine whether a primary user is present in the channel or not. In this dissertation, we formulate and solve the generalized likelihood ratio test (GLRT) for spectrum sensing when both primary user transmitter and the secondary user receiver are equipped with multiple antennas. We do not assume any prior information about the channel statistics or the primary user’s signal structure. Two cases are considered when the secondary user is aware of the energy of the noise and when it is not. The final test statistics derived from GLRT are based on the eigenvalues of the sample covariance matrix. In-band spectrum sensing in overlay cognitive radio networks requires that the secondary users (SU) periodically suspend their communication in order to determine whether the primary user (PU) has started to utilize the channel. In contrast, in spectrum monitoring the SU can detect the emergence of the PU from its own receiver statistics such as receiver error count (REC). We investigate the problem of spectrum monitoring in the presence of fading where the SU employs diversity combining to mitigate the channel fading effects. We show that a decision statistic based on the REC alone does not provide a good performance. Next we introduce new decision statistics based on the REC and the combiner coefficients. It is shown that the new decision statistic achieves significant improvement in the case of maximal ratio combining (MRC). Next we consider the problem of cooperative spectrum sensing in cognitive radio networks (CRN) in the presence of misbehaving radios. We propose a novel approach based on the iterative expectation maximization (EM) algorithm to detect the presence of the primary users, to classify the cognitive radios, and to compute their detection and false alarm probabilities. We also consider the problem of centralized binary hypothesis testing in a cognitive radio network (CRN) consisting of multiple classes of cognitive radios, where the cognitive radios are classified according to the probability density function (PDF) of their received data (at the FC) under each hypotheses

    Bathtub-Shaped Failure Rate of Sensors for Distributed Detection and Fusion

    Get PDF
    We study distributed detection and fusion in sensor networks with bathtub-shaped failure (BSF) rate of the sensors which may or not send data to the Fusion Center (FC). The reliability of semiconductor devices is usually represented by the failure rate curve (called the “bathtub curve”), which can be divided into the three following regions: initial failure period, random failure period, and wear-out failure period. Considering the possibility of the failed sensors which still work but in a bad situation, it is unreasonable to trust the data from these sensors. Based on the above situation, we bring in new characteristics to failed sensors. Each sensor quantizes its local observation into one bit of information which is sent to the FC for overall fusion because of power, communication, and bandwidth constraints. Under this sensor failure model, the Extension Log-likelihood Ratio Test (ELRT) rule is derived. Finally, the ROC curve for this model is presented. The simulation results show that the ELRT rule improves the robust performance of the system, compared with the traditional fusion rule without considering sensor failures

    Modeling a Consortium-based Distributed Ledger Network with Applications for Intelligent Transportation Infrastructure

    Get PDF
    Emerging distributed-ledger networks are changing the landscape for environments of low trust among participating entities. Implementing such technologies in transportation infrastructure communications and operations would enable, in a secure fashion, decentralized collaboration among entities who do not fully trust each other. This work models a transportation records and events data collection system enabled by a Hyperledger Fabric blockchain network and simulated using a transportation environment modeling tool. A distributed vehicle records management use case is shown with the capability to detect and prevent unauthorized vehicle odometer tampering. Another use case studied is that of vehicular data collected during the event of an accident. It relies on broadcast data collected from the Vehicle Ad-hoc Network (VANET) and submitted as witness reports from nearby vehicles or road-side units who observed the event taking place or detected misbehaving activity by vehicles involved in the accident. Mechanisms for the collection, validation, and corroboration of the reported data which may prove crucial for vehicle accident forensics are described and their implementation is discussed. A performance analysis of the network under various loads is conducted with results suggesting that tailored endorsement policies are an effective mechanism to improve overall network throughput for a given channel. The experimental testbed shows that Hyperledger Fabric and other distributed ledger technologies hold promise for the collection of transportation data and the collaboration of applications and services that consume it
    • …
    corecore