
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-22-2019

Modeling a Consortium-based Distributed Ledger
Network with Applications for Intelligent
Transportation Infrastructure
Luis A. Cintron

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Digital Communications and Networking Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Cintron, Luis A., "Modeling a Consortium-based Distributed Ledger Network with Applications for Intelligent Transportation
Infrastructure" (2019). Theses and Dissertations. 2252.
https://scholar.afit.edu/etd/2252

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F2252&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2252&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F2252&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2252&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F2252&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2252?utm_source=scholar.afit.edu%2Fetd%2F2252&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

MODELING A CONSORTIUM-BASED
DISTRIBUTED LEDGER NETWORK WITH

APPLICATIONS FOR INTELLIGENT
TRANSPORTATION INFRASTRUCTURE

THESIS

Luis A. Cintron, Captain, USAF

AFIT-ENG-MS-18-M-019

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-18-M-019

MODELING A CONSORTIUM-BASED DISTRIBUTED LEDGER NETWORK

WITH APPLICATIONS FOR INTELLIGENT TRANSPORTATION

INFRASTRUCTURE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Luis A. Cintron, B.S.

Captain, USAF

March 2019

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-18-M-019

MODELING A CONSORTIUM-BASED DISTRIBUTED LEDGER NETWORK

WITH APPLICATIONS FOR INTELLIGENT TRANSPORTATION

INFRASTRUCTURE

THESIS

Luis A. Cintron, B.S.
Captain, USAF

Committee Membership:

Scott Graham, Ph.D.
Chair

Barry Mullins, Ph.D., P.E.
Member

Douglas Hodson, Ph.D.
Member

AFIT-ENG-MS-18-M-019

Abstract

Emerging distributed-ledger networks are changing the landscape for environments

of low trust among participating entities. Implementing such technologies in trans-

portation infrastructure communications and operations would enable, in a secure

fashion, decentralized collaboration among entities who do not fully trust each other.

This work models a transportation records and events data collection system enabled

by a Hyperledger Fabric blockchain network and simulated using a transportation

environment modeling tool. A distributed vehicle records management use case is

shown with the capability to detect and prevent unauthorized vehicle odometer tam-

pering. Another use case studied is that of vehicular data collected during the event

of an accident. It relies on broadcast data collected from the Vehicle Ad-hoc Network

(VANET) and submitted as witness reports from nearby vehicles or road-side units

who observed the event taking place or detected misbehaving activity by vehicles in-

volved in the accident. Mechanisms for the collection, validation, and corroboration of

the reported data which may prove crucial for vehicle accident forensics are described

and their implementation is discussed. A performance analysis of the network under

various loads is conducted with results suggesting that tailored endorsement policies

are an effective mechanism to improve overall network throughput for a given chan-

nel. The experimental testbed shows that Hyperledger Fabric and other distributed

ledger technologies hold promise for the collection of transportation data and the

collaboration of applications and services that consume it.

iv

AFIT-ENG-MS-18-M-019

This work is dedicated to my wife and son for their support, encouragement, and

love.

v

Acknowledgements

I would first like to thank my research advisor Dr. Scott Graham for his continuous

support and expert advice during my stay at AFIT. He allowed this thesis to be my

own work while providing direction whenever he thought I needed it.

I would also like to acknowledge professors and committee members Dr. Douglas

Hodson and Dr. Barry Mullins for their helpful lessons, advice during the research

process, and their thorough reviews of the work I produced.

Finally, I must express my very profound gratitude to my wife for providing

me with unfailing support and continuous encouragement throughout the process

of classes, research, and writing of this thesis. This accomplishment would not have

been possible without you. Thank you.

Luis A. Cintron

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . xi

List of Tables . xiii

List of Algorithms . xiv

List of Acronyms . xv

I. Introduction . 1

1.1 Background and Motivation . 1
1.2 Problem Statement . 2
1.3 Research Objectives . 3
1.4 Hypothesis . 5
1.5 Approach . 5
1.6 Contributions . 6
1.7 Organization . 7

II. Background and Related Work . 9

2.1 Overview . 9
2.2 Intelligent Transportation Systems . 9

2.2.1 WAVE . 11
2.2.2 Intelligent Transportation System Applications 13
2.2.3 Security and Privacy in VANET and Intelligent

Transportation Systems . 14
2.3 Distributed Ledger Technologies . 15

2.3.1 Inception of Distributed Ledger Technologies 16
2.3.2 Byzantine Generals Problem . 17
2.3.3 Blockchain vs. Directed-Acyclic Graph . 18
2.3.4 Categories . 20
2.3.5 Consensus . 22
2.3.6 Smart Contracts . 22

2.4 Related Work . 23
2.5 Summary . 26

vii

Page

III. Distributed Ledger Network Design . 27

3.1 Overview . 27
3.2 Consortium Network for Transportation Services 27
3.3 Architecture . 29
3.4 Hardware Platform . 32
3.5 Selecting a DLT Framework . 32
3.6 Frameworks and Tools . 34

3.6.1 Hyperledger Project Technologies . 35
3.6.2 Lightweight Transportation Modeling Tool

(LTMT) . 39
3.6.3 Network Architecture based on Hyperledger

Technologies . 44
3.7 Network Design . 45

3.7.1 Hyperledger Fabric Network Initiation . 47
3.8 Transportation Application Design . 49

3.8.1 Data Models . 49
3.8.2 Chaincode . 49
3.8.3 Endorsement Policy . 51
3.8.4 Access Control List . 52
3.8.5 Hyperledger Composer Archive Deployment 53

3.9 Summary . 54

IV. Experimental Scenarios . 55

4.1 Objective . 55
4.2 Assumptions . 55
4.3 Control Variables . 57
4.4 Independent Variables . 58
4.5 Response Variables . 58
4.6 Application Scenarios . 58

4.6.1 Vehicle Odometer Reading Reporting . 59
4.6.2 Accident Data Collection . 61

4.7 Performance Evaluation . 65
4.7.1 Test Matrix . 68
4.7.2 Data Collection . 68
4.7.3 Analysis . 69
4.7.4 Tools . 70

4.8 Summary . 71

V. Observations and Analysis . 72

5.1 Overview . 72
5.2 Application Scenarios - Results and Model

Enhancements . 72

viii

Page

5.2.1 Odometer Reading Report Scenario . 72
5.2.2 Accident Reports Scenario . 73

5.3 Performance Experiment Results . 76
5.3.1 Possible Sources of Errors . 80

5.4 Benefits . 81
5.5 Drawbacks & Challenges . 84

5.5.1 Documentation . 84
5.5.2 BFT vs. CFT in Fabric . 84
5.5.3 High Storage Volume Requirements . 85

5.6 Security & Privacy . 85
5.6.1 Ordering Service Nodes - Potentially Vulnerable 86
5.6.2 Issues with Zookeeper-Kafka Cluster . 86
5.6.3 Unauthorized Data Access Prevention . 87

5.7 Summary . 87

VI. Conclusion . 88

6.1 Overview . 88
6.2 Summary . 88
6.3 Research Contributions . 92
6.4 Future Work . 93
6.5 Conclusion . 95

Appendix A. Hyperledger Fabric Crypto Configuration . 96

Appendix B. Hyperledger Fabric Baseline Network Configuration 98

Appendix C. Example Hyperledger Fabric Organization Docker
Configuration . 102

Appendix D. Hyperledger Fabric Organization VM Start Script 105

Appendix E. Hyperledger Composer Data Models for
Transportation Applications . 107

Appendix F. Hyperledger Composer Chaincode Logic for
Transportation Applications . 110

Appendix G. AutoComposer - Script for Generating and
Deploying Hyperledger Composer Network Archives 113

Appendix H. Hyperledger Composer Connection Profile
Example (connection.json) . 118

Appendix I. Performance Test Matrix . 121

ix

Page

Appendix J. Performance Test Workflow Scripts . 124

Appendix K. Performance Scenario Sample Data Output 133

Appendix L. Julia Analysis Script . 134

Bibliography . 136

x

List of Figures

Figure Page

1. ITS Technologies Deployed and Integrated in
Metropolitan Areas . 10

2. WAVE Protocol Stack Reference Model . 12

3. High-Level View of a DLN . 16

4. Blockchain distributed ledger (DL) Structure - Blocks,
Block Headers, and Transaction . 19

5. Hedera Hashgraph DAG DL Structure . 20

6. DLT Categories . 21

7. Transportation Infrastructure Consortium Members 28

8. Consortium DLN High-Level Architecture . 30

9. Hyperledger Fabric Transaction Workflow . 38

10. LTMT User Interface (Map data: Google) . 40

11. LTMT Scenario Generation . 41

12. LTMT Accident Event Notification and Misbehavior
Data Collection (Map data: Google) . 43

13. Hyperledger Fabric/Composer Based Network
Architecture . 45

14. Experimental Hyperledger Fabric Network Configuration 47

15. Hyperledger Fabric Peer Node Successfully Joins
Channel . 49

16. 2-Of Endorsement Policy Definition . 52

17. Access Control Rule Example . 52

18. Creation of Transportation BNA . 53

19. Installation of Transportation BNA . 53

20. Deployment of Transportation BNA . 54

xi

Figure Page

21. Deployment of the REST Server using Hyperledger
Composer Tools . 54

22. Workflow of Events for Odometer Tampering Detection 61

23. Operational View of ITS Infrastructure with HLF 62

24. Workflow of Accident Event Scenario . 63

25. Workflow of Performance Analysis Experiment . 67

26. VehicleOdometerUpdate Transaction Definition Change 73

27. WitnessData Report TX Success Rate with Initial Data
Model Definitions . 74

28. EventWitnessData Transaction Definition Change 75

29. RoadEventWitnessedData Asset Definition . 76

30. Network Performance of Default Configuration . 77

31. Average Throughput of Configurations . 77

32. Average Response Time of Configurations . 78

33. Peak Block Allocations of Configurations . 79

34. Peak Execution Rates of Configurations . 79

xii

List of Tables

Table Page

1. DLT Alternatives. 33

2. LTMT Vehicle BSM Content. 42

3. Baseline HLF Network Configuration. 46

4. Commands to Start Hyperledger Fabric (HLF). 48

5. Main Data Models and Attributes. 50

6. Control Variables . 57

7. Independent Variables . 58

8. Response Variables . 59

9. Fabric Network Configurations for Performance Analysis. 68

10. Excerpt from Test Matrix . 69

11. Data Gathering and Analysis Tools. 70

12. Accident Event Witness Report Results (Initial Data
Model Definition) . 74

13. Mann-Whitney Test Results . 80

xiii

List of Algorithms

Algorithm Page

1. Vehicle Odometer Update Transaction . 61

2. Road Event Transaction . 64

3. Road Event Witnessed Data Transaction . 65

4. Corroborate Witnessed Data for a Specific Road Event 66

xiv

List of Acronyms

ACP access control policy

ACR Access Control Rule

API application programming interface

BC blockchain

BFT Byzantine Fault Tolerance

BGP Byzantine Generals Problem

BNA Business Network Archive

BPS Blocks Per Second

BSM Basic Safety Message

CAN Controller Area Network

CFT Crash Fault Tolerance

CML Composer Modeling Language

CSV Comma-Separated Values

DAG directed-acyclic graph

DB Database

DDoS Distributed Denial-of-Service

DL distributed ledger

DLN Distributed Ledger Network

DLT Distributed Ledger Technology

DMV Department of Motor Vehicles

DSRC Dedicated Short Range Communication

ECU Electronic Control Unit

GDPR General Data Protection Regulation

GPL GNU General Public License

xv

GPS Global Positioning System

HLC Hyperledger Composer

HLF Hyperledger Fabric

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IRC Internet Relay Chat

ITS Intelligent Transportation System

LLC Logical Link Control

LTMT Lightweight Transportation Modeling Tool

MAC Medium Access Control

MPH miles per hour

MSP Membership Services Provider

MVCC multi-version concurrency control

OBU on-board unit

OSI Open Systems Interconnection

OSN Ordering Service Node

OTA over-the-air

P2P Peer-to-Peer

PBFT Practical Byzantine Fault Tolerance

PII Personally Identifiable Information

PKI Public Key Infrastructure

POS proof-of-stake

POW proof-of-work

REST Representational State Transfer

RFID radio-frequency identification

RSU road-side unit

xvi

SDK Software Development Kit

SOAP Simple Object Access Protocol

STSP Smart Transportation Service Providers

SUMO Simulation of Urban MObility

TCP Transmission Control Protocol

TLS Transport Layer Security

TPB Transactions Per Block

TPF Transaction Processor Function

TPMS Tire Pressure Monitoring System

TPS Transactions Per Second

UDP User Datagram Protocol

USDOT United States Department of Transportation

V2I vehicle-to-infrastructure

V2V vehicle-to-vehicle

V2X vehicle-to-anything

VANET Vehicular Ad-hoc Network

VM Virtual Machine

VPKI Vehicle PKI

VSCC validation system chaincode

WAVE Wireless Access in Vehicular Environments

WSM WAVE Short Message

WSMP WAVE Short Message Protocol

xvii

MODELING A CONSORTIUM-BASED DISTRIBUTED LEDGER NETWORK

WITH APPLICATIONS FOR INTELLIGENT TRANSPORTATION

INFRASTRUCTURE

I. Introduction

1.1 Background and Motivation

The desire for improved mobility has spawned a wide variety of devices and sen-

sors for transportation systems. From smarter traffic light systems to traffic jam

sensors, the primary goal of these devices is to decrease vehicle congestion and travel

times, ensure the safety of passengers and pedestrians in transportation mediums,

and increase environmental sustainability [1].

To expedite the transition to smarter Intelligent Transportation System (ITS) in

major cities, organizations and institutions around the globe collaborate to set the

standards for design, development, and sustainment of current and future ITSs. The

United States Department of Transportation (USDOT) defines ITSs as a set of tools

that facilitates a connected, integrated, and automated transportation system that

is information-intensive to serve the interest of users better [1]. Proper deployment

of ITSs in smart cities requires the involvement of entities other than government

organizations to provide a truly integrated ecosystem.

The idea of multiple organizations involved in this extensive network of mobile and

static sensors and services raises concerns due to the number of vulnerabilities poten-

tially introduced by any of the Smart Transportation Service Providers (STSP). Also,

most of these systems do not communicate with one another and are often found iso-

1

lated due to lack of network services capabilities, ownership/control (company-owned

and maintained), and geopolitical limitations (countries, states). Due to the central-

ized nature of proposed and implemented architectures, transportation stakeholders

must trust each other and the data transmitted and/or received. However, networks

with centralized systems and governance may face many challenges to maintain ser-

vices online due to cyberattacks, network or system faults, or non-technical problems

such as lack of funding by the organization in control. As a result, these technologies

may benefit from Distributed Ledger Technologies (DLTs).

Emerging DLTs have changed the way transactions are conducted in environments

with limited or zero trust among peers. Inherent characteristics of these technologies

could prove advantageous for collecting, sharing, and storing data among ITSs by

providing a decentralized collaborative platform to stakeholders. Embedding DLTs

within the ITS ecosystem could fill current communication and interoperability gaps

while providing governance, security, and privacy benefits not currently found in

commonly used infrastructure and services.

1.2 Problem Statement

DLTs are currently being deployed for many applications. Arguably driven by the

hype and popularity of cryptocurrencies, businesses and developers across the globe

are pursuing solutions that rely on protocols similar or identical to those utilized by

Bitcoin or Ethereum cryptocurrency networks. Unfortunately, not all use cases are

a good fit for this technology. There are known limitations to blockchain (BC) or

DLTs that cause them to be less efficient at processing or storing data than current

mainstream alternatives, such as traditional relational databases. In particular, low

operational throughput and significant latency caused by the consensus and validation

algorithms often render DLTs unacceptably inefficient.

2

Proposals and developments for smart transportation infrastructure and services

which include blockchain technology are on the rise. However, recent literature over-

looks key information with respect to the acceptable use cases, the design constraints

and considerations, and reference models for proper utilization of DLTs. The research

described in this thesis identifies a sound and comprehensive architecture design for in-

telligent transportation applications utilizing a blockchain based Distributed Ledger

Network (DLN) framework. It also identifies suitable applications, developmental

constraints, and considerations for ITSs implementation. Drawbacks, challenges, and

potential vulnerabilities that may arise as a result of this implementation are pre-

sented as well. It further demonstrates an approach for gathering and analyzing

performance parameters and optimizing the overall network throughput of a given

implementation.

1.3 Research Objectives

This research describes the modeling of intelligent transportation services that

rely on a DLN back-end. This model is applied to two example applications: 1) vehi-

cle records, and 2) automated accident data collection. Simulation tools are used to

demonstrate how feasible the use of DLTs is to support transportation infrastructure,

then test and validate security enhancements, and finally optimize network parame-

ters that are crucial to the performance of the DLN. The research objectives of this

work are outlined below:

• Understand the operation of Wireless Access in Vehicular Environments (WAVE),

vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) communications

for the provision of transportation-related services.

• Understand the main concepts behind distributed ledger technologies such as

consensus and communication protocols, Byzantine Fault Tolerance (BFT) and

3

Crash Fault Tolerance (CFT), and attributes such as tampering resistance,

provenance, and trust.

• Understand the motivation behind the use of DLTs in smart transportation

infrastructure environments.

• Evaluate available DLT frameworks for transportation-related utility.

• Design a DLT-based high-level architecture suitable for use by ITS.

• Develop a transportation modeling environment capable of realistic interaction

with a DLN.

• Identify one or more applications for the use of a DLN in ITSs that can be

modeled and analyzed.

• Configure an experimental DLN that can be deployed in a transportation envi-

ronment and accessed by multiple stakeholders.

• Integrate one or more ITS applications with the configured DLN.

• Evaluate the developed solution, identify issues and challenges of the appli-

cation, DLN configuration or framework, and develop and test techniques for

improving the performance of the network implementation.

The questions to be answered by this research in order to meet the aforementioned

objectives are as follows:

• Is it feasible to enable transportation system communications utilizing DLTs?

• What applications are most suitable for utilizing a DLN in ITSs?

• What are the constraints and performance limitations of applications that rely

on data from a DLN?

4

• Do the benefits of utilizing a DLN outweigh its constraints in terms of cost and

performance?

1.4 Hypothesis

The hypothesis of this research is that it is feasible to deploy DLNs to be utilized

by ITSs and provide data finality in a transportation environment. In addition, it

speculates that not all applications expected in the transportation ecosystem are

suitable for this technology, only those that require provenance and finality of data,

suffer from a lack of trust in participants, and produce transactions at a rate that

can be handled by the network endpoints and consensus algorithms.

1.5 Approach

The approach consists of standing up a consortium-based DLN infrastructure to

serve as the back-end for multiple ITS applications within the same instance. This

DLN allows for integration, collaboration, and maintenance of relevant data by the

pre-selected parties involved in a decentralized and secure way. With the DLT frame-

work selected, the targeted architecture defined, and the network implemented, it

serves as a trusted, secure, and verifiable repository for data collected by vehicles,

infrastructure, and participants. The modeled applications for the scenarios to be

tested include the capability to enable the event reconstruction leading up to, during,

and immediately after a vehicular accident. The data collected by sensors, either

vehicles or road-side units (RSUs), comes from the source’s current parameters (e.g.,

speed, heading, current location) and other vehicles shared via Vehicular Ad-hoc Net-

work (VANET) V2V/V2I communications. This capability enhances vehicle forensics

and is intended to improve current processes and tools for the identification of the

root cause of an accident and the liable parties involved. Once the scenarios are

5

executed under various configurations, performance data is collected and analyzed.

Other findings and implications revealed during the process are documented.

1.6 Contributions

The contributions of this thesis to the field of smart transportation infrastructure

and vehicles are outlined below:

• High-level Architecture: A 5-Tier Distributed Ledger Framework Architec-

ture stack which defines the organization of key components for implementing

the distributed network across transportation service stakeholders is presented.

• Lightweight Transportation Modeling Tool: This web-technology-based

application provides the libraries to model transportation devices (RSUs) and

vehicles, along with communications among all devices within a predefined lo-

cation. It also provides a visual representation of all vehicles in motion as well

as their current state and submitted transactions.

• Hyperledger Fabric/Composer Tools: A series of scripts were developed to

ease the setup and integration of a Hyperledger Fabric network with Hyperledger

Composer modeling capabilities. It allows for quick installation, maintenance,

and interaction with the network and supporting applications.

• Applications using a DLN: It demonstrates the use of a DLN as a tool

for maintaining vehicle records aimed at identifying odometer tampering fraud.

Another use case demonstrated is the collection of broadcasted vehicle data

over VANET that can be utilized for accident forensic analysis and provide

non-repudiation of fault liability.

• Performance Analysis: It demonstrates an approach for measuring the per-

formance of various blockchain network configurations under a series of loads,

6

identifying limitations, and performance enhancements.

• Qualitative Analysis: It lists design considerations, challenges, and potential

vulnerabilities of the blockchain network implementation described.

1.7 Organization

This thesis is organized as follows:

Chapter II introduces the ITS and DLT concepts and terminology, then further

expands on the characteristics that are of concern to this research. It defines the ter-

minology utilized throughout this thesis as it relates to transportation infrastructure

technologies and DLTs in general. It also presents ongoing related work and identifies

the areas requiring further research.

Chapter III presents the idea of a transportation consortium and the use of a

consortium DLT as the medium for data collaboration. Next, it describes the network

architecture design and the alternatives analyzed for this implementation. It also

presents the traffic simulation tool and the development decisions for generating the

scenarios for testing the network. It finishes by explaining the network configurations

utilizing the selected DLN platform, the data model definitions, and the distributed

functions instantiated within the network.

Chapter IV lists the simulation scenario assumptions, control factors, and response

variables. A description of the methodologies for conducting a network performance

analysis is also presented in this chapter.

Chapter V presents the results, analysis, and observations of the experimental

activities described in Chapters III and IV. It begins discussing issues found during the

execution of distributed applications followed by listing the findings and performance

metrics obtained through load testing the network under various configurations. The

performance of the different configurations are analyzed and compared with each other

7

to show the significance of the differences in terms of mean throughput as measured

in the application layer. Possible sources of error for the findings are discussed. This

chapter also lists solutions to issues and errors encountered during the stimulation of

the DLN with vehicular data and discusses potential vulnerabilities of the solution

at hand. Finally, it discusses benefits, drawbacks and challenges, and security and

privacy concerns with the implementation presented.

Finally, Chapter VI concludes with a summary of the work presented and the

contributions to the field. In addition, recommendations for those utilizing similar

tools or frameworks are presented. Future work areas for this research which in-

volve improvements to the simulation environment, upgraded components, and other

performance data collection tools are also discussed.

8

II. Background and Related Work

2.1 Overview

This chapter provides background information and knowledge about ITSs, the

technologies that enable V2V/V2I in smart transportation environments, and DLTs.

It begins by describing how ITSs operate and the services they enable. Next, it

highlights technologies that will enable the next generation of transportation infras-

tructure communication, such as WAVE. It follows with an overview on DLTs, their

history, types, and key terminology for further understanding of how they operate

and are able to provide capabilities such as anti-tampering, provenance, and others.

A review of current literature discussing the use of DLTs in transportation infras-

tructure and services is presented, highlighting some of the problems in current ITS

technologies and how they can be mitigated. Finally, it summarizes some of the issues

with current proposed solutions and emphasizes the need for technologies that enable

reliable, secure, and private communications among smart vehicles and transportation

infrastructure.

2.2 Intelligent Transportation Systems

ITSs combine a collection of devices to provide services aimed at improving the

quality of transportation services in a specific location or region. Three components

are essential for an ITS to perform its functions; data collection, data/information

transmission, and data analysis [2]. Data collection components are the sensors em-

bedded in vehicles and RSUs such as cameras, Global Positioning System (GPS)

receivers, radio-frequency identification (RFID) readers, and radars. These contin-

uously collect data to help vehicles avoid collisions or adapt to weather conditions.

Systems or sensors may share collected data with other vehicles, RSUs, or remote net-

9

work services via VANET or other network communication protocols and technologies

(e.g., IEEE 802.3, 3G/4G Mobile). The data received by devices is analyzed and pro-

cessed to provide services such as congestion control, automatic toll collection, and

collision prevention. In essence, these systems rely on information collection and dis-

semination to provide services to stakeholders in transportation systems. Examples

of these systems are shown in Figure 1.

Figure 1. ITS Technologies Deployed and Integrated in Metropolitan Areas [3]

These systems allow for vehicles, pedestrians, and infrastructure components to

communicate and interact with one another. Intercommunication limitations are a

result of high cost of operation and maintenance, the lack of network service ca-

pabilities, issues of data ownership/control (company-owned and maintained), and

geopolitical limitations (countries, states). As a result, innovative and cost-saving

solutions to create a connected ecosystem of all of these systems in a more extensive

network while serving as a platform for services, are currently undergoing research.

The next generation of vehicles will be equipped to conduct wireless V2V com-

10

munications using the Institute of Electrical and Electronics Engineers (IEEE) 1609

Family of Standards for WAVE to communicate location, road conditions, accidents,

and other information. Communication with infrastructure systems (V2I) via RSUs

will also be possible. The interaction of vehicles with RSUs allows the collection

of vehicle-related events that are used to provide services such as electronic tolls or

accident detection and avoidance. Since RSUs typically relay received data to other

networks for the services aforementioned, they rely on a separate Transmission Con-

trol Protocol (TCP)/Internet Protocol (IP) network to transmit the data collected.

Similarly, vehicles can be equipped with Wide Area Network (WAN) wireless capabil-

ities such as 4G/LTE and 5G to push notifications and event data to transportation

services. These communications capabilities may allow for real-time state awareness

but increase susceptible to spoofing and Sybil attacks.

2.2.1 WAVE

The IEEE 1609 Family of Standards for WAVE was developed to serve as a guide-

line for wireless V2V/V2I communications utilizing Dedicated Short Range Commu-

nication (DSRC) [4, 5]. The implementation of these guidelines and protocols enable

what is often referred to as VANETs. These ad-hoc networks operate within the

5.850-5.925 GHz band with a 75 MHz bandwidth allocation and are enabled by both

RSUs and on-board units (OBUs) installed on vehicles [6]. The OBUs are vehicle

mounted devices that receive and transmit messages to and from other vehicle OBUs

and RSUs.

The WAVE architecture stack is shown in Figure 2. The physical layer (PHY)

is found at the bottom of the stack; it is defined by the IEEE 802.11p standard

and specifies the transmission technologies and protocols. Next, the WAVE Medium

Access Control (MAC) layer, also defined by the IEEE 802.11p standard, describes

11

how the packets are transmitted across the communication channel. The Logical

Link Control (LLC) layer determines which of the two protocols above it receives a

packet as specified in the IEEE 1609.3 standard [7]. On top of the LLC layer sit

both the WAVE Short Message Protocol (WSMP) and the IPv6 Protocol layers. The

WSMP delivers received WAVE Short Messages (WSMs) to higher layers such as the

WAVE message layer. The IPv6 layer delivers received packets to the TCP and User

Datagram Protocol (UDP) layers on top [7]. It is crucial to note that WAVE devices

can support WSMP, IPv6, or both [8].

Figure 2. WAVE Protocol Stack Reference Model [5]

WAVE also defines Security Services in IEEE 1609.2 that provide cryptographic

operations for secure communication among WAVE-enabled devices [5, 8]. These

services support both symmetric and asymmetric encryption, hashing, and signing.

WAVE is used for the transmission of Basic Safety Messages (BSMs) which are

broadcasted by devices to provide situational awareness of vehicles in an area and

so that other vehicles can anticipate safety threats and avert the danger. BSMs

12

are transmitted at a frequency of 10 messages per second with a transmission range

of roughly 1 km and an average message size of 320 bytes (80 bytes for PHY +

MAC + WSMP, 160 bytes Security and Certificate, 80 bytes for BSM payload)[9,

10]. Data contained in a BSM includes, but is not limited to: device ID, location

(latitude, longitude), elevation, speed, heading, steering wheel angle, acceleration, and

brake system status [8]. Most of these data elements are obtained from the vehicles’

Electronic Control Unit (ECU) through the Controller Area Network (CAN) bus.

DSRC as defined by the IEEE 1609 Family of Standards allows for the imple-

mentation of applications that rely on the communication among vehicles and RSUs,

such as: Forward Collision Warning, Emergency Electronic Brake Lights, Do Not

Pass Warning, Left Turn Assist, Cooperative Adaptive Cruise Control, and Transit

Signal Priority.

2.2.2 Intelligent Transportation System Applications

As the number of vehicles with vehicle-to-anything (V2X) capabilities on public

roads increases, transportation infrastructure entities will lean more toward the use

of infrastructure sensors and devices (i.e., RSUs) that rely on DSRC/WAVE. This

new generation of transportation services and applications may include the following:

• Smart Toll Collection

• Active Traffic Management

• Vehicle Detection

• Dynamic Message Signs

• Traffic Event Dissemination

• Automated Intersection Management

13

• Accident Reporting and Data Collection

With the goal of building smarter transportation infrastructure and services that

communicate and share data with each other, entities involved must also build the

channels for communication and collaboration. However, to accomplish this task

there are a number of factors that need to be taken into consideration to enable

their integration. These factors include geographical and geopolitical limitations,

cost, available funding, and incentives, to name a few. Because downtime of services

could pose great risk to vehicle operators and pedestrians, periods of downtime due

to changes in government agencies (e.g., policy, administration), funding, or technical

failures must be minimized.

2.2.3 Security and Privacy in VANET and Intelligent Transportation

Systems

As listed in [11], the V2X ecosystem is vulnerable to threats that affect the avail-

ability, authentication, and confidentiality of the participating devices and services.

Distributed Denial-of-Service (DDoS) attacks, malware (e.g., via over-the-air (OTA)

vehicle updates), and spamming are known potential threats to the availability of

the transportation services that rely on V2X communications or data [11, 8]. Data

spoofing, also known as a Sybil attack, (e.g., broadcast of accident data by vehicle not

in area) also poses a threat. Attacks on the authentication mechanisms can include

masquerading (posing as legitimate RSU or OBU) and black-holes (not relaying criti-

cal information to other OBUs and RSUs) [11]. Confidentiality within the ecosystem

is vulnerable to eavesdropping and collection of broadcasted messages for data min-

ing and location tracking thus allowing pattern-of-life modeling. Similarly, ITSs that

consume OBU/RSU data are also vulnerable to DDoS attacks, malware, and spoof-

ing. As a result, mitigating strategies such as distributed operations, containerized

14

applications, and corroboration/validation of data can prove critical to maintain the

availability and reliability of these systems without compromising the safety of its

users.

Authentication mechanisms can make it difficult to employ some of these attacks

through the use of Public Key Infrastructure (PKI) (supported by WAVE) where

misbehaving actors are identified and their authentication certificates are revoked.

Likewise, smart transportation system applications can perform post processing of

data shared across multiple services to corroborate and validate the presence of vehi-

cles and the reported data at a specified time and place. In the event of misbehavior

detection, NHTSA recommends the generation of a report with the following infor-

mation: reporter’s identification and certificate, time, location, devices within range,

speed, and suspicion type(s) [8].

Privacy is a concern in V2X communications and ITS in general. Misuse of broad-

casted information by vehicles in a controlled WAVE environment in addition to de-

tection via side-channels, cameras, and other sensors (e.g., from Tire Pressure Moni-

toring System (TPMS) [12]) can result in the identification of travel routines, home

location, driving patterns and behaviors without a user’s consent. Furthermore, this

data could be mismanaged by the infrastructure operators and sold to businesses

such as insurance companies triggering higher service rates without an individual’s

knowledge of the root cause.

2.3 Distributed Ledger Technologies

DLT refers to technologies that enable the maintenance of an append-only data

structure by untrusted or partially trusted participants in a distributed fashion [13].

These are often referred to as “blockchain” technologies regardless of whether they

perform actual chaining of blocks containing transactions via cryptographic means.

15

Some features that are inherent to DLTs are the immutability of stored data, decen-

tralized execution, and trust of data in a trust-less environment. Figure 3 shows a

high-level overview of a DLT network, where all nodes can communicate with each

other and the majority of them share identical copies of the ledger. These technolo-

gies rely on a ledger in BC and/or directed-acyclic graph (DAG) data structures for

guaranteeing the integrity of the data stored in the network.

Figure 3. High-Level View of a DLN

2.3.1 Inception of Distributed Ledger Technologies

BC was proposed by an individual under the pseudonym Satoshi Nakamoto in

2008 as the underlying data structure for the now well-known cryptocurrency Bitcoin

[14]. Bitcoin’s network protocol allows for participants to transfer currency assets

in a decentralized Peer-to-Peer (P2P) way. It relies on incentives for those nodes

who take part in the creation of blocks, also known as miners. Through its use of a

proof-of-work (POW) consensus algorithm, it can ensure Byzantine Fault Tolerance

up to a known threshold hence solving the problem of double-spending. POW con-

sists in miners finding a nonce that when added to a block header, the hash of the

block meets a predefined condition set by the protocol in use. Through POW and

16

validation of signed transactions, the Bitcoin network is able to create an ecosystem

where participants are able to transact with one another without having to trust each

other. Since then, its use has encompassed a wide range of purposes, particularly that

of transfer of value (e.g., Bitcoin) and distributed computing (e.g., Ethereum) and

has inspired an array of new frameworks and platforms such as those in the Linux

Foundation Hyperledger Collaborative Effort.

2.3.2 Byzantine Generals Problem

“The Byzantine army camped with their troops around an enemy city. Communicat-

ing only by messenger, the generals must agree upon a common battle plan. How-

ever, one or more of them may be traitors who will try to confuse the others...this

problem is solvable if and only if more than two-thirds of the generals are loyal...”

—The BGP by Lamport et al. [15]

Algorithms that solve the Byzantine Generals Problem (BGP) stated above under

the defined conditions are said to be Byzantine Fault Tolerant (BFT). The BGP is

a known issue in distributed systems and the main problem Nakamoto’s consensus

algorithm in Bitcoin provides a solution for. It represents a trust problem among

individuals without a central authority (i.e., the generals) who need to reach agree-

ment on an order to execute. In this specific problem, consensus is only possible if

more than 2/3 of the participants are not malicious or faulty (e.g., unknown software

bugs). In POW-based DLNs this is not the case due to the consensus algorithm

having a self-adjusted computational difficulty that ensures consistent block creation

times and prevent less than 51% of malicious computational power from creating a

blockchain branch long enough to be considered as the source of truth by the rest

17

of the network. With less than 51% of the hashing power in a network such as Bit-

coin’s, the malicious miners would not be able to maintain a tampered branch long

enough to be accepted by the rest of the network. Although defined block times

and self-adjusting difficulties for the nonce creation are considered a feature of POW

algorithms, these are the main inhibiting factors for the processing of large number

of transactions asynchronously, a huge disadvantage for high-throughput networks.

Other consensus solutions such as the Swirld’s Hashgraph algorithm by Baird

solve the BGP asynchronously through the use of a DAG [16]. Hashgraph consensus

has been proven to provide true asynchronous BFT thus allowing it to process a

larger number of transactions per second without wait times and high-performance

computing resources. This highly efficient algorithm is reliable as long as more than

2/3 of the participating peers are honest [17].

It is important to highlight that BFT is not a strong requirement for all DLT. BFT

is often a requirement when transacting with untrusted/unknown participants in a

network. In networks where participants are known or the mechanisms for attribution

exist, there are disincentives that keep participants from misbehaving such as: loss of

employment, fines, or prosecution under the law. In such implementations, consensus

can be reach through other algorithms such as indeterministic leader-selection as an

alternative to BFT consensus.

2.3.3 Blockchain vs. Directed-Acyclic Graph

In the blockchain scheme, data transactions are grouped together to create a block.

Each block is then appended to the ledger by a network leader selected through

a consensus algorithm. The leader calculates the hash of the current block which

contains the hash of the previous block in the block’s header, as shown in Figure 4,

and appends the block (containing the transactions) to the ledger. Once the block

18

is added, it is considered pseudo-immutable. Immutability of data is ensured by

calculating the hash for each block which contains the hash of the previous block in

its header [18]. Any attempt to modify data in an earlier block would require the

modification of not only that block but also all subsequent blocks for the chain to

remain valid. Such an attack is an extremely difficult task in networks with many

participants since the attacker must convince the majority of the participants to build

on the modified fork of the chain.

Figure 4. Blockchain DL Structure - Blocks, Block Headers, and Transaction

By contrast, a DAG is a graph data structure with no cycles that grows in one

direction due to edges connecting the nodes having a direction. Therefore, in a DAG

traversal, a node can only be reached once. There are various schemes and protocols

for implementing distributed ledgers based on DAGs. The IOTA Foundation DAG

(also known as the Tangle) does not group transactions into blocks and requires

that new transactions approve two previous transactions for them to be approved

and validated by other nodes in the network [19]. On the other hand, the Hedera

Hashgraph DAG is “equivalent to a blockchain in which the ‘chain’ is continuously

branching without any pruning, where no blocks are ever stale, and where each miner

is allowed to mine many new blocks per second, without proof-of-work consensus and

with 100% efficiency [16]”. In other words, the Hashgraph maintains a graph detailing

what data has been shared with what participants via gossip protocol, and the order

19

of those transactions.

Figure 5 shows a graphical representation of a Hashgraph where each member is

represented by a row of vertices and each gossip event is represented by a vertex.

Once a participant receives gossip from another participant, a vertex is added to the

receiving participant row with edges going to the vertex in the sender’s row and the

previous vertex of the receiving participant.

Figure 5. Hedera Hashgraph DAG DL Structure [16]

2.3.4 Categories

DLNs can be categorized based on the level of trust among the peers involved.

These are categorized as Public, Private, and Consortium based depending on a series

of characteristics as depicted in Figure 6. Following is a description of the specific

characteristics of each of these categories.

Anyone on the Internet can access public DLNs, and their content is visible and

verifiable by all of the nodes in the network [20]. These are also known as permis-

sionless DLNs since no one individual or organization has any control about who can

read the chain and submit transactions. Any participating node can elect to validate

these chains and be a participant of the consensus process for deciding the next block

to append to the chain and its current state [21]. Public chains operate in a low trust

environment, hence requiring consensus mechanisms that minimize the potential for

20

Figure 6. DLT Categories

faults, whether purposely created by colluding peers (attackers) or by software or

network errors.

Conversely, private or permissioned DLNs are those where access and write per-

missions are maintained by a single central entity and where the network peers are

highly trusted. Often, private DLs provide public readability to allow the chain to be

auditable [21]. While many argue that private DLNs offer no value over the traditional

data storage capabilities due to having all participants known and trusted, these can

provide out-of-the-box tamper-proof logging of data and auditing capabilities [22].

Similarly, consortium chains [21], are partially decentralized solutions that con-

stitute a hybrid between the low-trust (i.e., public blockchain) and the single highly-

trusted entity model (i.e., private blockchain) [20]. The characteristics of the hybrid

model allow organizations in a consortium to share transaction records without hav-

ing to trust all other organizations in the network or rely on a trusted third party to

facilitate the communications [23]. The consortium model fits ITS applications best

for three primary reasons: its ability to make data accessible to a set of pre-selected

and authenticated participants, distributed execution which allows for continuous

service availability as members join or leave the network, and low-cost scalability as

consortium members pay for the cost to run their nodes.

21

2.3.5 Consensus

Consensus—general agreement—is a critical aspect of any DLT protocol and one

of the main advantages. The foundation of mutual trust among nodes in the network

is based on a majority of nodes reaching consensus on the validity of the data [24].

It is required that participating nodes in a DLN reach consensus, an agreement on

the next block in the chain or the order of the transactions to commit. Appropriate

consensus algorithms must exhibit fault-tolerance, i.e., they must be able to perform

correctly in the presence of faults that are either purposely injected by bad actors or

rise as a result of system issues. In DLTs in general, reaching consensus among par-

tially or fully untrusted nodes is a transformation of the BGP [15]. In this case, the

primary goal is to ensure the ledger copies are consistent throughout the network [25]

with a level of crash and/or Byzantine fault tolerance. The consensus algorithm of

choice often depends on the target system and the level of trust among the members

of the network. For public network implementations (i.e., permissionless DLs), algo-

rithms such as POW and proof-of-stake (POS) allow any individual to take part in

the consensus process by either solving a computationally challenging problem (i.e.,

POW) or staking some cryptocurrency coins (i.e., POS). In permissioned networks,

consensus takes place among pre-selected nodes where the identities are known. As a

result, algorithms such as Practical Byzantine Fault Tolerance (PBFT) [26], Hedera

Hashgraph Consensus, and Kafka—not BFT—in Hyperledger Fabric [27] can deliver

faster finality times, making the committed transactions irreversible.

2.3.6 Smart Contracts

Second generation DLTs introduced the concept of smart contracts. These are

self-executing scripts that reside on the DLN and allow for automated distributed

workflows [28]. These scripts can perform corroboration and validation on transac-

22

tions in addition to other operations in relation to an asset or object in the ledger.

As a result, they minimize the risk for trusted intermediaries between parties thus

reducing the surface area for malicious activities [28]. Smart-contracts are analogous

to stored-procedures in relational database systems.

2.4 Related Work

An approach for collecting VANET data for purposes of reconstructing the events

taking place before and after an accident is described in [29]. The proposed solution

consists of integrating vehicles with improved log recording triggering mechanisms,

logging VANET communication data, and a GPS data rectification mechanism that

processes data submitted by other entities. This solution maintains all logged events

within the vehicle’s data recorder, therefore requiring an owner’s consent or a court

order to get access to it. This data needs to be parsed, filtered, and appended to

already acquired witness data in order to perform the forensic analysis on it. In

this case, the data stored in vehicles is potentially at risk of tampering by either

modification or deletion and may not always be accessible.

In [24], the authors describe a BC architecture and model for decentralized ve-

hicle applications. Their ITS-oriented model consists of a seven-tier architecture for

managing different aspects of the DLT and ITS ecosystem. On top, the application

layer provides services to allow consortium members to develop applications for vehi-

cle management, logistics, and history. Below the application layer sits the contract

layer, where self-executing smart contracts can be triggered as a result of predefined

conditions met by the protocol. The incentive layer follows the contract layer. This

layer is where the issuance and allocation of tokens would take place. Although to-

kenized incentives are not a requirement in the implementation of a DLN, there are

applications, such as a reputation system, where having an incentive layer would

23

prove useful. Next, is the network layer which describes how the nodes communicate

in a decentralized, P2P way, and how to validate blocks and transactions. The next

tier down, the data-layer, defines the data structure used for the DL, the encryption

mechanisms, hashing algorithms, and other functions such as timestamping. Lastly,

the physical layer encapsulates the physical devices and entities in the ITS which

include but are not limited to vehicles, roadside units, electronic toll stations, and

managed lanes.

Dorri et al. [18] proposes the use of a blockchain-based DL to address scalability

issues with centralized systems (e.g., cloud services), preserve the privacy of vehicle

owners and passengers, and enhance the security of smart transportation systems.

Unlike permissionless public BCs such as Bitcoin, their solution clusters the network

and moves the managing of the DL to nodes whose sole purpose is to broadcast and

verify transactions and append blocks to the ledger. Furthermore, the author lists

a series of use cases and their respective advantages, some of which include wireless

software update hash checks, secure data exchange with insurance providers, and car-

sharing services to name a few. Dorri et al. identified the chain of block hashes, the

encryption of transactions, and the use of PKI authentication to submit transactions

as significant security features of their blockchain design [18]. Also, the authors

describe how the distributed architecture of the network prevents service disruption

due to DDoS attacks by filtering out transactions from devices with invalid keys.

Unfortunately, the research described in [18] does not include the experimentation of

these services in a simulated transportation environment.

In [30], a 7-Tier blockchain architecture and framework was proposed for sharing

data among vehicles on public roads. It relies on all vehicles or devices participating

in the network being peer nodes. Their approach requires all peers to keep a copy

of the ledger and participate in the consensus process for appending blocks to the

24

ledger. Moreover, their approach involves a rewards layer, where a token is rewarded

to vehicles “winning” consensus. Unfortunately, there are no details regarding how

their proposed consensus algorithm, proof-of-driving, prevents Byzantine Faults [15]

and helps with maintaining the integrity of the network. It is also unclear how their

proposed approach handles a high volume of transactions made by a large number

of vehicles in populated locations or how these peak times would affect their time-

to-consensus. The authors also state that “the vehicle having the maximum IV-TP

token, leads the communication network” leaving unclear what actions the staking

leader can perform on the network (e.g., append new blocks to the ledger) or other

useful purposes for the tokens rewarded.

Oham et al. in [31] described their blockchain liability attribution framework

for autonomous vehicles based on a consortium of transportation and governmental

organizations. This framework utilizes two partitions for communications, the oper-

ational and decision partitions, to collect or share data among different entities or

sensors. Furthermore, the authors present a qualitative analysis of their framework

that evaluates its resiliency against a series of malicious activities such as transac-

tion deletion, collusion, and spoofing. A performance evaluation is presented which

describes average verification and validation times for the different types of transac-

tions. Their results show less overhead when compared to the approach described in

[32]. Also, in [33] Oham et al. developed a BC based framework for auto-insurance

claims and adjudication for connected and automated vehicles. The main purpose

of their framework is to facilitate adjudication and claims processing. Both [31] and

[33] are unclear about how the consensus algorithm operates to ensure the integrity

of the network and omit design considerations for enabling such services to operate

with current ITSs. Unlike the ad-hoc solutions in [31, 33, 32], the proposed imple-

mentation in this work utilizes an open-source framework that has been tested in

25

production environments and has both community and commercial support, ongoing

developmental upgrades, and can enable a number of other applications within the

same platform.

2.5 Summary

This chapter presented a brief summary of the technologies involved in ITSs and

how they operate. In addition, it discussed DLT categories, core concepts, and oper-

ation. It highlighted recent related work involving the use of DLTs in transportation

infrastructure and vehicle communication applications. While previous research de-

scribed the implementation of DLTs for enhancing ITS applications, there is no work

that discusses what transportation-related applications are appropriate for implemen-

tation with DLT. There is a clear need for research describing appropriate modeling of

transportation infrastructure and applications or ITS’s utilizing available DLT frame-

works. Similarly, the field lacks comparative evidence showing how this technology

scales to allow for the millions of vehicles in public roads and other mediums when

compared to current systems. Most of the research fails to show the scalability chal-

lenges with various consensus algorithms, performance metrics, or design challenges

and decisions related to deploying a distributed-ledger network for ITS’s to operate

with. Furthermore, the proposed implementations described in this chapter lack an

analysis of key factors in applying this type of technology (e.g., block size, block time,

transactions per block) that affect overall performance parameters such as transaction

throughput and consensus time. As a result, the effort described in this thesis focuses

on the design of a DLN that enables applications that rely on data transmitted among

vehicles and RSUs in the VANET ecosystem.

26

III. Distributed Ledger Network Design

3.1 Overview

This research investigates the use of a consortium blockchain network for trans-

portation infrastructure, provides a detailed description of the necessary architectural

layers of a sound implementation, and lists the components of the experimental net-

work developed for the scenarios described later in this thesis. An analysis of DLT

alternatives details the criteria used to select HLF as the DLT framework for imple-

menting the transportation DLN proposed in this chapter. The network’s configurable

components and data model definitions are also explained.

3.2 Consortium Network for Transportation Services

As previously mentioned, the work in this thesis is based on the concept of a col-

laborative network of transportation-related organizations and businesses. As shown

in Figure 7, these organizations could consist of government and law enforcement enti-

ties, insurance companies, vehicle manufacturers, and various other service providers

sharing data within a DLN. An increasing number of ITS road sensors and the ongo-

ing employment of V2V/V2I technologies will create a market for a new generation

of interconnected services. However, in order to provide a truly integrated ecosys-

tem for these systems, there is a need for a secure common data exchange medium

where all stakeholders, from vehicle owners and operators to government agencies, can

have access to, provide services, or report collected data for the purpose of improved

transportation services. These services might include enhanced traffic management,

accident data collection and liability analysis, and perhaps an automated toll collec-

tion system without any dedicated toll infrastructure.

Transportation entities participating in a consortium may depend on different

27

Figure 7. Transportation Infrastructure Consortium Members

types of data that can be gathered through existing sensors or previously deployed

systems. They could have access to this data to provide their services, but in turn,

must provide some data back that is of need or utility to other consortium members.

For example, insurance companies could base an individual’s insurance rate on law

enforcement data. In turn, law enforcement agencies would know whether or not an

individual has the coverage required by law.

The attributes of a consortium DLT provide a compelling rationale to use it as

the decentralized collaborative data store among the members of a transportation

consortium. This approach gives participating organizations means by which to share,

validate, and corroborate data to provide applications and services for current and

next generation transportation infrastructure and devices. The distributed aspect of

such a network ensures a lower risk of service disruption arising from system faults

or from departing members. Furthermore, it has the potential to lower the costs of

28

infrastructure installation, maintenance, and operations since these can be amortized

among entities sharing its services. Admittedly, this approach requires organizations

to reach agreement on the requirements and incentives for becoming a member as

well as rules and responsibilities for storing or managing different types of data such

as Personally Identifiable Information (PII).

3.3 Architecture

The proposed architecture relies on a consortium (permissioned) distributed ledger

framework to maintain a historical (i.e., timestamped) record of events and data

captured by vehicles, RSUs, and other devices within an ITS. Data exists in the

ledger in the form of transactions, signed and corroborated by vehicles, devices, and

other entities in the network through smart-contracts or other applications. As a

result, the grouping of transportation events stored in the DL provides substantial

evidence that they indeed took place as claimed or detected.

The proposed consortium DLN architecture, illustrated in Figure 8, is analogous to

the 7-layer Open Systems Interconnection (OSI) model, but tailored to a consortium

DLN environment. From the bottom up, the layers of this 5-Tier stack for cooperative

ITS networks are described as follows:

• The Data Layer describes the structure for storing and organizing the data such

as BC or DAG, as well as the validation processes that ensure the integrity of

the ledger. The technologies for storing and managing the data (e.g., Berkeley

DB, CouchDB, LevelDB) are also defined in this layer. In addition to storing

the ledger, database technologies can be utilized to maintain the latest state

representation of the data in the ledger. This feature provides enhanced data

capabilities allowing developers to query the contents of the ledger similar to

relational databases without having to traverse all the blocks in the ledger.

29

Figure 8. Consortium DLN High-Level Architecture

• The Network Layer provides the communication protocols for the distribution

of transactions across the network. These can include gossip, Internet Relay

Chat (IRC), and other communication protocols.

• The Consensus Layer defines the algorithms used to ensure all nodes in the net-

work share the same ledger(s). At this layer, transactions received and endorsed

are packaged into blocks which are then broadcast throughout the network us-

ing protocols from the Network Layer. Due to the partial trust within nodes in

a consortium network, consensus can be performed by a smaller subset of the

nodes in the network. Suitable consensus schemes for this consortium model

include PBFT, POS, and Hashgraph as well as leader-selection based ones.

30

• The Services Layer provides the authorization mechanisms, the endorsement

policies that ensure the validity of data, corroboration services that provide

attestation to the events, and the smart-contract capabilities that perform self-

verifying, self-executing, and self-enforcing state-response rules stored and se-

cured at the data layer [24]. Authentication mechanisms defined in this layer

can integrate capabilities as specified in IEEE 1609.2 for Vehicle PKI (VPKI) in

addition to standard PKI technologies as utilized by the organizations involved.

• The Application Interfaces Layer defines the endpoints for interfacing and in-

teracting with the network and building applications that need to read or write

data from the network. This is where the endpoints for ITS applications to com-

municate with the transportation consortium DLN exist. Components in this

layer would enable interaction with the network through network or web-based

application programming interfaces (APIs) (e.g., Representational State Trans-

fer (REST), Sockets, Simple Object Access Protocol (SOAP)) or stand-alone

command-line interfaces.

This network architecture must be managed and supported by entities with the

need to store or access transportation data. Entities that aim to provide services that

enable and improve the ecosystem as a whole can be granted access to participate.

Having access to a tamper-proof data source enables companies and organizations to

provide reliable services (e.g., targeted rates from insurance providers). The quality of

services depends on data that has been attested through endorsements, corroboration,

and validation by other participating peers. For example, in the event of an accident,

law enforcement agencies and insurance companies can create a timeline of event

observations corresponding to the vehicles involved before and after the accident.

This could prove advantageous at times where drivers, possibly at fault, provide an

incorrect version of the events or contest being at fault.

31

3.4 Hardware Platform

All network nodes and simulation were executed in Virtual Machines (VMs) within

a single workstation. The workstation was powered by an Intel CORE i7 vPro (7th

Gen) processor (2.9GHz, 4 Cores, 8 Logical Processors) with 16GB of RAM. Each

HLF node VM was allocated 2 logical processors, 2GB RAM and ran Ubuntu 16.04

64-bit operating system. The hypervisor software for hosting the VMs was VMWare

Workstation 14 Pro. Docker v18.06.1 was used for the deployment of containers.

3.5 Selecting a DLT Framework

Various DLTs alternatives were analyzed in order to select an appropriate frame-

work for the conceptual design proposed in previous sections. Table 1 lists the most

appropriate DLTs considered for the implementation of the transportation network,

along with the selection criteria. Due to time and development constraints, the cho-

sen technology must provide out-of-the-box DLN application execution capabilities.

It must also provide a framework for developing applications that utilize the DLN

services and network API endpoints (e.g., web sockets, REST). Due to the nature of

a consortium blockchain, the selected technology must provide permissioning capa-

bilities such as user/admin membership management. Another feature it must have

is the ability to define and deploy smart-contracts. These are crucial for the devel-

opment of applications that execute within the DLN when specific transactions are

submitted. Ideally, the selected technology would be available for use at no cost.

• Tendermint. Tendermint is an application and framework for creating a state-

machine replication network. In essence, it provides a blockchain-based alter-

native for participating peers to reach consensus on the state of the application

relying on this network. Its consensus algorithm is BFT hence allowing a net-

32

Table 1. DLT Alternatives.

Name Executable API/SDK
Ready

Permissioned Smart
Contracts

$0 License
Cost

Tendermint X X X
MultiChain X X X X
Hyperledger

Fabric
X X X X X

work to operate with up to 1/3 of faulty nodes. Tendermint does not provide

native permissioning or user management capabilities, however, this can be

developed and integrated into existing solutions. Neither does it provide smart-

contracts development. It is an open-source project with zero licensing costs

for either personal or commercial deployments.

• MultiChain. MultiChain provides the executables and framework for the cre-

ation and deployment of private and consortium blockchain networks [34]. It

has embedded identity management that enable blockchain access restriction

and as of version 2.0 provides smart-contract like features known as smart-

filters. Although features provided by the MultiChain framework could enable

the development and deployment of a blockchain network for transportation

infrastructure, version 2.0 at the time of this assessment was still an alpha ver-

sion. MultiChain has a $25k/year commercial licensing cost which is required

for any implementation for distribution not open sourced under GNU General

Public License (GPL) v3.

• Hyperledger Fabric. HLF is a modular and extensible open-source framework

for the deployment and operation of permissioned distributed-ledgers hosted by

the Linux Foundation and maintained by IBM [35]. HLF’s modular architecture

allows developers to reuse available components such as membership manage-

ment within their implementation. HLF relies on a scalable consensus module

33

enabled by Apache Zookeeper and Apache Kafka, the latter one also provid-

ing publish and subscribe capabilities to the applications built within it. This

framework has robust role-based user management capabilities giving develop-

ers complete control over permissions at different layers of the network. It has

a framework for building smart contracts, known as Chaincode, in various lan-

guages. It provides native transaction endorsement features that are key to

securing transactions in a consortium network where all participants may not

trust each other. HLF has a number of support tools (e.g., Hyperledger Com-

poser, Hyperledger Explorer, Hyperledger Caliper) that speed up the setup,

development, analysis, and deployment of applications on top of it. There are

no costs to deploy HLF for personal or commercial purposes on your own in-

frastructure.

Based on the criteria described above, HLF was the technology selected for this

experiment. In addition to the features previously described, it allows for multiple

channels (“blockchains”) within the same platform network for different applications

and has private data capabilities. The framework provides a Software Development

Kit (SDK) for popular languages such as Go, Java, and JavaScript (NodeJS). Its

modular architecture makes it an attractive framework for entities not interested in

re-developing their technologies to deploy a DLN for their services. In early 2019, HLF

v1.4 Long Term Support was released with promising new capabilities and improved

features, but was not adopted for this effort.

3.6 Frameworks and Tools

The following frameworks and tools were utilized for creating the blockchain net-

work, defining the data-models and smart contracts, and querying the ledger for data.

34

3.6.1 Hyperledger Project Technologies

The Hyperledger Project is a collaborative effort hosted by The Linux Foundation

that aims to develop and support open-source enterprise DLTs [36]. Currently it hosts

over 10 projects which include frameworks and tools for the design, development,

deployment, and testing of DLNs and distributed applications. The next sub-sections

described the Hyperledger Project framework and tools utilized for this experimental

network.

3.6.1.1 Hyperledger Fabric

HLF (v1.2) was chosen primarily because its modularity allows developers and ar-

chitects to tailor its different layers, such as methods for validation, consensus, and the

distributed-ledger data structure, to meet an organization’s needs [35]. Furthermore,

HLF allows the creation of a consortium-based network of peers where organizations

can manage their own users’ permissions.

Key terminology related to HLF is defined below:

• Consensus: HLF supports pluggable consensus and it can support different

types per channel. Consensus in HLF takes place among the Ordering Service

Nodes (OSNs), commonly referred to as orderers, and is performed by selecting

a leader among them with a fully synchronized ledger to order the transactions,

place them in a block, and deliver them to other peer nodes for validation and

committal. The framework deployed in this research uses Apache Kafka and

Apache Zookeeper for consensus since it is the only consensus module consid-

ered ready for production environments. The Zookeeper-Kafka consensus at its

core enforces the ordering of transactions in a block. Blocks are created when

a predetermined number of transactions are received or when a timer since re-

ceiving the first transaction for a block has expired (block timeout). Once one

35

of these two actions happen (whichever one happens first), a block is delivered

to the peer nodes [37].

• Channel: A channel in HLF is a private blockchain where only the specific

channel participants have access to and can interact with it [38]. Participation

is managed via authentication and Access Control Rules (ACRs).

• Chaincode: Also known as smart-contracts, chaincode is the code/service in-

voked by an application interacting with the HLF network that manages access

and modifications to the ledger. It is installed on peer nodes to work on one or

more available channels [38].

• Endorsement: In HLF, endorsement refers to peer nodes simulating the exe-

cution of a chaincode transaction and communicating the response back to the

originator, along with their signature to provide proof of valid execution result

[38]. Endorsement policies define a transaction endorsement requirement in the

form of Boolean expressions over participating organizations [37].

• Membership Services Provider (MSP): The MSP provides cryptographic

(PKI-based) credentials to the HLF participants for authentication and trans-

action processing [38].

• Peer Node: A network node that executes the chaincode and maintains a copy

of the ledger. Peers can be identified as endorsers in order to participate in the

endorsement of a transaction and can also be identified as anchors which allow

them to be discovered by and communicate with all other peers.

• Orderer Node: OSNs or Orderers are nodes that participate in the consensus

phase. They receive transactions from other peers, create blocks and broadcast

them to all other endorsing and committing peers [37, 38].

36

• Access Control Rules: ACRs can be deployed to control which participants

have access to which assets and the conditions under which that access is granted

or denied. This allows certain entities to perform actions on assets they own,

or update the state of an asset given a set of rules. Although a feature available

through Hyperledger Composer, the modeled network does not employ the use

of ACRs, all vehicles and RSUs are assumed to have the add/update rights to

the events they are involved in.

HLF networks follow the execute-order-validate-commit model for transactions

shown in Figure 9. Transactions are received in the execute phase where they are

passed through chaincode, if needed, while at the same time the receiving peer sends

a request for endorsement. Requests for endorsement are sent only if such requirement

has been set when instantiating chaincode. In order for the transaction to be valid, the

endorsement execution at a different peer node must yield the same output as the same

execution at the originating node. Once the transaction has received all endorsements,

it is sent to an orderer for consensus, entering the ordering phase. At this stage the

transactions are ordered by their timestamps and await inclusion in a block. A block

is created whenever the first of the following two conditions is met: the block is filled

with the maximum number of transactions allowed or a block timer expires, i.e.,

block timeout. Once the block is cut, it is broadcast to other nodes for validation.

During the validation phase, peer nodes ensure that the received transaction has valid

endorsement signatures and meets the pre-defined endorsement policy requirement

through a process known as validation system chaincode (VSCC). Another type of

validation that takes place during this stage is multi-version concurrency control

(MVCC) [39] validation, which checks if the state of the object being modified by a

transaction in a block has not changed since the transaction was executed and tags it

valid or invalid. Once validation has completed, the transaction is committed to the

37

ledger and the state database is updated to reflect the creation or modification of the

data asset in question. Finally, any events specified in the blocked and committed

transactions are then emitted.

Figure 9. Hyperledger Fabric Transaction Workflow

3.6.1.2 Hyperledger Composer

Hyperledger Composer (HLC) (v0.20.3) is a toolset and framework aimed at facili-

tating the development and execution of blockchain networks and services [40]. It was

utilized to model and deploy the ITS chaincode and network services of this setup. It

includes a “Composer-Playground” tool to view and interact with world-state data

and perform upgrades to the services. Composer has the capability to stand up a

REST server that interfaces with the HLF network to provide a web API.

38

3.6.1.3 Hyperledger Explorer

The Hyperledger Explorer (v3.5) project provides a web application to interact

and query underlying data from the blockchain that is not available through the

HLC generated services [41]. Block information such as hashes, timestamps, and

transactions are made available via its services layer which can be used for computing

performance data such as network throughput in Transactions Per Second (TPS).

3.6.2 Lightweight Transportation Modeling Tool (LTMT)

This tool, shown in Figure 10, was developed for the work described in this thesis

in order to provide a simple environment for the modeling and simulation of moving

vehicles and their communication with infrastructure and other vehicles. Popular

alternatives such as the Simulation of Urban MObility (SUMO) [42] allow the gener-

ation of vehicle scenarios at a much larger scale but do not have native capabilities

to interact with web APIs.

Lightweight Transportation Modeling Tool (LTMT) relies on Google Maps to

display vehicles and infrastructure sensors (e.g., RSUs) in a map and the Google

Directions API to generate vehicles routes around a pre-defined region. It is built on

JavaScript and NodeJS and can be deployed as a web or stand-alone (requires Internet

access) application. In this experiment, the LTMT generates the vehicle traffic and

accident scenarios and acts as an application client that interacts with the DLN. Its

main purpose is to simulate vehicle and infrastructure behavior and communications

during the event of an accident.

39

Figure 10. LTMT User Interface (Map data: Google)

40

Figure 11. LTMT Scenario Generation

The tool relies on a list of addresses or coordinates provided by the users from

which the vehicle paths are generated. Users can manually add vehicles to a scenario

by specifying the source and destination locations or they can be automatically added

with origin and destination addresses selected from the pool of addresses for the pre-

determined location with the scenario generation wizard (Figure 11). At scenario

initialization, it queries Google’s Direction API for the path of travel and road condi-

tions that affect the speed and route of the vehicle. Vehicles are uniquely identifiable

and their location, current speed, and heading parameters are calculated and updated

in every timestep and broadcast in a BSM, (shown in Table 2). The BSM parameter

choices are based in the discussion of V2V/V2I BSM data in [29] and in accordance to

[9, 10]. Similarly, RSUs can be manually added by specifying the placement location

or automatically during scenario generation. However, RSUs do not broadcast BSMs,

instead, they collect data to perform a service defined by the developer.

41

Table 2. LTMT Vehicle BSM Content.

Parameters

ID
Date - Time

Location: Latitude, Longitude (Decimal
Degrees)

Speed (miles per hour (MPH))
Heading (Degrees)

As vehicles are en-route to their destination, they broadcast and receive BSMs

from vehicles within a distance of 100 meters and collect speed, heading, and ID in-

formation from broadcast messages. BSMs are broadcast/received during every time

step. This tool does not employ expiring pseudonyms as means to identify vehicles,

and all IDs are static for the duration of the scenario. RSUs can also broadcast or

receive vehicles nearby and categorize them as misbehaving based on the information

they broadcast and what the detecting sensor sees. Misbehavior occurs when a ve-

hicle is detected speeding, underspeeding, or stopped. These misbehavior activities

are defined in a collection of rules. These rules are evaluated during every vehicle

detection and communication step. Both vehicles and RSUs keep a log of received

messages and detected misbehaving sensors containing the location of detection, the

detected vehicles broadcast data (ID, date-time, location, speed, heading), the dis-

tance of the vehicle from the source sensor, the type of misbehavior detected, and a

list of other sensors within range. Figure 12 shows an accident event as broadcast in

the tool with collected misbehavior witnessed data.

42

Figure 12. LTMT Accident Event Notification and Misbehavior Data Collection (Map data: Google)

43

In its current state, the tool can trigger accidents between two vehicles within

collision distances based on either a defined probability-of-accident value or violation

of rules that define misbehavior activity such as speeding, underspeeding, or stopped.

Vehicles are considered speeding when traveling at a speed of 10 MPH over the defined

speed limit and underspeeding when traveling at a speed of 10 MPH under the speed

limit. Developers can modify LTMT’s libraries to redefine traffic and misbehavior

rules, or to communicate events to other applications via HTTP REST APIs or

WebSockets.

The LTMT was limited to a maximum number of 600 vehicles and RSUs that

can be added to a single scenario when generated through the browser interface.

This limitation is due to JavaScript’s single-thread allocation per browser instance

and introduced latencies in the browser’s JavaScript engine event-loop which results

in delayed vehicle movements, delayed communications, and an overall poor user-

experience. However, scenarios that require more sensors can be generated by running

the same scripts without the user-interface bindings using NodeJS and exporting the

results or events per timestep to a file. This file can be consumed by other applications

for further processing or analysis.

3.6.3 Network Architecture based on Hyperledger Technologies

Figure 13 below shows how the selected DLTs implement the different layers of the

proposed architecture. It also depicts the layers abstracted by HLC to provide a de-

veloper friendly environment, and the additional capabilities it provides beyond HLF.

Hyperledger Explorer, on the other hand, does not utilize HLC’s abstraction layer

but instead communicates with HLF’s services layer directly to query information

about blocks and transactions stored in the blockchain.

44

Figure 13. Hyperledger Fabric/Composer Based Network Architecture

3.7 Network Design

The baseline configuration for this HLF network with a Zookeeper-Kafka cluster

is described in Table 3. Figure 14 shows the network topology of this configuration.

For purposes of this experiment, MSP, OSN, and peer containers for each organi-

zation are initiated in the same VM. In addition, each organization’s VM executes

Composer REST Server to expose the web API. All VMs were configured with static

IP addresses and the Docker container configurations were set to utilize host network

mode. In a production HLF network, each consortium organization will have at least

the components described. Most likely, these will employ multiple peer nodes within

their bounds to distribute the usage of the services.

45

Table 3. Baseline HLF Network Configuration.

Parameters Values

Participating Orgs 3
Orderer Nodes 3
Peer Nodes 3
Channels 1
Zookeeper-Kafka
Cluster (Consensus)

3 Zookeeper Nodes
4 Kafka Nodes

World-State Database
(DB)

CouchDB

Block Size 99MB OR 10 Transactions
Per Block (TPB)

Block Timeout 2 seconds
Endorsement ORG1 & ORG2 & ORG3

The network was initiated with three organizations (consortium members) since

that is the minimum number required for creating a partial-trust environment where

a blockchain or DLN would be most beneficial (not enforced by HLF) and due to

limited computing resources available. There are more efficient ways to store and

manage data for a single organization than utilizing DLTs, for example, distributed

databases. When two organizations collaborate with each other, this collaboration

assumes full trust between the two entities and there is no need for endorsement

or consensus in data distribution. In a three-organization consortium, there is the

possibility that not all organizations trust each other, therefore bringing value to

endorsement and a leader or voting based consensus.

The number of nodes for the Zookeeper-Kafka cluster configuration is the min-

imum number of nodes required to setup Zookeeper-Kafka consensus in HLF v1.2.

For Kafka nodes, four is the minimum number of nodes to exhibit CFT [43]. For

Zookeeper nodes, the number must be odd to “avoid split-brain scenarios and larger

than 1 in order to avoid single point of failures” [43]. As a result, three Zookeeper

nodes were configured. As shown in Figure 14, the Zookeeper-Kafka cluster, com-

46

Figure 14. Experimental Hyperledger Fabric Network Configuration

posed of multiple Zookeeper and Kafka nodes that need not be co-located, can be

considered a pitfall due to the centralization. It begs the question of who is in charge

of the maintenance and costs to operate this cluster. The consortium as a whole could

split the costs of maintaining these crucial components of the network.

3.7.1 Hyperledger Fabric Network Initiation

Once the HLF framework has been downloaded and installed in the VMs for

organizations 1, 2, and 3 respectively, the cryptographic materials (certificates, gen-

esis block, channel block) using the configuration files included in Appendix A and

47

Appendix B are generated. Next, the network is brought up in the following order

(specific commands are enumerated in Table 4):

1. Start Zookeeper-Kafka VM and cluster containers

2. Start Org1 VM. Start Org 1 HLF Orderer, MSP, CouchDB, and Peer containers.

Create and join channel.

3. Start Orgs 2 and 3 VMs. Start Orgs 2 and 3 respective HLF Orderer, MSP,

CouchDB, and Peer containers. Fetch channel configuration and join channel.

Table 4. Commands to Start HLF.

VM Name Commands

Zookeeper-Kafka $docker-compose -f < DOCKERFILE > up
Org1 $docker-compose -f < DOCKERFILE > up;

$peer0.org1.afit.edu peer channel create -o
orderer1.afit.edu:7050 -c composerchannel -f
/etc/hyperledger/configtx/composer-channel.tx;

$peer0.org1.afit.edu peer channel join -b
< BLOCKNAME >

Org2 and Org3 $docker-compose -f < DOCKERFILE > up;

$peerx.orgx.afit.edu peer channel fetch config
-o ordererx.afit.edu:7050 -c composerchannel;

$peer0.org1.afit.edu peer channel join -b
< BLOCKNAME >

The commands in Table 4 are in a script located in each VM, and executed after

booting up. The Docker configuration file utilized for an organization is shown in Ap-

pendix C and Appendix D shows a version of the script for starting a node VM based

on the Docker configuration. Peers that successfully joined the network displayed the

message shown in Figure 15. The network is now ready for the deployment of the

Hyperledger Composer data models, chaincode, and REST server.

48

Figure 15. Hyperledger Fabric Peer Node Successfully Joins Channel

3.8 Transportation Application Design

Data models for storing data relevant to the consortium entities and distributed

chaincode (functions) are defined and deployed using HLC. Data model definitions

and chaincode are bundled into a Hyperledger Composer Business Network Archive

(BNA). The BNA file also contains an access-control rules list for the applications

and query definitions that are exposed through the Composer generated APIs. The

deployment of this file creates a new container on the peer node that utilizes the HLF

network to store the data and execute the chaincode in the specified channel.

3.8.1 Data Models

HLC has its own object-oriented modeling language, Composer Modeling Lan-

guage (CML), which was used to define the data structures required for deployment

of the applications to the network. The main data models and respective attributes

defined in CML for the applications described in this experiment are shown in Table 5;

Appendix E contains all the data model definitions deployed to the network.

3.8.2 Chaincode

Chaincode in HLF can be developed in Java, Go, and JavaScript. In this im-

plementation, chaincode is developed and executed through a layer of abstraction

provided by HLC using ES 5 JavaScript. API classes and functions provided by HLC

49

Table 5. Main Data Models and Attributes.

Name Type Attributes

WitnessedVehicleData concept +observedVehicle:Vehicle
+source:Sensor
+location:Location
+eventTimestamp:DateTime
+eventId:String
+speed:Double
+heading:Double
+distanceFromSource:Double
+behavior:String[]

Sensor asset +id:String
+type:SensorType

Vehicle extends Sensor asset +odometer:Double
+eventsInvolved:RoadEvent[]

RSU extends Sensor asset +id:String
+location:Location

RoadEvent asset +id:String
+location:Location
+eventTimestamp :DateTime
+type:EventType
+vehiclesInvolved:Vehicle[]
+witnessedData:WitnessedVehicleData[]
+validatingReports:String[]
+seenVehicleReporters:String[]
+uncorroboratedReports:String[]
+sourceSensor:Sensor

for chaincode development are not the same as those in the HLF NodeJS SDK. How-

ever, HLF native function calls can be made from the HLC layer. Chaincode logic

in HLC is done through Transaction Processor Functions (TPFs) that are bundled

within the BNA that is deployed to the HLF network to provide the transportation

related capabilities and services. TPFs are automatically invoked when transactions

are submitted utilizing the APIs generated by HLC. In the experimental network

implementation, the deployed chaincode references the data models in Table 5 and

describes how to use the transaction objects to update vehicle information such as last

50

known odometer readings in addition to creating road event reports (e.g., accident)

and appending witness data to those reports. The procedures defined in chaincode

must be passed arguments (if required) that are objects of transaction type classes.

They can be used to verify the existence of the sensors submitting the transaction,

perform data validation before creating the asset (e.g., bounds validation), and decide

when to broadcast an event.

3.8.3 Endorsement Policy

Endorsement policies are passed as a parameter to the command that starts the

HLF network layer defined in the BNA or defined in the HLF when instantiating

chaincode. Calling the

$ composer network start

command without specifying the endorsement policy results in standing up a network

where all transactions require endorsement by all peers identified as endorsing peers

in the connection profile (See Appendix H for example).

The performance of the network, loaded with a series of scenarios, will be mea-

sured with the default endorsement policy and a 2-Of endorsement policy. The 2-Of

endorsement policy shown in Figure 16 requires a TPF with given transaction to be

executed and signed by at least two different organization members of the network.

This will help determine whether or not the changes to endorsement policy through

Hyperledger Composer result in statistically significant improvements.

In a three-organization consortium network, a 2-Of policy is the least restrictive

endorsement policy without completely removing endorsement. Removing the re-

quirement for transaction endorsement in these types of networks means that all par-

ticipating organizations fully trust all other organizations execution, however, these

can be attempting to execute a transaction on outdated or corrupted blockchain data

51

and their execution result may not be the same as the result on other peer nodes.

Endorsement in HLF provides a mechanism to ensure deterministic and verifiable

results in the execution of transactions among a subset of participating nodes in the

network.

{
{"role": {"name": "member","mspId": "Org1MSP"}},
{"role": {"name": "member","mspId": "Org2MSP"}},
{"role": {"name": "member","mspId": "Org3MSP"}},

],
"policy": {

"2-of": [{"signed -by": 0},{"signed -by": 1},{"signed -by
": 2}]

}
}

Figure 16. 2-Of Endorsement Policy Definition

3.8.4 Access Control List

The access control list file specifies the access rules for the different network par-

ticipants defined as part of the data models or known to the HLF network (e.g.,

network admins). These define which participants have access to perform a specific

operation to a resource under a specified condition. For example, the ACR depicted

in Figure 17 gives vehicle owners read access to all transactions submitted by their

vehicles.

rule historianAccess {
description: "Only allow vehicle owners to read historian

records referencing transactions they submitted."
participant(p): "org.afit.transportation.VehicleOwner"
operation: READ
resource(r): "org.hyperledger.composer.system.

HistorianRecord"
action: ALLOW

}

Figure 17. Access Control Rule Example

For purposes of this experiment, ACRs will not be defined and all sensors and

52

users are assumed to meet the appropriate access requirements to read or create

transactions.

3.8.5 Hyperledger Composer Archive Deployment

In order to deploy the chaincode and data models defined using the HLC tools,

the HLF network must be up and running. Deploying the BNA to the HLF network

requires the execution of a series of commands which is facilitated by the autoCom-

poser.sh script (Script shown in Appendix G). The autoComposer.sh commands must

be executed from the directory containing the BNA files in the following order:

1. Generate the BNA file (Figure 18):

Figure 18. Creation of Transportation BNA

2. Install the BNA in participating peer nodes (Figure 19):

Figure 19. Installation of Transportation BNA

3. Start the Composer network from one of the peers with the BNA installed

(Figure 20):

4. Start Composer-REST Server in all participating peers (Figure 21):

53

Figure 20. Deployment of Transportation BNA

Figure 21. Deployment of the REST Server using Hyperledger Composer Tools

3.9 Summary

This chapter described the proposed consortium for transportation services and

the network architecture using a DLN it can rely on. It presented an analysis of

strong DLTs alternatives and the framework selection criteria followed for the imple-

mentation of an experimental network. The frameworks and tools utilized to create,

configure, and deploy the network are also discussed. LTMT, a tool for simulating a

transportation environment with vehicles and RSUs is presented and described. Fi-

nally, the design of the HLF and HLC networks is introduced and the steps to deploy

and initiate them are listed.

54

IV. Experimental Scenarios

4.1 Objective

The goal of this experiment is to model ITS infrastructure and applications using

a DLN. Two specific applications are modeled in the HLF network. The first is

a simple vehicle odometer mileage reporting and tampering identification function.

The second is an accident data collection system. Results will be utilized to assess

the effectiveness of the proposed network for collaborative distributed transportation

services. Collected metrics will be analyzed to assess the overall performance of the

network implementation under different loads within the same hardware platform.

Modifications in network and code design parameters found to improve responsiveness

and throughput are also discussed.

4.2 Assumptions

The assumptions made in this experiment are related to the simulation environ-

ment, HLF constraints and known factors, and experiment design decisions.

• Transaction Latency: Transaction times are measured from the time the client

submits a transaction to the network for execution, to the time it is committed

in the ledger and responds back to the client.

• Signal Loss: Wireless or wired signal losses are not modeled in the simulation

environments.

• Vehicles and Sensors Authentication: RSUs and vehicles sending transactions

are assumed to have the appropriate access rights to the services.

• Traffic Laws: Vehicles in the simulation do not perform stops at intersections

or adjust their speed based on a road’s speed limit. There’s no concept of lanes

55

in the simulation, just routes where vehicles move from their predefined source

address to their destination address.

• Ambient Environment: There are no obstructions visual, or otherwise present in

the simulation environment (i.e., the environment is clear with high visibility).

• Vehicles Only: No obstacles, except other vehicles in the same path, are present

in the simulation environment (i.e., no pedestrians or wild animals).

• Event Data Recorder: Vehicles are equipped with data recording capabilities to

store time, location, detected-vehicle ID, speed, heading, and misbehavior type,

if any, of received BSMs.

• Vehicle Communications: Vehicles are equipped with means to establish a zero-

latency data-link with other vehicles and roadside units, and can communicate

with the HLF DLN services over the Internet. The inner workings of VANET

communications as specified by the IEEE 1609 Family of Standards are not

modeled for this experiment.

• Vehicle Misbehavior: Misbehavior is defined as a vehicle underspeeding (10

MPH below speed limit), overspeeding (10 MPH above speed limit), or stopped.

The default speed limit in the simulation is 20 MPH.

• Vehicular Accidents: Vehicle collisions generated in LTMT are triggered when

vehicles are detected within 5 meters of each other, at least one of the vehicles

is misbehaving, and a pseudo-random accident event generator triggers an ac-

cident event. All other vehicles not involved in the accident continue moving

toward their destination. In the modeled scenarios, it is assumed that one of

the two vehicles involved in the accident reports it.

56

4.3 Control Variables

The control variables are those held constant over the execution of the various

scenarios and experiments of this research, both at the simulation and DLN layers.

These are listed in Table 6.

Table 6. Control Variables

Variable Value Description

Participating Organizations 3 Number of organizations in the
network

Ordering Nodes 3 Number of HLF ordering service
nodes in the network. One per
Org.

Peer Nodes 3 Number of HLF peer nodes in the
network. One per Org.

Channels 1 Number of blockchains in the
DLN.

Zookeeper-Kafka Cluster 3 Zookeeper
4 Kafka Nodes

Zookeeper and Kafka nodes used
for consensus.

World-State DB CouchDB Type of database software for
maintaining the channel’s world
state. One per Organization.

TLS Communications Disabled TLS is disabled to ease up configu-
ration and deployment of the net-
work for multiple scenarios.

Number of Vehicles 3000 Number of vehicle records initial-
ized in the DLN.

Number of RSUs 600 Number of RSU records initialized
in the DLN.

Accident Probability 20% Probability of an accident being
triggered in LTMT when two ve-
hicles have colliding locations and
at least one misbehaving.

Speed Violation Threshold 10 MPH Threshold of the current speed
limit (+/-) for identifying speed-
ing/underspeeding violations.

Transaction Arrival Rate 10-100 TX/s Number of transactions sent to the
within a 1 sec time period.

57

4.4 Independent Variables

Independent variables are specific to the scenarios aimed at evaluating and opti-

mizing the performance of the network. These are listed and described in Table 7.

Table 7. Independent Variables

Variable Units Description

Transaction Arrival Rate TPS Transactions submitted per second
Block Size
(BatchSize)

TPB Maximum number of transactions
per block

Block Timeout
(BatchTimeout)

seconds Maximum time to wait for a block
to be filled

Endorsement Policy - Type of endorsement required to
commit a transaction. Values: All-
Orgs, 2-Of

4.5 Response Variables

The response variables for this research work are listed in Table 8. These are

correlated to the performance of the network given a specific scenario. These values

are measured at the application layer or gathered from the HLF network through

the use of Hyperledger Explorer’s API. Thorough analysis of these values will aid in

determining the optimal configuration for the network given the hardware platform,

deployed chaincode, and data models.

4.6 Application Scenarios

The next two subsections describe the use of the DLT network and services for

two specific applications. The chosen applications can leverage the properties of

blockchain features provided by HLF and HLC and take advantage of the collabora-

tive, distributed, and immutable environment provided to identify possible fraudulent

vehicle odometer rollbacks and invalid accident liability claims.

58

Table 8. Response Variables

Variable Units Description

Mean Transaction Success Rate % Percentage of successful transac-
tions out of total submitted

Mean Transaction Throughput TPS Mean of transactions processed
by the network, measured at the
application layer

Peak Transaction Throughput TPS Peak number of transactions pro-
cessed and committed, measured
at the application layer

Peak Execution Rate TPS Peak number of transactions ex-
ecuted at and measured at the
HLF layer

Peak Block Allocation TPB Peak number of transactions per
block generated, measured at the
HLF layer

Mean HLF Errors Detected # Errors Mean of HLF errors received at
the application layer

Mean Connection Errors Detected # Errors Mean of other network errors re-
ceived at the application layer

Average Response Time seconds Average of time to process a bulk
of transactions, measured at the
application layer

4.6.1 Vehicle Odometer Reading Reporting

Odometer fraud is the alteration of a vehicle’s odometer with the goal of keeping

it from displaying or recording the vehicle’s actual total distance traveled. NHTSA

estimates that odometer fraud due to tampering costs American car buyers over

$1 billion annually due to over 450,000 vehicles sold each year with false odometer

readings [44]. In the proposed consortium, participating vehicle services providers and

automotive dealers can update vehicle records whenever these undergo maintenance

or are checked at their facilities for routine inspections (e.g., smog tests in some

states).

This simple scenario relies on the capability to submit vehicle maintenance reports

59

which include a current odometer reading. By using a DLN chaincode operation

or TPF, this value can be checked against the previously known odometer reading

of the car and report back whether it has been tampered with if the value is less

than previously reported. In addition, participating organizations can subscribe to

events triggered by invalid odometer reports, to analyze or investigate the matter.

Individuals in the process of purchasing a vehicle can verify that the odometer of

the vehicle in question has not been tampered with by accessing services provided by

their local Department of Motor Vehicles (DMV) or other businesses with access to

the network. Given that DMV offices hold information about the owner of vehicles,

any tampering detection information can be relayed to law enforcement or similar

authorities (e.g., Office of Odometer Fraud Investigations at the USDOT) to initiate

an investigation that could result in fraud charges.

This application can be easily employed in the deployed experimental network by

modeling the following scenario. A vehicle service provider performs maintenance

on a car and, upon completion, reports the maintenance performed along with the

vehicle’s odometer reading at that point in time to the consortium network, an action

many shops and automotive dealerships already do through various private services

(e.g., CARFAX). This odometer reading report can be validated against the last

reported vehicle odometer reading. If the reading is valid, it is updated on the vehicle

record. If it is invalid, the transaction is still committed to the blockchain, showing

execution of the chaincode function and its result. However, the vehicle record is not

updated and a notification is sent to channel subscribers. The network also responds

back to the service provider with a valid or invalid response to its initial transaction.

Organizations subscribed to the channel can automatically initiate an investigation

about the matter or query the network for more evidence. The workflow of events for

the scenario described is shown in Figure 22.

60

Figure 22. Workflow of Events for Odometer Tampering Detection

The TPF pseudo-code modeled for this scenario is shown in Algorithm 1. It does

not perform any validation or corroboration with other data from the network. Actual

TPF logic is included in Appendix F.

Algorithm 1 Vehicle Odometer Update Transaction

1: //tx ← {odometer, vehicle}
2: if tx.odometer > tx.vehicle.odometer then
3: tx.vehicle.odometer ← tx.odometer
4: assetRegistry ← GetV ehicleRegistry()
5: assetRegistry.update(tx.vehicle)
6: tx.valid← true
7: else
8: tx.valid← false
9: emit(InvalidOdometerReadingEvent)

10: end if
11: return tx

4.6.2 Accident Data Collection

Accident Fraud is another common problem vehicle owners and transportation

entities face every day. A 2012 study shows that common fraudulent activities which

include false accident claims, staged accidents, and false liability disputes, have cost

insurance companies between $5.6 to $7.7 billion in excess payments [45]. Another

study from 2016 showed that nearly 75% of insurance companies have opted to in-

troduce automated systems to detect false claims and reduce their losses in excess

61

payments [46]. The proposed DLN can provide false claim detection capabilities and

accident liability evidence for purposes of attribution through the corroboration of

accident data recorded and submitted by vehicles involved and witnessing the event

of an accident.

This scenario focuses on the storage of accident event reports and witnessed data

recorded by vehicles and road sensors to create a snapshot of events within a window of

time before an accident and serve as evidence in the identification of liable parties, an

extension of the similar approach in [29]. Each of the vehicles in the simulation share

information with other vehicles and infrastructure through V2V/V2I communication

channels, and with the transportation DLN (Figure 14) via a wireless network Internet

access card as depicted in Figure 23.

Figure 23. Operational View of ITS Infrastructure with HLF

62

Simulation scenarios consist of a predefined number of vehicles and RSUs in a

specified area. Vehicles are assigned a point of origin and a destination and move

until they have arrived at their destination. For this study, RSUs only collect data on

misbehaving vehicles. Vehicles broadcast BSMs as they move. When the simulation

triggers an accident between two vehicles within collision distance, one of the involved

vehicles reports the event to the DLN, along with its observed and logged OBU data

as well as IDs of other vehicles involved. The DLN then validates the source and other

involved vehicles, creates an Accident Event report, and notifies the application that

the report has been submitted. At this point the application notifies all vehicles in

the area and requests that they report all witnessed data within the location of the

accident during the time frame of the accident or any witnessed misbehavior data for

any of the vehicles involved. The workflow of the steps described for this scenario are

depicted by Figure 24.

Figure 24. Workflow of Accident Event Scenario

The pseudo-code in Algorithm 2 describes the approach for creating a road event

report in the network. Triggered by either of the two vehicles involved in the accident,

the submitted transaction contains the IDs of the vehicles involved, the time of the

accident, location, and a list of witnessed events from the perspective of the reporting

63

vehicle (e.g., misbehavior, detected speeds, changes in location). The transaction is

then executed to verify the existence of the sensors and validity of the inputs. If

the parameters of the transaction are valid, a road event entry containing the initial

information reported by the originating vehicle is created and a reference to it is added

to the vehicles involved in the accident. A valid accident event entry is created and

emitted. Invalid accident report transactions are recorded in the blockchain, however,

no assets are updated with a reference to this invalid transaction. However, records

of invalid events like this could be later used to identify network spoofers.

Algorithm 2 Road Event Transaction

1: //tx ← {sourceId, eventId,time,location,VehiclesInvolved,WitnessedData}
2: if SensorExists(tx.sourceId) & IsValid(tx) then
3: re← RoadEvent(tx)
4: re.source← SensorAssetRegistry.get(tx.sourceId, sensorType)
5: EventAssetRegistry.add(re)
6: for i = 0 to tx.VehiclesInvolved.length do
7: //create record of vehicle being seen as involved in event
8: v ← SensorAssetRegistry.get(tx.V ehiclesInvolved[i])
9: v.eventsInvolved.add(re)

10: SensorAssetRegistry.update(v)
11: end for
12: emit(RoadEventSubmitted)
13: else
14: emit(InvalidSourceVehicleEvent)
15: end if

In the simulation, once confirmation of the accident report creation has been

received, all vehicles and RSUs are notified about the accident event, and these report

back to the network all witnessed misbehavior detected from BSMs of the vehicles

involved in the accident. Vehicles that had been within 100 meters of the accident

also report back misbehavior and a log of all BSMs received 10 seconds prior to the

accident occurring. The pseudo-code shown in Algorithm 3 shows a specified road

event is updated with witnessed data. The TPF executing this transaction ensures

that reporting vehicles are valid and have been in the vicinity of the accident.

64

Algorithm 3 Road Event Witnessed Data Transaction

1: //tx ← {sourceId, eventId, WitnessedData}
2: if tx.WitnessedData.length> 0 & SensorExists(tx.sourceId) & IsValid(tx) then
3: wd← WitnessedData(tx)
4: WitnessedDataRegistry.add(wd)
5: emit(WitnessedDataSubmitted)
6: else
7: emit(InvalidWitnessedDataTx)
8: end if

As previously mentioned, the aggregation of collected accident data can help to

identify liable parties in the event of an accident. Furthermore, this data can be cor-

roborated in the distributed network to identify any potentially false or misleading

reports submitted by dishonest sensors. The pseudo code for a TPF that can accom-

plish this task is shown in Algorithm 4. It describes how the network can validate an

event’s witnessed data to ensure consensus on whether or not evidence exists showing

the described events did indeed happen (i.e., same observed behavior by multiple

unrelated parties) and perhaps identify potential misbehavior. This TPF can be trig-

gered by a consortium entity looking into the event (e.g., insurance company, law

enforcement) or automatically after a specified period of time.

Further analysis and experimentation for the corroboration of accident data and its

use in accident forensics is outside of the scope of this research due to time limitations.

4.7 Performance Evaluation

Characterizing the performance of the experimental network is important even

in platforms with constrained resources like the one utilized for this experiment.

Doing so provides a clear picture of the type of application scenarios that can be

simulated in similar environments. Additionally, it helps with finding the optimal

network configuration parameters to get the best performance out of the network

at hand. This evaluation aims to characterize the experimental network as means

65

Algorithm 4 Corroborate Witnessed Data for a Specific Road Event

1: re ← {RoadEvent}
2: for all WitnessReport wr ∈ RoadEvent re do
3: possibleV alidators ← getWitnessReports(∆T,wr, WitnessReports ∈ re)
4: for all WitnessReport p ∈ possibleV alidators do
5: if p validates observed then
6: observed.validatedBy ← observed.validatedBy ∪ p.id
7: end if
8: if p.seenInRange(observed) then
9: observed.seenBy ← observed.seenBy ∪ p.id

10: end if
11: end for
12: end for
13: validated← getV alidatedReports()
14: seen← getSeenV ehicleReporters()
15: possibleSpoofers← re.WitnessReports− (validated ∩ seen)

to identify the constraints for other simulations that could be performed. Results

of this evaluation are not a measure of HLC/HLC peak performance but the overall

performance of the network given the selected HLF network configuration, HLC TPF,

and the API layer provided by HLC. Works such as [37] have shown HLF’s ability

to reach a transaction throughput of ∼2.5K TPS, however, no documented research

showing the performance of both HLC and HLF technologies integrated has been

found.

The performance of the network is evaluated by submitting various bulk trans-

actions of the same type and analyzing the response variables resulting from those

inputs, a similar approach to that performed in [37]. The workflow for the experiment

is shown in Figure 25 and consists of stimulating the network with transactions, fetch-

ing committed transactions and block information such as the creation timestamp and

transaction count, and analyzing the data by calculating the response variables listed

in Section 4.5. The script utilized for the execution of this workflow is found in

Appendix J. Three HLF network configurations are tested, each with an All-Orgs

and the 2-Of endorsement policy previously shown in Figure 16; these are detailed

66

in Table 9. All transactions are submitted to peer nodes in a round-robin fashion

via HTTP POST request to their REST API endpoints to create a new RoadEvent

record. The HTTP POST requests consist of a payload of 309 bytes. The vehicle

IDs used for the transactions are incremented to avoid MVCC errors due to multiple

accident events within the same time frame involving the same vehicles. The network

was re-initialized (all data discarded) for each change in configuration, requiring re-

installation of the HLC BNA and re-initialization of the HLC REST and Hyperledger

Explorer servers.

Figure 25. Workflow of Performance Analysis Experiment

Network Configuration 1 is the default block/timeout/endorsement configuration

that ships with HLF and HLC. The default endorsement policy requires a member of

each participating organization to execute a given transaction and achieve the same

result as the originating node. Another endorsement policy is called type 2-Of. The 2-

Of endorsement policy for testing is the only other possible policy in this setup without

completely disabling endorsement (a security feature in HLF). Based on observations

discussed in [37] the block timeout for all other configurations tested is reduced to

1 second. A 1 second block timeout allows for transactions submitted during times

where the arrival rate is less than the block size to be allocated into a block without

having to wait too long before being sent for validation and committal. This value

does not include the time required for broadcast, validation, and committal.

67

Table 9. Fabric Network Configurations for Performance Analysis.

Configuration Block Size Block Timeout Endorsement Policy

1 10 TPB 2 s All Orgs
2 10 TPB 1 s 2-Of(Org1, Org2, Org3)
3 50 TPB 1 s All Orgs
4 50 TPB 1 s 2-Of(Org1, Org2, Org3)
5 100 TPB 1 s All Orgs
6 100 TPB 1 s 2-Of(Org1, Org2, Org3)

The workflow described in Figure 25 is enabled through a series of scripts that

automate all three steps of the process for each block/endorsement configuration. No

other applications or tools are open on the host computer while the workflow scripts

are running to minimize performance degradation of the VMs. The final output of

the scripted workflow is analyzed across the different configurations.

4.7.1 Test Matrix

Table 10 is an excerpt from the test matrix in Appendix I for this experiment. For

each configuration shown in Table 9, 10 different arrival rates batches are submitted

three times. As a result, the experiment takes 180 test runs (treatments).

4.7.2 Data Collection

Performance and network stimulation data is recorded with scripts that generate

the transaction and aggregated to the data queried from the blockchain network using

Hyperledger Explorer’s API. In other words, metrics to assess the performance of the

network are measured at both the application (stimulation) and DLN(result) layers.

Collected data is then analyzed and exported into a Comma-Separated Values (CSV)

file that can be opened with Microsoft Excel for inspection and further analysis. A

sample output file from the 3-step process aforementioned is included in Appendix K.

68

Table 10. Excerpt from Test Matrix

Arrival Rate
(TX)

Endorsement
Policy

Block Configuration

10 All Orgs 10 TPB - 2 s
20 All Orgs 10 TPB - 2 s
30 All Orgs 10 TPB - 2 s
40 All Orgs 10 TPB - 2 s
50 All Orgs 10 TPB - 2 s
60 All Orgs 10 TPB - 2 s
70 All Orgs 10 TPB - 2 s
80 All Orgs 10 TPB - 2 s
90 All Orgs 10 TPB - 2 s
100 All Orgs 10 TPB - 2 s
10 2-Of 10 TPB - 1 s
20 2-Of 10 TPB - 1 s
30 2-Of 10 TPB - 1 s
40 2-Of 10 TPB - 1 s
50 2-Of 10 TPB - 1 s
60 2-Of 10 TPB - 1 s
70 2-Of 10 TPB - 1 s
80 2-Of 10 TPB - 1 s
90 2-Of 10 TPB - 1 s
100 2-Of 10 TPB - 1 s

4.7.3 Analysis

An instance of the Julia programming environment is used to perform calculations

from the data obtained from Hyperledger Explorer. These include mean transactions

per block (block allocation), total blocks created, and peak block throughput (see

Appendix L). The final output of all scenarios is analyzed to determine whether the

differences in network parameters cause any statistically significant improvement.

A Mann-Whitney U Test is a non-parametric test performed to determine the

statistical significance of the difference in mean throughput between the baseline con-

figuration (Configuration 1) and the rest of the configurations with a 95% significance

level. The use of a Mann-Whitney U Test is adequate for this analysis since it tests

69

for the difference between two groups on a single variable independent of the distribu-

tion, often used when the sample is small and the data is ordinal [47]. The resulting

U-Value describes the degree of overlap between two groups. U-Values below the

Critical U-Value for p < 0.05 mean that there exist significant differences between

the two groups, hence rejecting the null hypothesis (i.e., there are differences between

the means of the two groups). U-values greater than the Critical U-Value result in

failing to reject the null hypothesis.

4.7.4 Tools

The tools in Table 11 were used to stimulate the network, query data from the

blockchain, and analyze the performance metrics of the HLF/HLC network. The

scripts for submitting the road event request as well as the request related response

factors were written in JavaScript and executed using NodeJS.

Table 11. Data Gathering and Analysis Tools.

Name Version Description

NodeJS v8.11.3 JavaScript run-time built on Chrome’s
V8 JavaScript engine.

Julia v1.0.3 Dynamic programming language with
numerical analysis and data visualiza-
tion capabilities.

Genie.jl v0.1 Library for web server development in
Julia.

Once the network was stimulated, a separate script queried Hyperledger Explorer

for all blocks and transactions created since the scenario started. The data obtained

from Hyperledger Explorer is then analyzed using the Julia environment through

the grouping and calculation of transaction/block related response variables (see Ap-

pendix J and Appendix L). The resulting file is then imported into an Excel spread-

sheet for plot generation and further analysis. The Genie.jl module for Julia was

70

utilized to avoid re-initialization of the Julia kernel for every command-line call to

process the data file from the previous step.

4.8 Summary

This chapter described the experimental objects, assumptions, and variables. It

presented the use of a DLN for two applications that help mitigate problems costing

transportation-related organizations and vehicle owners alike millions of dollars every

year: odometer fraud protection and accident data collection for vehicular forensics.

It then described the approach for evaluating the performance of the experimental

network implementation which entails the stimulation of the network using RoadEvent

transactions and accessing the blockchain to gather data that will be used to measure

its performance. The workflow and tools used for the performance analysis are also

discussed.

71

V. Observations and Analysis

5.1 Overview

This chapter presents the observations, results, and analysis from the experimental

activities described in Chapters III and IV. Issues found during the execution of

distributed applications are discussed and respective solutions are described. Findings

and performance metrics obtained through load testing the network under various

configurations are presented and compared among each other to show the statistical

significance of the differences in terms of mean transaction throughput. Possible

sources of error for the findings are discussed. Finally, it discusses benefits, drawbacks

and challenges, and security and privacy concerns with the experimental network

implementation.

5.2 Application Scenarios - Results and Model Enhancements

5.2.1 Odometer Reading Report Scenario

The odometer-reading records-keeping scenario was executed successfully. As ex-

pected, attempts to update a vehicle’s odometer record with a value less than the

latest record in the blockchain did not result in a change to the vehicle’s state and all

other organizations received an event notification of the attempt to make the invalid

change. The definition for the odometer update transaction had to be modified to

include a field denoting whether it is a valid update or not (noted in Algorithm 1 and

shown in Figure 26). Since TPFs return the transaction object submitted for process-

ing along with any updates made to it (e.g., transaction ID, timestamp), this change

allows the entity submitting the request to know whether the value was updated

successfully or not without having to listen for the corresponding channel event.

72

Figure 26. VehicleOdometerUpdate Transaction Definition Change

An operational implementation for the same activity requires a way to roll-back

odometer records for vehicles that may have had the engine swapped or their odometer

reading records has been incorrectly updated. A verification workflow for this scenario

can be implemented in the HLF DLN requiring multiple administrators or certified

validators (e.g., government agencies) to sign off on the roll-back transaction. In the

event of fraud detection, the identity of the individual responsible can be obtained

and he or she could be held accountable.

5.2.2 Accident Reports Scenario

Initial simulations of the accident data collection scenario using the TPF described

by Algorithm 2 resulted in successful generation of road events. Conversely, many

accident witness data transactions for the road events created were reported as invalid

by the DLN. The results for these simulations are shown in Table 12. The calculated

success rates for the witness report transactions are shown in Figure 27, showing

an average success rate of 29.2%. The difference in success rates among the five

scenarios is due to the varying amount of witness reports per accident generated in

the simulation.

The unsuccessful witness data report transactions returned the following error:

73

Table 12. Accident Event Witness Report Results (Initial Data Model Definition)

Run Accident
Events

Witness
Reports

Total Suc-
cessful TX

Total
MVCC
Errors

1 4 317 100 221
2 2 121 32 91
3 2 185 50 137
4 7 651 217 441
5 4 441 122 323

Figure 27. WitnessData Report TX Success Rate with Initial Data Model Definitions

Error trying invoke chaincode. Error: Peer has rejected transaction with code MVCC

READ CONFLICT. This is due to HLF’s employment of MVCC. MVCC validation

takes place at the peers during the commit phase of a transaction. It ensures that

the state of objects to be read or written during commit are at the same state they

were when the transaction was endorsed during the execution phase [37, 48, 39].

Transactions that trigger an MVCC error are still recorded in the ledger but their

result does not affect global state, in other words, it becomes a void transaction.

Since the fast rate of updates to a specific road event asset with witness data from

all vehicles with observed BSM parameters/road-behavior causes the error, 100% of

74

the errors were eliminated by creating a new object for each witness report instead of

updating the same RoadEvent object’s witness reports attribute. The witness report

transaction and asset model definitions contain the ID of the road event object they

provide evidence for and the ID of the source sensor as a String instead of a reference

to the object that gets front loaded during the execution phase of the transaction.

The transaction definition change described is shown in Figure 28 and executing the

EventWitnessedDataReport TPF with such a transaction results in the creation of a

new entry of type RoadEventWitnessedData with the definition shown in Figure 29.

The WitnessedVehicleData array was removed from the RoadEvent asset definition

since it is no longer needed. This solution is analogous to creating a new table for

witness reports in a relational database system with a foreign key relationship (one-

to-many) mapping to the road event entry at a different table. When witness reports

for a specific road event need to be analyzed or used for further processing (e.g.,

corroboration), these can be fetched using HLC queries which follow a similar format

to basic T-SQL queries.

Figure 28. EventWitnessData Transaction Definition Change

75

Figure 29. RoadEventWitnessedData Asset Definition

A TPF implementation of the pseudo-code described by Algorithm 4 executed

against road events with witness identified valid reports and vehicles observed by

other vehicles involved or reporting accident information. However, it is not a com-

prehensive implementation for data corroboration and was not validated as part of

this research. Accurate corroboration of accident events using reported data collected

by systems or applications like the one presented here is outside the scope of this re-

search and only identified to illustrate future capabilities that could be implemented.

5.3 Performance Experiment Results

Batches of 10 to 100 road event transactions in increments of 10 were submitted

within a 1 second time period. As shown in Figure 30(a), load testing the network

with the default configuration (10 TPB, 2 second block timeout, endorsed by all

organizations), Configuration 1, an average transaction throughput of 8.82 TPS and

an average response time of 6.01 seconds were measured at the application layer with

a transaction arrival rates ranging from 10 to 100 TPS. Figure 30(b) shows that the

average response time increased linearly with the increase in the arrival rate for the

scenarios.

Figure 31 shows the average network throughput of each configuration given in-

creasing transaction arrival rates. At first glance, it can be observed that the con-

76

(a) Average Transaction Throughput (b) Average Response Time

Figure 30. Network Performance of Default Configuration

figurations with a 2-Of type endorsement resulted in higher throughput values than

the configurations requiring endorsement by all organizations in the network. This is

expected because nodes need not wait for the two other peer nodes to have the trans-

action ready for blocking. Instead, they only require endorsement by one other peer

node reducing the transaction execution latency. Moreover, transactions with fewer

endorsement signatures require less time at the validation phase. Another observation

is that the average throughput of configurations with the default endorsement pol-

icy increased almost linearly with increasing arrival rates. Conversely, configurations

with 2-Of endorsement show a faster throughput growth with arrival rates between

10 and 60 TPS and a slim growth after 60 TPS.

Figure 31. Average Throughput of Configurations

77

Figure 32. Average Response Time of Configurations

Another observation based on the data shown in Figure 31 is that most configura-

tions have their best performance when the arrival rates are near their max allowable

transaction allocation per block. At an arrival rate of 10 TPS, Configurations 1 and 2

performed better than all other configurations with the same endorsement, averaging

7.12 TPS and 8.14 TPS respectively. Similarly, at an arrival rate of 50 TPS, Con-

figurations 3 and 4 outperformed all other configurations of the same endorsement

with throughputs averaging 9.21 TPS and 12.49 TPS respectively. Conversely, at an

arrival rate of 100 TPS, only Configuration 6 outperformed all other configurations

with the same endorsement policy. Configuration 5, however, did not outperform all

other configurations at an arrival rate of 100 TPS. This is due to all blocks generated

with the 100 TPB max block allocation configuration being triggered after a timeout

and not by filling the blocks since the peak block allocation for all configurations is

58 TPB, shown in Figure 33. This resulted in Configuration 3 having better per-

formance than Configuration 5 (All-Orgs Endorsement) at arrival rates greater than

50 TPS. Another important observation from Figure 34, is that the peak execution

rate of all configurations increased almost linearly at a slightly lower rate than the

arrival rate, maxing out at 80 TPS. Based on these results, it can be inferred that the

78

latency due to transaction endorsement request/execution in addition to the latency

for endorsement signature validation far surpasses the latency introduced by block

timeouts.

Figure 33. Peak Block Allocations of Configurations

Figure 34. Peak Execution Rates of Configurations

The results of the Mann-Whitney tests conducted to identify the significance of

the differences in mean between the baseline configuration and all other ones are

shown in Table 13. The only significant differences in mean transaction throughput

arise from the 2-Of endorsement policy.

Based on previous analysis, Configuration 6 had the best overall performance

79

Table 13. Mann-Whitney Test Results

Configurations U-Value Critical Value
at p < 0.05

Significance at
p < 0.05

1 vs 2 12 27 Significant
1 vs 3 39 27 Not Significant
1 vs 4 23 27 Significant
1 vs 5 41 27 Not Significant
1 vs 6 18 27 Significant

with the lowest mean response time and highest mean throughput with arrival rates

ranging from 10 to 100 TPS. It yielded a peak throughput of 14.77 TPS with a 41.5%

improvement over the default configuration (Configuration 1). Its improvement over

configurations with the same endorsement policy, however, is not significant.

The overall throughput of the network can be improved by tailoring the configura-

tion to the applications that utilize the specific channel. As the variety of applications

employing the use of the transportation DLN increases, the transaction throughput

of the network as a whole can be increased and the latency decreased by adding more

channels to support those applications [37]. This experiment details considerations

that must be accounted for when looking to improve an HLF DLN.

5.3.1 Possible Sources of Errors

There are many tools and layer implementations that were configured to enable

the experimental network. Consequently, there are many possible factors that may

have impacted the precision or accuracy of the response variables gathered for this

experiment. The possible sources of error for the response variables are identified and

described below:

• Precision of block and transaction timestamps in Hyperledger Explorer. Met-

rics gathered through Hyperledger Explorers API show blocks and transaction

timestamps with up to 1 second precision. This prevents the calculation of pre-

80

cise Blocks Per Second (BPS) and TPS (measured at the DLN layer) factors.

As a result, TPS metrics are measure at the application layer and only peak

BPS values are reported

• Virtualization of nodes and network interface cards. The virtualized network

is prone to processing and memory related interruptions due to the limited

amount of processor threads and memory available to the VMs and which are

also shared with the host operating system as scenarios are simulated.

• Latencies introduced by middleware. There is insufficient data to determine the

root cause of the delays seen during load-testing. However, given the high num-

ber of transactions being received and executed by HLF (based on their times-

tamps), it is possible that these are introduced by the HLC services managing

the REST API and the network TPFs. It is also known that using CouchDB as

the state database for HLF results in slower transaction throughput [37], thus

the implementation of this database in a hardware constrained environment

may have magnified its effects on the overall performance.

5.4 Benefits

One of the main benefits of having a DLN is having access to a pseudo-immutable

ledger that contains records of transactions and world-state changes in a cryptograph-

ically secured way. This network provides native auditing services that could prove

crucial in ensuring the reliability and safety of modern transportation infrastructure.

Other benefits of this implementation are listed below.

• Event Attestation. Authentication and corroboration mechanisms of the con-

sortium model for ITSs enable attestation of the events stored in the ledger.

Although not a requirement for all transactions, the implementation of the ar-

81

chitecture can define which transactions need endorsement at the services layer

and how to corroborate transportation event data stored in the ledger.

• Auditability. The DLN keeps an auditable history of valid and invalid trans-

actions submitted by transportation systems, vehicles, RSUs, and sensors as

well as individuals representing government organizations, and other partici-

pating stakeholders [49]. The trusted, comprehensive, and time-based log of

events can be used not only to provide services for ongoing operations of the

smart transportation ecosystem but to confirm (or deny) claims involving smart

transportation systems and services (e.g., law enforcement).

• Decentralized Execution. Unlike centralized transactions systems, DLN peers

can communicate without relying on a central information system or entity

[25]. This reduces the dependency on third-party services (other than those

used for platform hosting) for the DLN to operate. If at any point in time, a

participating organization decides to leave the consortium, it can do so without

affecting the availability of the network or the data stored in other peer ledgers.

In addition, downtime or degraded performance of individual nodes does not

result in the same effect on the network.

• DDoS Attacks Resiliency. Distributed Denial of Service Attacks (DDoS) that

rely on spoofing or generation of bogus fake transactions can be mitigated by the

membership and authentication features in the services layer and the network’s

decentralized architecture. When implemented at a large scale (e.g., across a

large number of participating nodes), these attacks can be detrimental to the

performance of any network. In a consortium DLN, all participating users/nodes

must be authenticated thereby thwarting an attack by immediately revoking

access to the specific user(s). Detection and access revocation is a feature that

82

can be implemented and automated using a smart-contract. As a result, DDoS

attacks on a subset of the network does not necessarily result in downtime for

the whole network.

• Sybil Attacks Resiliency. A Sybil attack occurs when a single entity imperson-

ates multiple other entities to create fake transactions or events [50]. Since users

in the DLN are authenticated using PKI, an attacker would need the private

keys of the members to impersonate. Similar to preventing a DDoS attack, the

proposed platform can include contract configurations that allow the automated

detection of impersonation of other users or entities via the corroboration and

validation.

• Zero Anonymity. Since all users of the DLN are authenticated, all participants

are known to the consortium entities (each entity controls its membership ser-

vices). As a result, all transactions are authenticated and the identities of the

transaction originators are known. Thus, members can be held accountable for

their misbehavior.

• Privacy. Permissioned networks allow control over who gets access to the data

in the ledger(s) maintained by the network. This means that users and entities

grant read/write rights to users/devices on the network. For example, an orga-

nization may have access to traffic events on a specific region but no personally

identifiable information.

HLF’s modularity makes it an attractive framework for implementing DLNs that

can interface with available infrastructure and services. By resolving transactions

into a world-state database, stakeholders can execute rich queries to gather the data

needed given they have the proper access rights to read it. Additionally, as a permis-

sioned network framework, its implementations ensure zero anonymity of the trans-

83

actions; all identities on the DLN are authenticated, and all participants are known

to the consortium entities (each entity controls its membership services). As a result

of transactions being signed by the originators and corroborators and later validated

before being committed to the ledger, participants can be held accountable for their

misbehavior. Issues concerning the protection of vehicular identities for preserving

the privacy of vehicle owners are discussed in section 5.6.

5.5 Drawbacks & Challenges

5.5.1 Documentation

A key challenge in this research work has been finding detailed documentation

on HLF and HLC configuration parameters and tools. These two projects host their

documentation online, including tutorials and command/architecture references. Yet

many concepts still lack details that would allow developers and network architects

to both understand the capabilities provided and instantiate a network under optimal

conditions.

5.5.2 BFT vs. CFT in Fabric

This implementation, although crash-fault tolerant through Apache Kafka, it is

not BFT. Byzantine faults refer to faulty nodes that may appear fully functional

but may produce inconsistent results either maliciously or unintended. For it to be

resilient against Byzantine Faults, the ordering nodes must implement a different

consensus algorithm. Sousa et al. in [51] developed a BFT consensus module for

HLF called BFT-SMART with a tentative execution of requests approach similar to

the PBFT approach depicted in [26]. This module is not included as part of HLF

and its performance and reliability in production environments are still unknown.

84

5.5.3 High Storage Volume Requirements

Given the large amount of data transacted in transportation environments, storage

may be an issue of concern. Once recorded in the blockchain ledger, transactions in

these networks cannot be erased or tampered with, so this ledger proliferates quickly.

As a result, peer nodes must be allocated large storage volumes to accommodate for

this data, resulting in high hosting costs over time for all participants. Consequently,

nodes who experience downtime will suffer long synchronization times which could

extend endorsement downtime and lead to transaction execution failures. Lastly,

framework components such as those provided by Hyperledger Composer are rela-

tively immature, and therefore suffer from issues that often result in unresponsiveness

during times with high transaction arrival rates, as experienced in this work.

5.6 Security & Privacy

PKI services and access control rules allow secure access to data by privileged

users as defined by the consortium. Implementations can allow for users (e.g., vehicle

owners) to control who is able to see data involving his or her vehicle. VPKI as

defined in IEEE 1609.2 can be supported in a HLF DLN implementation by having the

Vehicle Certificate Manager services integrated into the MSPs. Since VPKI relies on

providing pseudonymity to vehicles, such certificates can be utilized to authenticate

vehicles or sign transaction data thereby increasing the trust in the source of the

data without revealing a source identity. However, authorities can identify the real

identity of a vehicle pseudonym in case of accidents or legal investigations [52]. The

chosen framework allows for revocation of certificates preventing participants from

unauthorized access once their credentials have been revoked making it suitable for

the integration of VPKI services.

85

5.6.1 Ordering Service Nodes - Potentially Vulnerable

HLF OSNs, although not involved in checking transactions, could be compromised

and used to gain access to all transactions received, or distributed by the Kafka

cluster. These nodes can be manipulated to intercept transactions sent and received

by the ordering service. If information privacy is required (e.g., PII), HLF provides

Private Data channels that create a separate private ledger among parties. Private

channel transactions are not sent to the orderer, instead, a hash of the transaction

and their timestamp are sent, thereby keeping an orderer from being able to observe

a transaction’s content. Enabling Transport Layer Security (TLS) communications

can prevent man-in-the-middle attacks involving OSNs.

5.6.2 Issues with Zookeeper-Kafka Cluster

One downside of HLF’s Zookeeper-Kafka consensus is the fact that it adds a

form of centralization to the network. In truly decentralized networks, nodes are not

dependent on a service to continue operation, however, in HLF networks orderers

depend on the Zookeeper-Kafka cluster’s availability to operate. This means that in

a consortium environment, it is in the best interest of the participating organizations

to provide for their own Kafka node to enable consensus in addition to their ordering

node(s) instead of relying on other organizations to provide such service. HLF’s

documentation states that the number of Zookeeper nodes should be either 3, 5, or 7

and that anything over 7 is an overkill [43]. While it can be considered an overkill, it

is also in the best interest of the consortium members to manage their own Zookeeper

node since any attack that disrupts all Zookeeper nodes (small surface area) would

result in complete disruption of the consensus service keeping the HLF network from

updating.

86

5.6.3 Unauthorized Data Access Prevention

There exists the possibility of a participant utilizing the shared ledger data to

perform analysis on traffic patterns, origin and destination locations, and the time-

of-day specific vehicles are in movement. Results could reveal details such as home

address, work location, and daily routines of the owner. For this reason, participating

organizations must be transparent in the way they handle and use the data. More

importantly, all stakeholders must be aware of the possibility of entities performing

analysis on data for purposes other than intended. By utilizing access control policies

(ACPs) in HLF, a vehicle owner could prevent an organization, such as a service

provider or an insurance company, from obtaining anything more than the minimum

required access to the data collected and shared by his or her vehicles.

5.7 Summary

This chapter discussed the findings and results of the scenarios discussed in Chap-

ter 4. Moreover, it outlined observations based on the network and application im-

plementations outlined earlier and solutions to issues encountered during the process.

Benefits, drawbacks, and challenges of the proposed and implemented network con-

figuration are presented. It closes with a brief discussion of security and privacy

considerations using DLNs.

87

VI. Conclusion

6.1 Overview

This chapter summarizes the work performed for this research including the design

and development of the proposed consortium network. It reiterates contributions

of the work and summarizes the observations and analysis of the tested scenarios.

Recommendations for HLF and HLC implementations are also discussed. It closes

by listing areas of future work which include enhancements to the LTMT, testing the

resiliency of the network against attacks, benchmarking the scalability of the solution,

and testing efficient algorithms that perform corroboration of reported events.

6.2 Summary

This research is focused on the modeling of collaborative intelligent transporta-

tion applications using a distributed ledger network, often referred to as blockchain.

It identifies current technology and organizational gaps within the transportation

ecosystem that could filled by utilizing DLTs. This work describes the technologies

that enable current and future ITS along with security and privacy concerns. It intro-

duces the main concepts behind DLTs and their approach to solve known problems

within distributed systems. Current and previous research efforts involving ITSs and

DLTs are presented, showcasing solutions to known transportation infrastructure and

applications problems.

The use of a consortium DLN deployed and maintained by transportation-related

entities is proposed. These participating entities range from businesses to government

agencies. A 5-Layer architecture for employing this solution was presented along with

a description of each of the layers and associated value to the system as a whole. An

analysis of alternatives was performed to evaluate three strong contenders to serve

88

as the framework for implementing the proposed solution. The technologies reviewed

were Tendermint, MultiChain, and HLF. These were evaluated based on their capa-

bility to function as a platform, availability of API/SDK, membership/permissioning

features, ability to execute smart-contracts, and the licensing costs. Based on listed

criteria, HLF was selected as the framework for implementing the experimental con-

sortium blockchain network.

A three organization consortium network was designed and implemented using the

HLF framework and tools provided by HLC. Each organization has its own peer node,

orderer, and membership services provider, similar to what a production implemen-

tation for operational use should be. The data models required for implementing the

two transportation applications were also listed; these were developed using HLC’s

modeling language. The process for initiating the network within the virtualization

platform was also described.

The LTMT was developed to model transportation-related applications that rely

on the execution of distributed code and data from a DLN. It is a lightweight applica-

tion built with web technologies that enables the modeling and simulation of vehicle

and infrastructure behavior and communications that resemble VANET interactions.

LTMT allows interaction with a DLN during the execution of a simulation scenario

through predefined REST API and WebSocket endpoints, a feature not available in

other alternatives. In addition, LTMT’s dashboard allows for live tracking of vehicles

and RSUs as well as their respective parameters making it trivial to debug solutions

both at the application and the DLN.

The two DLN-based applications proposed and developed for deployment to the

experimental network aim to reduce the millions of dollars in losses due to fraud every

year. The first application described entails the use of the DLN to record odome-

ter readings and help identify odometer tampering fraud. The second application

89

relies on data shared via BSMs in VANETs to create a snapshot of accident events

in public roads. The work presented lists the environment assumptions as well as

control, independent, and response variables for accomplishing the tasks at hand. A

performance evaluation is conducted to characterize the capabilities of the virtualized

network within the limited hardware platform it was initiated on. This serves as a

benchmark for future developments employing an HLF DLN with high-throughput

requirements.

Successful implementation of the distributed network functions, or TPF, and the

simulation of the applications aforementioned demonstrate the value of DLTs in future

transportation infrastructure solutions. Issues identified throughout the modeling

and deployment of the proposed solutions are listed. One example is the use of

asset references for applications that receive updates to an asset at a higher rate

than it can commit to the blockchain, causing MVCC errors. The use of asset or

object IDs in place of object references prevents the chaincode from front loading

the referenced assets before the execution of a transaction. This in turn prevents an

update that changes the state of the referenced object causing all other transactions

that referenced the same object at the same time to be voided.

Load test scenarios with different network block configurations and endorsement

policy were conducted to measure the performance of the network with different

transaction arrival rates. The results highlighted bottlenecks of the network as imple-

mented in the limited hardware platform, and the limitations in terms of applications

that can be executed within it. Load testing also demonstrates an approach for op-

timizing performance parameters in HLF/HLC network/chaincode implementations

that are necessary for high-throughput transportation application requirements. It is

important to note that most of the limitations of the network are related to process-

ing transactions that modify the state of the chain; reading from the blockchain can

90

be accomplished without the creation of a transaction by querying the world-state

database directly.

One common argument against the use of DLTs is that there are more efficient

and better performing technologies for storing and managing large amounts of data

such as the highly-scalable distributed database system Cassandra. There are bene-

fits and challenges with both solutions approaches. However, the use of DLTs does

more than just provide decentralized execution of transactions and storage of data,

it also provides means for decentralized governance. This means that no single ad-

ministrator has the credentials to modify the state of the network on its own by

either attempting to tamper data or make changes to the protocol. Membership in a

consortium network means that all protocol modifications are reviewed and accepted

by the participants and all changes are logged in the blockchain (e.g., membership,

chaincode, create/update/delete). The ability to maintain a log of all transactions in

the network along with the identities of the individuals submitting them allows for

non-repudiation of actions by all participants of the network, a feature often sought

in critical information systems.

In conclusion, the research presented in this thesis demonstrates the feasibility

of transportation systems communications utilizing emerging DLTs. However, the

type of applications that can reliably utilize this collaborative medium of communi-

cation are constrained by the mechanism that ensures the integrity of the data in the

blockchain, i.e., consensus. Although the selected technology utilized, HLF, relies on

the use of a scalable consensus algorithm, it is still unknown whether this technology

could withstand the demands of real-time transportation infrastructure services, and

at what scale. Applications such as the ones presented do not need to be immediately

committed to the blockchain, are not sensitive to time limitations, and are at risk of

being tampered with in conventional systems. These attributes make them suitable

91

uses cases for utilizing such network. There are technologies that have shown promis-

ing results with respect to processing and reaching consensus with substantially lower

latencies (e.g., Hashgraph’s ∼ 500K TPS throughput [17]) that could be utilized by

HLF to provide fast and BFT consensus.

6.3 Research Contributions

This research has made a number of contributions to the field of transportation

infrastructure and communications. The proposed 5-Tier DLN architecture tailored

for use in collaborative transportation infrastructure services describes the layers re-

quired for a sound DLT implementation within transportation infrastructure. The

implementation of the lightweight transportation communications modeling and sim-

ulation tool, LTMT, utilized for generating various scenarios during this research, can

be applied to other cases such as research into services that use vehicle/RSU data

broadcasted in a VANET-like way. The use of HLF and HLC as the framework and

tools for implementing the experimental network show their value for producing a dis-

tributed data collaboration environment with minimal development and engineering,

and without disruption of current services. The approach to optimizing the perfor-

mance of the network by analyzing the network response metrics through load testing

shows how this technology can be optimized to meet different application needs and

improve the overall scalability of the network even within a fairly constrained hard-

ware platform. Finally, this research work presented recommendations for modeling

the data relationships, described implementation challenges, and potential vulnera-

bilities of the blockchain network implementation described.

92

6.4 Future Work

Given the novelty of the work presented and continuous technology developments

in both DLT and ITS fields there are many areas that could be further explored,

matured, or developed. Listed below are topics of interest that would expand the

scope of this research:

• Resiliency against misbehavior and cyberattacks: There is little to no

research available that characterizes HLF resiliency against misbehavior, man-

in-the-middle attacks, or unauthorized relay of data from ordering nodes (po-

tential issue identified in Chapter 4).

• Efficient corroboration of reported events: This research presented a sim-

ple algorithm for corroborating accident data that was implemented as an HLC

TPF. However, time constraints prevented analysis of execution time, memory

usage, possible optimizations, and no validations were conducted. Further re-

search and development of optimal corroboration algorithms for identifying fake

road reports with high confidence levels may prove of considerable importance

for securing transportation infrastructure networks.

• Benchmarking the performance and scalability of transportation smart-

contracts using high-performance infrastructure: The information sys-

tems used for transportation infrastructure are most likely hosted in cloud envi-

ronments and hardware platforms with substantial computing capabilities. As

a result, evaluating the performance of the distributed network while stimulated

with realistic scenarios in terms of number of vehicles, RSUs, and participants

would help determine whether or not the chosen technology would be appropri-

ate for production deployments.

93

• HLF Vehicle Authentication and Communications using VPKI: This

work entails the integration of VPKI schemes into the HLF membership services

for authentication and BSM verification. This could allow for the revocation of

vehicle certificates as soon as malicious behavior is identified through chaincode

operations. Also, it would help develop mechanisms for pseudonym rotation

as required by established VPKI standards to operate in conjunction with the

DLN.

• DLT for Transportation Private Data Control: Since version v1.2, HLF

offers private data collections which allow peers to endorse, commit, and query

private data on an already established channel [53]. This feature enables the

development of blockchains that can provide tighter control of private data (e.g.,

PII) allowing the overall system to be compliant with regulations such as the

European Union’s General Data Protection Regulation (GDPR). The scope of

the research presented can be expanded to utilize Private Data features on HLF

to ensure the privacy of the vehicle owner’s identity or give vehicle owners the

ability give selected businesses or agencies access to private data in exchange

for a service (e.g., insurance, sharing services).

• LTMT Enhancements and Release: There are many applications where

the developed LTMT can be used for purposes other than the ones presented

in this work. Future work could enhance current capabilities provided by the

application, improve the simulation scalability, and integrate the timestepped

scenario generation to the user interface. Other enhancements can include the

development of a graphical wizard for gathering the locations/addresses used

for generating a vehicle’s driving path and modeling scenarios through the ap-

plication itself and not its libraries.

94

6.5 Conclusion

This work demonstrated viable mechanisms to implement a secure, collaborative,

and distributed transportation information system for enterprise applications based

on DLTs. It highlighted critical characteristics of applications which could benefit

from these technologies, including the need for provenance and finality, and an inher-

ent environment of low-trust amongst the participants within an ITS ecosystem. It

is clear, however, that DLTs are still in the early stages of development and their sec-

ond or third order effects on production environments remain unknown. Blockchains

and DLTs are not intended to, nor are they able to, solve all problems requiring dis-

tributed computing and storage. Accordingly, their implementation should be limited

to areas where the aforementioned characteristics are inherent to the operation of the

system and the limitations of DLTs do not negatively impact the availability, reliabil-

ity, and scalability of the ITS application. While such a system will come at a cost,

the benefits may well prove to outweigh those costs.

95

Appendix A. Hyperledger Fabric Crypto Configuration

1 # Copyright IBM Corp. All Rights Reserved.
2 # SPDX -License -Identifier: Apache -2.0
3 # AFIT Transportation Network Cryto Generation Configuration
4 # Updated By: Luis A. Cintron
5
6 #

--

7 # "OrdererOrgs" - Definition of organizations managing orderer
nodes

8 #
--

9 OrdererOrgs:
10 - Name: Orderer
11 Domain: orderer.afit.edu
12 Specs:
13 - Hostname: orderer1
14 CommonName: orderer1.afit.edu
15 SANS:
16 - 192.168.64.21
17 - Hostname: orderer2
18 CommonName: orderer2.afit.edu
19 SANS:
20 - 192.168.64.22
21 - Hostname: orderer3
22 CommonName: orderer3.afit.edu
23 SANS:
24 - 192.168.64.23
25
26
27 #

--

28 # "PeerOrgs" - Definition of organizations managing peer nodes
29 #

--

30 PeerOrgs:
31 - Name: Org1
32 Domain: org1.afit.edu
33 Specs:
34 - Hostname: org1.afit.edu
35 CommonName: org1.afit.edu
36 SANS:
37 - "peer0 .{{. Domain }}"
38 - 192.168.64.21
39 - Hostname: peer0.org1.afit.edu
40 CommonName: peer0.org1.afit.edu
41 SANS:
42 - "peer0 .{{. Domain }}"
43 - 192.168.64.21
44 CA:
45 Hostname: ca.org1.afit.edu
46 Template:

96

47 Count: 2
48 Users:
49 Count: 1
50
51 - Name: Org2
52 Domain: org2.afit.edu
53 Specs:
54 - Hostname: org2.afit.edu
55 CommonName: org2.afit.edu
56 SANS:
57 - "peer0 .{{. Domain }}"
58 - 192.168.64.22
59 - Hostname: peer0.org2.afit.edu
60 CommonName: peer0.org2.afit.edu
61 SANS:
62 - "peer0 .{{. Domain }}"
63 - 192.168.64.22
64 CA:
65 Hostname: ca.org2.afit.edu
66 Template:
67 Count: 2
68 Users:
69 Count: 1
70
71 - Name: Org3
72 Domain: org3.afit.edu
73 Specs:
74 - Hostname: org3.afit.edu
75 CommonName: org3.afit.edu
76 SANS:
77 - "peer0 .{{. Domain }}"
78 - 192.168.64.23
79 - Hostname: peer0.org3.afit.edu
80 CommonName: peer0.org3.afit.edu
81 SANS:
82 - "peer0 .{{. Domain }}"
83 - 192.168.64.23
84 CA:
85 Hostname: ca.org3.afit.edu
86 Template:
87 Count: 2
88 Users:
89 Count: 1

97

Appendix B. Hyperledger Fabric Baseline Network
Configuration

1 # Copyright IBM Corp. All Rights Reserved.
2 # SPDX -License -Identifier: Apache -2.0
3 # AFIT Transportation Network Baseline Configuration
4 # Updated By: Luis A. Cintron
5 # configtx.yaml
6
7 # Section: Organizations
8 # This section defines the different organizational

identities which will
9 # be referenced later in the configuration.

10 Organizations:
11 - &OrdererOrg
12 Name: OrdererMSP
13 # ID to load the MSP definition as
14 ID: OrdererMSP
15 # MSPDir is the filesystem path which contains the MSP

configuration
16 MSPDir: crypto -config/ordererOrganizations/orderer.

afit.edu/msp
17 AdminPrincipal: Role.ADMIN
18
19 - &Org1
20 Name: Org1MSP
21 ID: Org1MSP
22 MSPDir: crypto -config/peerOrganizations/org1.afit.edu/

msp
23 AnchorPeers:
24 # AnchorPeers defines the location of peers which

can be used
25 # for cross org gossip communication. Note , this

value is only
26 # encoded in the genesis block in the Application

section context
27 - Host: 192.168.64.21
28 Port: 7051
29 AdminPrincipal: Role.ADMIN
30
31
32 - &Org2
33 Name: Org2MSP
34 ID: Org2MSP
35 MSPDir: crypto -config/peerOrganizations/org2.afit.edu/

msp
36 AdminPrincipal: Role.ADMIN
37 AnchorPeers:
38 - Host: 192.168.64.22
39 Port: 7051
40
41 - &Org3
42 Name: Org3MSP
43 ID: Org3MSP
44 MSPDir: crypto -config/peerOrganizations/org3.afit.edu/

msp
45 AdminPrincipal: Role.ADMIN

98

46
47 AnchorPeers:
48 - Host: 192.168.64.23
49 Port: 7051
50
51 Capabilities:
52 # Channel capabilities apply to both the orderers and the

peers and must be
53 # supported by both. Set the value of the capability to

true to require it.
54 Global: &ChannelCapabilities
55 # V1.1 for Global is a catchall flag for behavior

which has been
56 # determined to be desired for all orderers and peers

running v1.0.x,
57 # but the modification of which would cause

incompatibilities. Users
58 # should leave this flag set to true.
59 V1_1: true
60
61 # Orderer capabilities apply only to the orderers , and may

be safely
62 # manipulated without concern for upgrading peers. Set

the value of the
63 # capability to true to require it.
64 Orderer: &OrdererCapabilities
65 # V1.1 for Order is a catchall flag for behavior which

has been
66 # determined to be desired for all orderers running v1

.0.x, but the
67 # modification of which would cause incompatibilities

. Users should
68 # leave this flag set to true.
69 V1_1: true
70
71 # Application capabilities apply only to the peer network ,

and may be safely
72 # manipulated without concern for upgrading orderers. Set

the value of the
73 # capability to true to require it.
74 Application: &ApplicationCapabilities
75 # V1.2 for Application is a catchall flag for behavior

which has been
76 # determined to be desired for all peers running v1.0.

x, but the
77 # modification of which would cause incompatibilities.

Users should
78 # leave this flag set to true.
79 V1_2: true
80
81 # SECTION: Application
82 # This section defines the values to encode into a config

transaction or
83 # genesis block for application related parameters
84
85 Application: &ApplicationDefaults
86 # Organizations is the list of orgs which are defined as

participants on

99

87 # the application side of the network
88 Organizations:
89 - *Org1
90 - *Org2
91 - *Org3
92
93 # SECTION: Orderer
94 # This section defines the values to encode into a config

transaction or
95 # genesis block for orderer related parameters
96
97 Orderer: &OrdererDefaults
98
99 # Orderer Type: The orderer implementation to start

100 # Available types are "solo" and "kafka"
101 OrdererType: kafka
102
103 Addresses:
104 - orderer1.afit.edu :7050
105 - orderer2.afit.edu :7050
106 - orderer3.afit.edu :7050
107
108 # Batch Timeout: The amount of time to wait before

creating a batch
109 BatchTimeout: 1s
110
111
112 # Batch Size: Controls the number of messages batched into

a block
113 BatchSize:
114
115 # Max Message Count: The maximum number of messages to

permit in a batch
116 MaxMessageCount: 50
117
118 # Absolute Max Bytes: The absolute maximum number of

bytes allowed for
119 # the serialized messages in a batch.
120 AbsoluteMaxBytes: 99 MB
121
122 # Preferred Max Bytes: The preferred maximum number of

bytes allowed for
123 # the serialized messages in a batch. A message larger

than the preferred
124 # max bytes will result in a batch larger than

preferred max bytes.
125 PreferredMaxBytes: 512 KB
126
127 Kafka:
128 # Brokers: A list of Kafka brokers to which the

orderer connects
129 # NOTE: Use IP:port notation
130 Brokers:
131 - 192.168.64.20:9092
132 - 192.168.64.20:10092
133 - 192.168.64.20:11092
134 - 192.168.64.20:12092
135

100

136 # Organizations is the list of orgs which are defined as
participants on

137 # the orderer side of the network
138 Organizations:
139
140 Policies:
141 Readers:
142 Type: ImplicitMeta
143 Rule: "ANY Readers"
144 Writers:
145 Type: ImplicitMeta
146 Rule: "ANY Writers"
147 Admins:
148 Type: ImplicitMeta
149 Rule: "MAJORITY Admins"
150 # BlockValidation specifies what signatures must be

included in the block
151 # from the orderer for the peer to validate it.
152 BlockValidation:
153 Type: ImplicitMeta
154 Rule: "ANY Writers"
155
156 # Profile
157 # Different configuration profiles may be encoded here to be

specified
158 # as parameters to the configtxgen tool
159 Profiles:
160 ComposerOrdererGenesis:
161 Capabilities:
162 <<: *ChannelCapabilities
163 Orderer:
164 <<: *OrdererDefaults
165 Organizations:
166 - *OrdererOrg
167 Addresses:
168 - 192.168.64.21:7050
169 - 192.168.64.22:7050
170 - 192.168.64.23:7050
171 Capabilities:
172 <<: *OrdererCapabilities
173 Consortiums:
174 ComposerConsortium:
175 Organizations:
176 - *Org1
177 - *Org2
178 - *Org3
179 ComposerChannel:
180 Consortium: ComposerConsortium
181 Application:
182 <<: *ApplicationDefaults
183 Organizations:
184 - *Org1
185 - *Org2
186 - *Org3
187 Capabilities:
188 - *ApplicationCapabilities

101

Appendix C. Example Hyperledger Fabric Organization
Docker Configuration

1 version: ’2’
2
3 services:
4
5 # Org1
6 ca.org1.afit.edu:
7 container_name: ca.org1.afit.edu
8 hostname: ca.org1.afit.edu
9 image: hyperledger/fabric -ca :1.2.0

10 environment:
11 - FABRIC_CA_HOME =/etc/hyperledger/fabric -ca -server
12 - FABRIC_CA_SERVER_CA_NAME=ca.org1.afit.edu
13 - CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=host
14 ports:
15 - "7054:7054"
16 command: sh -c ’fabric -ca -server start --ca.certfile /etc/

hyperledger/fabric -ca-server -config/ca.org1.afit.edu -
cert.pem --ca.keyfile /etc/hyperledger/fabric -ca -server
-config/
ed4471a2f6f90117e095f7e999004ffc7e5b6c99c40ab95091e129aaf8085583_sk
-b admin:adminpw -d’

17 volumes:
18 - ./crypto -config/peerOrganizations/org1.afit.edu/ca/:/

etc/hyperledger/fabric -ca -server -config
19 extra_hosts:
20 - "zookeeperkafka.afit.edu :192.168.64.20"
21 - "orderer1.afit.edu :192.168.64.21"
22 - "orderer2.afit.edu :192.168.64.22"
23 - "orderer3.afit.edu :192.168.64.23"
24 - "peer0.org1.afit.edu :192.168.64.21"
25 - "peer0.org2.afit.edu :192.168.64.22"
26 - "peer0.org3.afit.edu :192.168.64.23"
27 - "ca.org1.afit.edu :192.168.64.21"
28 - "ca.org2.afit.edu :192.168.64.22"
29 - "ca.org3.afit.edu :192.168.64.23"
30 network_mode: host
31
32 orderer1.afit.edu:
33 container_name: orderer1.afit.edu
34 hostname: orderer1.afit.edu
35 image: hyperledger/fabric -orderer :1.2.0
36 environment:
37 - ORDERER_GENERAL_LOGLEVEL=debug
38 - ORDERER_GENERAL_LISTENADDRESS =0.0.0.0
39 - ORDERER_GENERAL_GENESISMETHOD=file
40 - ORDERER_GENERAL_GENESISFILE =/etc/hyperledger/configtx/

composer -genesis.block
41 - ORDERER_GENERAL_LOCALMSPID=OrdererMSP
42 - ORDERER_GENERAL_LOCALMSPDIR =/etc/hyperledger/orderer/

msp
43 - ORDERER_KAFKA_RETRY_SHORTINTERVAL =1s
44 - ORDERER_KAFKA_RETRY_SHORTTOTAL =30s
45 - ORDERER_KAFKA_VERBOSE=true
46 - CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=host

102

47 - CONFIGTX_ORDERER_KAFKA_BROKERS =[zookeeperkafka.afit.
edu :9092, zookeeperkafka.afit.edu :10092 , zookeeperkafka
.afit.edu :11092 , zookeeperkafka.afit.edu :12092]

48 working_dir: /opt/gopath/src/github.com/hyperledger/fabric
49 command: orderer
50 ports:
51 - 7050:7050
52 volumes:
53 - ./:/ etc/hyperledger/configtx
54 - ./crypto -config/ordererOrganizations/orderer.afit.edu/

orderers/orderer1.afit.edu/msp:/etc/hyperledger/
orderer/msp

55 extra_hosts:
56 - "zookeeperkafka.afit.edu :192.168.64.20"
57 - "orderer1.afit.edu :192.168.64.21"
58 - "orderer2.afit.edu :192.168.64.22"
59 - "orderer3.afit.edu :192.168.64.23"
60 - "peer0.org1.afit.edu :192.168.64.21"
61 - "peer0.org2.afit.edu :192.168.64.22"
62 - "peer0.org3.afit.edu :192.168.64.23"
63 - "ca.org1.afit.edu :192.168.64.21"
64 - "ca.org2.afit.edu :192.168.64.22"
65 - "ca.org3.afit.edu :192.168.64.23"
66 network_mode: host
67
68 peer0.org1.afit.edu:
69 container_name: peer0.org1.afit.edu
70 hostname: peer0.org1.afit.edu
71 image: hyperledger/fabric -peer :1.2.0
72 environment:
73 - CORE_PEER_ID=peer0.org1.afit.edu
74 - CORE_PEER_ADDRESS =192.168.64.21:7051
75 - CORE_PEER_GOSSIP_EXTERNALENDPOINT =192.168.64.21:7051
76 - CORE_PEER_GOSSIP_BOOTSTRAP=peer0.org1.afit.edu :7051
77 - CORE_PEER_LOCALMSPID=Org1MSP
78 - CORE_LOGGING_LEVEL=debug
79 - CORE_CHAINCODE_LOGGING_LEVEL=DEBUG
80 - CORE_VM_ENDPOINT=unix :/// host/var/run/docker.sock
81 - CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=host
82 - CORE_PEER_MSPCONFIGPATH =/etc/hyperledger/peer/msp
83 - CORE_LEDGER_STATE_STATEDATABASE=CouchDB
84 - CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS

=192.168.64.21:5984
85 - CORE_PEER_GOSSIP_USELEADERELECTION=true
86 - CORE_PEER_GOSSIP_ORGLEADER=false
87 - CORE_PEER_PROFILE_ENABLED=true
88 working_dir: /opt/gopath/src/github.com/hyperledger/fabric
89 command: peer node start
90 ports:
91 - 7051:7051
92 - 7053:7053
93 volumes:
94 - /var/run /:/ host/var/run/
95 - ./:/ etc/hyperledger/configtx
96 - ./crypto -config/peerOrganizations/org1.afit.edu/peers/

peer0.org1.afit.edu/msp:/etc/hyperledger/peer/msp
97 - ./crypto -config/peerOrganizations/org1.afit.edu/users

:/etc/hyperledger/msp/users

103

98 depends_on:
99 - orderer1.afit.edu

100 - couchdb
101 extra_hosts:
102 - "zookeeperkafka.afit.edu :192.168.64.20"
103 - "orderer1.afit.edu :192.168.64.21"
104 - "orderer2.afit.edu :192.168.64.22"
105 - "orderer3.afit.edu :192.168.64.23"
106 - "peer0.org1.afit.edu :192.168.64.21"
107 - "peer0.org2.afit.edu :192.168.64.22"
108 - "peer0.org3.afit.edu :192.168.64.23"
109 - "ca.org1.afit.edu :192.168.64.21"
110 - "ca.org2.afit.edu :192.168.64.22"
111 - "ca.org3.afit.edu :192.168.64.23"
112 network_mode: host
113
114 couchdb:
115 container_name: couchdb
116 image: hyperledger/fabric -couchdb :0.4.10
117 environment:
118 - CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=host
119 ports:
120 - 5984:5984
121 environment:
122 DB_URL: http :// localhost :5984/ member_db
123 network_mode: host

104

Appendix D. Hyperledger Fabric Organization VM Start
Script

1 #!/bin/bash
2
3 #StartFabric.sh
4 #Starts Org1 VM
5
6 # Exit on first error , print all commands.
7 FABRIC_START_TIMEOUT =15
8
9 set -e

10
11 Usage() {
12 echo ""
13 echo "Usage: ./ startFabric.sh [-d || --dev]"
14 echo ""
15 echo "Options:"
16 echo -e "\t-d or --dev: (Optional) enable fabric

development mode"
17 echo ""
18 echo "Example: ./ startFabric.sh"
19 echo ""
20 exit 1
21 }
22
23 Parse_Arguments () {
24 while [$# -gt 0]; do
25 case $1 in
26 --help)
27 HELPINFO=true
28 ;;
29 --np)
30 NOPEER=true
31 ;;
32 --fetch | -f)
33 FETCH=true
34 ;;
35 --dev | -d)
36 FABRIC_DEV_MODE=true
37 ;;
38 esac
39 shift
40 done
41 }
42
43 Parse_Arguments $@
44
45 if ["${HELPINFO}" == "true"]; then
46 Usage
47 fi
48
49 # Grab the current directory
50 DIR="$(cd "$(dirname "${BASH_SOURCE [0]}")" && pwd)"
51 ORG="$(basename "$PWD")"
52
53 #if ["${FABRIC_DEV_MODE }" == "true"]; then

105

54 # DOCKER_FILE ="${DIR}"/ composer/docker -compose -dev -org1.yml
55 #else
56 DOCKER_FILE="${DIR}"/../ composer/org1.yml
57 #fi
58
59 docker -compose -f "${DOCKER_FILE}" down
60 docker -compose -f "${DOCKER_FILE}" up -d
61
62 if ["${NOPEER}" == "true"]; then
63 echo "Done starting up containers ..."
64 exit
65 fi
66
67 # wait for Hyperledger Fabric to start
68 # incase of errors when running later commands , issue export

FABRIC_START_TIMEOUT=<larger number >
69 echo "sleeping for ${FABRIC_START_TIMEOUT} seconds to wait for

fabric to complete start up"
70 sleep ${FABRIC_START_TIMEOUT}
71
72 BLOCKNAME="composerchannel.block"
73
74 if ["${FETCH}" == "true"]; then
75 # Fetch the channel on Peer 2
76 echo -e ’\n\n\nFetching Channel on Peer 0:’
77 docker exec -e "CORE_PEER_MSPCONFIGPATH =/etc/

hyperledger/msp/users/Admin@org1.afit.edu/msp"
peer0.org1.afit.edu peer channel fetch config -o
orderer1.afit.edu :7050 -c composerchannel

78 BLOCKNAME="composerchannel_config.block"
79 else
80 # Create the channel on Peer 0
81 echo -e ’\n\n\nCreating Channel on Peer 0:’
82 docker exec -e "CORE_PEER_MSPCONFIGPATH =/etc/

hyperledger/msp/users/Admin@org1.afit.edu/msp"
peer0.org1.afit.edu peer channel create -o orderer1
.afit.edu :7050 -c composerchannel -f /etc/
hyperledger/configtx/composer -channel.tx

83 fi
84 # Join peer0.org1.afit.edu to the channel.
85 echo -e ’\n\n\nJoining Peer 0 to Channel:’
86 docker exec -e "CORE_PEER_MSPCONFIGPATH =/etc/hyperledger/msp/

users/Admin@org1.afit.edu/msp" peer0.org1.afit.edu peer
channel join -b $BLOCKNAME

87
88
89 if ["${FABRIC_DEV_MODE}" == "true"]; then
90 echo "Fabric Network started in chaincode development mode

"
91 fi

106

Appendix E. Hyperledger Composer Data Models for
Transportation Applications

1 //*
2 //*AFIT Transportation Network Model Definitions
3 //*Author: Luis Cintron
4 //*
5
6 namespace org.afit.transportation
7
8
9 //*

10 //*Participants
11 //*
12 abstract participant Member identified by participantId{
13 o String participantId
14 }
15
16 participant VehicleOwner extends Member {
17 o String Name
18 o String driversLicense
19 }
20
21 participant ConsortiumMember extends Member {
22 o String Name
23 o String Company
24 }
25
26 //*
27 //*General enumerated types
28 //*
29 enum EventType{
30 o ACCIDENT
31 o DETECTION
32 o VEHICLEUPDATE
33 o INVALIDODOMETERREADING
34 }
35
36 enum VehicleState{
37 o MOVING
38 o STOPPED
39 o ACCIDENT
40 o SPEEDING
41 o UNDERSPEEDING
42 }
43
44 enum SensorType {
45 o VEHICLE
46 o RSU
47 }
48
49 //*
50 //*Non -asset classes
51 //*
52 concept VehicleInfo {
53 o VehicleState state
54 o Double currentSpeed

107

55 o Double bearing optional
56 o Double odometer optional
57 o Double rpm optional
58 o String vehicleId
59 }
60
61 concept Location {
62 o Double lat
63 o Double lng
64 }
65
66 concept WitnessedVehicleData {
67 o String observedVehicleId
68 o String sourceId
69 o Location location
70 o DateTime eventTimestamp
71 o String eventId optional
72 o Double speed optional
73 o Double heading optional
74 o Double distanceFromSource optional
75 o String [] behavior optional
76 o String [] nearbySensors optional
77 }
78
79
80 //*
81 //*Transportation Network Assets
82 //*
83 abstract asset Sensor identified by sensorId {
84 o String sensorId
85 o SensorType sensorType default =" VEHICLE"
86 }
87
88 asset Vehicle extends Sensor {
89 o String vin
90 o Double odometer default =0.0
91 --> VehicleOwner owner optional
92 --> RoadEvent [] eventsInvolved optional
93 }
94
95 asset RoadSideUnit extends Sensor {
96 o String rsuId
97 o Location location
98 o String description optional
99 --> ConsortiumMember owner optional

100 }
101
102 asset RoadEvent identified by eventId{
103 o String eventId
104 o Location location
105 o DateTime eventTimestamp
106 o EventType type
107 o String [] vehiclesInvolved
108 o WitnessedVehicleData [] witnessedData optional
109 o Boolean validated default = false
110 --> Sensor source
111 }
112

108

113 asset RoadEventWitnessedData identified by id{
114 o String id
115 o String roadEventId
116 o String sourceId
117 o WitnessedVehicleData [] witnessedData
118 }
119
120 //*
121 //*Transactions
122 //*
123 abstract transaction VehicleTransaction{
124 --> Vehicle vehicle
125 }
126
127 transaction VehicleOdometerUpdateTx extends VehicleTransaction

{
128 o Double odometer
129 }
130
131 transaction RoadEventTransaction {
132 o String eventId
133 o Location location
134 o DateTime eventTimestamp
135 o EventType type
136 o String [] vehiclesInvolved
137 o WitnessedVehicleData [] witnessedData optional
138 o Boolean validated default = false
139 o String sourceId
140 }
141
142 transaction EventWitnessDataTransaction {
143 o String id
144 o String roadEventId
145 o String sourceId
146 o WitnessedVehicleData [] witnessedData
147 }
148
149
150 //TX to execute setup of the channel through chaincode
151 transaction SetupTx {
152 o Integer numberOfVehicles
153 o Integer numberOfRoadUnits
154 }
155
156
157 //*
158 //*Events
159 //*
160 event VehicleEvent {
161 --> Vehicle vehicle
162 o EventType type
163 o String referenceTxId optional
164 }

109

Appendix F. Hyperledger Composer Chaincode Logic for
Transportation Applications

1 /**
2 * AFIT Transportation Network
3 * Chaincode
4 * Author: Luis Cintron
5 */
6
7 ’use strict ’;
8
9 /**

10 * Transction processor functions (Chaincode)
11 */
12
13 /**
14 * Odometer Update transaction
15 * @param {org.afit.transportation.VehicleOdometerUpdateTx} tx
16 * @transaction
17 */
18 async function vehicleOdometerUpdate(tx) {
19 // Save the old value of the asset.
20 const odometer = tx.vehicle.odometer;
21
22 // Update the asset with the new value.
23 if (tx.odometer > odometer) {
24 tx.vehicle.odometer = tx.odometer;
25
26 // Get the asset registry for the asset.
27 const assetRegistry = await getAssetRegistry(’org.afit.

transportation.Vehicle ’);
28
29 // Update the asset in the asset registry.
30 await assetRegistry.update(tx.vehicle);
31
32 // Emit an event for the modified asset.
33 const factory = getFactory ();
34 let event = factory.newEvent(’org.afit.transportation ’, ’

VehicleEvent ’);
35 event.vehicle = tx.vehicle;
36 event.type = ’VEHICLEUPDATE ’
37 event.referenceTxId = tx.transactionId
38 emit(event);
39 } else {
40 // Emit an event for the invalid odometer reading attempt.
41 const factory = getFactory ();
42 let event = factory.newEvent(’org.afit.transportation ’, ’

VehicleEvent ’);
43 event.vehicle = tx.vehicle;
44 event.type = ’INVALIDODOMETERREADING ’
45 event.referenceTxId = tx.transactionId
46 emit(event);
47 }
48 }
49
50 /**
51 * Network data initialization - Create owners/members & ids

110

52 * @param {org.afit.transportation.SetupTx} tx
53 * @transaction
54 */
55 async function setup(tx) {
56 const factory = getFactory ();
57 const namespace = "org.afit.transportation";
58
59 if (tx.numberOfVehicles) {
60 const rreg = await getAssetRegistry(namespace + ’.Vehicle ’

);
61 for (i = 0; i < tx.numberOfVehicles; i++) {
62 let v = factory.newResource(namespace , ’Vehicle ’, ’V’ +

i);
63 v.vin = ’vin’;
64 v.odometer = 0.0;
65 v.eventsInvolved = [];
66 v.sensorId = ’V’ + i;
67 await rreg.add(v);
68 }
69 }
70
71 if (tx.numberOfRoadUnits) {
72 const rreg = await getAssetRegistry(namespace + ’.

RoadSideUnit ’);
73 for (i = 0; i < tx.numberOfRoadUnits; i++) {
74 let r = factory.newResource(namespace , ’RoadSideUnit ’, ’

R’ + i);
75 r.rsuId = ’R’ + i;
76 r.location = factory.newConcept(namespace ,’Location ’);
77 r.location.lat =0.0;
78 r.location.lng =0.0;
79 r.sensorId = ’R’ + i;
80 r.sensorType = ’RSU’;
81 await rreg.add(r);
82 }
83 }
84 }
85
86
87 /**
88 * Event Report Transaction
89 * @param {org.afit.transportation.RoadEventTransaction} tx
90 * @transaction
91 */
92 async function RoadEventReport(tx) {
93 const factory = getFactory ();
94 const namespace = "org.afit.transportation";
95
96 const re = factory.newResource(namespace , ’RoadEvent ’, tx.

eventId);
97 re.location = tx.location
98 re.type = tx.type;
99 re.eventTimestamp = tx.eventTimestamp;

100 re.vehiclesInvolved = tx.vehiclesInvolved;
101 re.witnessedData = tx.witnessedData;
102 re.validated = false;
103
104 if (tx.sourceId.startsWith(’R’)) {

111

105 const rreg = await getAssetRegistry(namespace + ’.
RoadSideUnit ’);

106 re.source = await rreg.get(tx.sourceId);
107 }
108 else {
109 const vreg = await getAssetRegistry(namespace + ’.Vehicle ’

);
110 re.source = await vreg.get(tx.sourceId);
111 }
112
113 const rereg = await getAssetRegistry(re.

getFullyQualifiedType ());
114 let result = await rereg.add(re);
115
116 // updated vehicles involved
117 const vreg = tx.vehiclesInvolved.length ? await

getAssetRegistry(namespace + ’.Vehicle ’) : null;
118 for (vid of tx.vehiclesInvolved) {
119 const vehicle = await vreg.get(vid);
120 if (! vehicle.eventsInvolved)
121 vehicle.eventsInvolved = [];
122
123 vehicle.eventsInvolved.push(re);
124 await vreg.update(vehicle);
125 }
126
127 }
128
129
130 /**
131 * Event Report Transaction
132 * @param {org.afit.transportation.EventWitnessDataTransaction

} tx
133 * @transaction
134 */
135 async function EventWitnessedDataReport(tx) {
136 const factory = getFactory ();
137 const namespace = "org.afit.transportation";
138 if (tx.witnessedData.length > 0) {
139 const rereg = await getAssetRegistry(namespace + ’.

RoadEvent ’);
140 const reExists = await rereg.exists(tx.roadEventId);
141 if(reExists){
142 const rwd = factory.newResource(namespace , ’

RoadEventWitnessedData ’, tx.id);
143 rwd.roadEventId = tx.roadEventId;
144 rwd.witnessedData=tx.witnessedData;
145 rwd.sourceId = tx.sourceId;
146 const rwdReg = await getAssetRegistry(rwd.

getFullyQualifiedType ());
147 let result = await rwdReg.add(rwd);
148 }
149 }
150 }

112

Appendix G. AutoComposer - Script for Generating and
Deploying Hyperledger Composer Network Archives

1 #!/bin/bash
2
3 # Hyperledger Composer Custom Business Network Commands
4 # Author: Luis Cintron
5 #

--

6 # HELP:
7 # -Create business network archive (requires version or

version -upgrade):
8 # $./ autoComposer -c -v 0.0.1 or $./ autoComposer -c

-v 0.0.1 -0.0.2 (update ver to 0.0.2)
9 #

10 # -Install business network:
11 # $./ autoComposer -x -v 0.0.1
12 #
13 # -Start business network:
14 # $./ autoComposer -s -v 0.0.1
15 #

--

16
17
18 ORG="$(hostname)"
19 #Global variables
20 CREATE=false
21 START=false
22 UPGRADE=false
23 PING=false
24 REST=false
25 WEB=false
26 IMPORT=false
27 ANGULAR=false
28 VERSIONSET=false
29 INSTALL=false
30 HELP=false
31 #Grab passed arguments and set global variables
32 while getopts :hacxsuiprwv: option
33 do
34 case "${option}"
35 in
36 h) HELP=true;;
37 a) ANGULAR=true;;
38 c) CREATE=true;;
39 x) INSTALL=true;;
40 s) START=true;;
41 u) UPGRADE=true;;
42 i) IMPORT=true;;
43 p) PING=true;;
44 r) REST=true;;
45 w) WEB=true;;
46 v) VERSIONSET=true
47 VERSION=${OPTARG };;
48 esac

113

49 done
50
51 #functions
52 execute_composer (){
53 if [[$($@ | grep succeeded) == *"succeeded"*]]; then
54 return 0
55 else
56 echo "Error executing ’$@ ’"
57 #exit
58 return 1
59 fi
60 }
61
62 if ["$HELP" = true]; then
63 echo "autoComposer - Hyperledger Composer automation"
64 echo -e "Usage: autoComposer.sh <command >\n"
65 echo "Commands:"
66 echo -e "\t-c -v <version >\ tCreate a Business network

archive of version provided"
67 echo -e "\t-c -v <oldversion >-<newversion >\ tCreate a

Business network archive and updates old version to new
version"

68 echo -e "\t-x -v <version >\ tInstall a Business network
archive of version provided"

69 echo -e "\t-s -v <version >\ tStart a Business network of
version provided"

70 echo -e "\t-u -v <version >\ tUpgrade a Business network to
version provided"

71 echo -e "\n\t-i Import org admin credentials - based on
hostname - results in orgadmin@afit -transportation ..."

72 echo -e "\t-p Ping the business network using the orgadmin
card"

73 echo -e "\t-r Start composers rest server"
74 echo -e "\t-a Generates an Angular Web Application from

Template (Baseline)"
75 echo -e "\t-w Runs generated Angular Web Application\n"
76
77 exit
78 fi
79
80 #Create network. This will prompt for network name , license ,

etc.
81 #yo hyperledger -composer:businessnetwork
82
83 if (["$CREATE" = true] || ["$INSTALL" = true] || ["$START

" = true] || ["$UPGRADE" = true]) && ["$VERSIONSET" =
false]; then

84 echo "Missing version (-v) for creating/starting/upgrading
the network"

85 exit
86 fi
87
88 #Once structure has been modified/generated (models , logic ,

rules , queries , etc.)
89 if ["$CREATE" = true] && ["$VERSIONSET" = true]; then
90
91 #Update Composer network old version to new version in

package.json

114

92 if [[$VERSION == *-*]]; then
93 LAST_VERSION=$(echo $VERSION | cut -d’-’ -f1) # output

is 1
94 VERSION=$(echo $VERSION | cut -d’-’ -f2) # output is 2
95 echo "Parse Versions: $LAST_VERSION to $VERSION"
96 fi
97
98 if ["$VERSIONSET" = true] && ["$VERSION" != "

$LAST_VERSION"]; then
99 CHECK="s/\\\"version \\\": \\\"$LAST_VERSION \\\"/\\\"

version \\\": \\\"$VERSION \\\"/g"
100 echo "Replacing version (Using: $CHECK)"
101 sed -i -e "$CHECK" package.json
102 fi
103
104 echo "Creating archive - Version $VERSION ..."
105 #Generate the business network archive
106 if execute_composer "composer archive create -t dir -n .";

then
107 echo "Archive ver. $VERSION created!"
108 echo ""
109 fi
110 fi
111
112 if ["$INSTALL" = true] && ["$VERSIONSET" = true]; then
113 #Install business network
114 if execute_composer "composer network install --card

PeerAdmin@afittransnetwork --archiveFile afit -
transportation -network@$VERSION.bna"; then

115 echo "Network ver. $VERSION installed!"
116 echo ""
117 else
118 echo "[ERROR] Unable to install ver. $VERSION. Exiting

..."
119 echo ""
120 exit
121 fi
122 fi
123
124 #Start business network
125 if ["$START" = true] && ["$VERSIONSET" = true]; then
126 echo "Starting the network ..."
127 if [! -d "${ORG}/admin"]; then
128 mkdir -p "${ORG}/ admin"
129 fi
130 composer network start --networkName afit -transportation -

network --networkVersion $VERSION -A org1admin -C org1/
admin/admin -pub.pem -A org2admin -C org2/admin/admin -
pub.pem -A org3admin -C org3/admin/admin -pub.pem --card
PeerAdmin@afittransnetwork

131 echo "Network ver. $VERSION started!"
132 echo ""
133 fi
134
135 #Upgrade business network
136 if ["$UPGRADE" = true] && ["$VERSIONSET" = true]; then
137 echo "Upgrading the network ..."
138 if execute_composer "composer network upgrade -c

115

PeerAdmin@afittransnetwork -n afit -transportation -
network -V $VERSION"; then

139 echo "Network upgraded to ver. $VERSION"
140 echo ""
141 else
142 echo "[ERROR] Unable to upgrade to ver. $VERSION.

Exiting ..."
143 echo ""
144 exit
145 fi
146 fi
147
148 #Import network admin card
149 if ["$IMPORT" = true]; then
150 NETCARD="$(composer card list -q | grep afit -

transportation -network)"
151 if ["${NETCARD}" != "${ORG}admin@afit -transportation -

network"]; then
152 echo "Card has not been created. Creating ..."
153 composer identity request -c

PeerAdmin@afittransnetwork -u "${ORG}admin" -s
adminpw -d "${ORG}/ admin"

154 composer card create -p "${ORG}/ connection.json" -u "$
{ORG}admin" -n afit -transportation -network -c "${
ORG}/ admin/admin -pub.pem" -k "${ORG}/ admin/admin -
priv.pem" -f "${ORG}/ networkAdmin.card" -r
PeerAdmin -r ChannelAdmin

155 fi
156
157 echo "Importing network admin card ..."
158 execute_composer "composer card delete -c ${ORG}admin@afit

-transportation -network"
159 if execute_composer "composer card import --file ${ORG}/

networkAdmin.card"; then
160 echo "${ORG} Networkadmin.card imported!"
161 echo ""
162 else
163 echo "[ERROR] Unable to import network admin card.

Exiting ..."
164 echo ""
165 exit
166 fi
167 fi
168
169 #Check network deployment succeeded
170 if ["$PING" = true]; then
171 echo "Pinging the network ..."
172 if execute_composer "composer network ping --card ${ORG}

admin@afit -transportation -network"; then
173 echo "Network is up and running!"
174 else
175 echo "[ERROR] The network did not respond!"
176 exit 1
177 fi
178 echo ’’
179 fi
180
181 #Generate & Start Rest Server

116

182 if ["$REST" = true]; then
183 echo "Starting composer -rest -server ..."
184 kill $(lsof -i :3000 | grep -i :3000 | awk ’{print $2}’)

2>&1
185 composer -rest -server -c "${ORG}admin@afit -transportation -

network" -n never -u true -w true
186 fi
187
188
189 #Generate Angular application
190 if ["$ANGULAR" = true]; then
191 if [-d "./afit -transportation -webapp"]; then
192 echo "Stopping angular app ..."
193 cd ./afit -transportation -webapp
194 npm stop 2>&1
195 sleep 2
196 cd ..
197 rm -r -f ./afit -transportation -webapp 2>&1
198 fi
199
200 echo "Generating the angular shell ..."
201 yo hyperledger -composer:angular
202 fi
203
204 #Start Angular application
205 if ["$WEB" = true]; then
206 echo "Starting angular app ..."
207 cd ./afit -transportation -webapp/
208 kill $(lsof -i :4200 | grep -i :4200 | awk ’{print $2}’)
209 npm start 2&>1
210 fi
211
212 echo ’Done.’

117

Appendix H. Hyperledger Composer Connection Profile
Example (connection.json)

1 {
2 "name": "afittransnetwork",
3 "x-type": "hlfv1",
4 "x-commitTimeout": 300,
5 "version": "1.0.0",
6 "client": {
7 "organization": "Org2",
8 "connection": {
9 "timeout": {

10 "peer": {
11 "endorser": "300",
12 "eventHub": "300",
13 "eventReg": "300"
14 },
15 "orderer": "300"
16 }
17 }
18 },
19 "channels": {
20 "composerchannel": {
21 "orderers": [
22 "orderer1.afit.edu",
23 "orderer2.afit.edu",
24 "orderer3.afit.edu"
25],
26 "peers": {
27 "peer0.org1.afit.edu": {
28 "endorsingPeer": false,
29 "chaincodeQuery": true,
30 "ledgerQuery":true,
31 "eventSource":true
32 },
33 "peer0.org2.afit.edu": {
34 "endorsingPeer": true,
35 "chaincodeQuery": true,
36 "ledgerQuery":true,
37 "eventSource":true
38 },
39 "peer0.org3.afit.edu": {
40 "endorsingPeer": true,
41 "chaincodeQuery": true,
42 "ledgerQuery":true,
43 "eventSource":true
44 }
45 }
46 }
47 },
48 "organizations": {
49 "Org1": {
50 "mspid": "Org1MSP",

118

51 "peers": [
52 "peer0.org1.afit.edu"
53],
54 "certificateAuthorities": [
55 "ca.org1.afit.edu"
56]
57 },
58 "Org2": {
59 "mspid": "Org2MSP",
60 "peers": [
61 "peer0.org2.afit.edu"
62],
63 "certificateAuthorities": [
64 "ca.org2.afit.edu"
65]
66 },
67 "Org3": {
68 "mspid": "Org3MSP",
69 "peers": [
70 "peer0.org3.afit.edu"
71],
72 "certificateAuthorities": [
73 "ca.org3.afit.edu"
74]
75 }
76 },
77 "orderers": {
78 "orderer1.afit.edu": {
79 "url": "grpc://192.168.64.21:7050"
80 },
81 "orderer2.afit.edu": {
82 "url": "grpc://192.168.64.22:7050"
83 },
84 "orderer3.afit.edu": {
85 "url": "grpc://192.168.64.23:7050"
86 }
87 },
88 "peers": {
89 "peer0.org1.afit.edu": {
90 "url": "grpc://192.168.64.21:7051"
91 },
92 "peer0.org2.afit.edu": {
93 "url": "grpc://192.168.64.22:7051"
94 },
95 "peer0.org3.afit.edu": {
96 "url": "grpc://192.168.64.23:7051"
97 }
98 },
99 "certificateAuthorities": {

100 "ca.org1.afit.edu": {
101 "url": "http://192.168.64.21:7054",
102 "caName": "ca.org1.afit.edu"
103 },
104 "ca.org2.afit.edu": {

119

105 "url": "http://192.168.64.22:7054",
106 "caName": "ca.org2.afit.edu"
107 },
108 "ca.org3.afit.edu": {
109 "url": "http://192.168.64.23:7054",
110 "caName": "ca.org3.afit.edu"
111 }
112
113 }
114 }

120

Appendix I. Performance Test Matrix

Arrival-Rate

(TPS)

Endorsement Policy Block Configuration

10 All Orgs 10 TPB - 2 s

20 All Orgs 10 TPB - 2 s

30 All Orgs 10 TPB - 2 s

40 All Orgs 10 TPB - 2 s

50 All Orgs 10 TPB - 2 s

60 All Orgs 10 TPB - 2 s

70 All Orgs 10 TPB - 2 s

80 All Orgs 10 TPB - 2 s

90 All Orgs 10 TPB - 2 s

100 All Orgs 10 TPB - 2 s

10 2-Of 10 TPB - 1 s

20 2-Of 10 TPB - 1 s

30 2-Of 10 TPB - 1 s

40 2-Of 10 TPB - 1 s

50 2-Of 10 TPB - 1 s

60 2-Of 10 TPB - 1 s

70 2-Of 10 TPB - 1 s

80 2-Of 10 TPB - 1 s

90 2-Of 10 TPB - 1 s

100 2-Of 10 TPB - 1 s

10 All Orgs 50 TPB - 1 s

20 All Orgs 50 TPB - 1 s

30 All Orgs 50 TPB - 1 s

40 All Orgs 50 TPB - 1 s

121

50 All Orgs 50 TPB - 1 s

60 All Orgs 50 TPB - 1 s

70 All Orgs 50 TPB - 1 s

80 All Orgs 50 TPB - 1 s

90 All Orgs 50 TPB - 1 s

100 All Orgs 50 TPB - 1 s

10 2-Of 50 TPB - 1 s

20 2-Of 50 TPB - 1 s

30 2-Of 50 TPB - 1 s

40 2-Of 50 TPB - 1 s

50 2-Of 50 TPB - 1 s

60 2-Of 50 TPB - 1 s

70 2-Of 50 TPB - 1 s

80 2-Of 50 TPB - 1 s

90 2-Of 50 TPB - 1 s

100 2-Of 50 TPB - 1 s

10 All Orgs 100 TPB - 1 s

20 All Orgs 100 TPB - 1 s

30 All Orgs 100 TPB - 1 s

40 All Orgs 100 TPB - 1 s

50 All Orgs 100 TPB - 1 s

60 All Orgs 100 TPB - 1 s

70 All Orgs 100 TPB - 1 s

80 All Orgs 100 TPB - 1 s

90 All Orgs 100 TPB - 1 s

100 All Orgs 100 TPB - 1 s

10 2-Of 100 TPB - 1 s

20 2-Of 100 TPB - 1 s

122

30 2-Of 100 TPB - 1 s

40 2-Of 100 TPB - 1 s

50 2-Of 100 TPB - 1 s

60 2-Of 100 TPB - 1 s

70 2-Of 100 TPB - 1 s

80 2-Of 100 TPB - 1 s

90 2-Of 100 TPB - 1 s

100 2-Of 100 TPB - 1 s

123

Appendix J. Performance Test Workflow Scripts

multiworkflow.sh

1 #!/bin/bash
2 START=0
3 END=0
4 INCREMENT =0
5 REPEAT =1
6 WAIT=0
7 DATESTR=$(date +"%Y-%m-%d_%H-%M-%S-%1N")
8 OUTPUTFILE="../../ Data/$DATESTR -MULTI"
9 while getopts :s:e:i:r:w: option

10 do
11 case "${option}"
12 in
13 s) START=${OPTARG };;
14 e) END=${OPTARG };;
15 i) INCREMENT=${OPTARG };;
16 r) REPEAT=${OPTARG };;
17 w) WAIT=${OPTARG };;
18 esac
19 done
20 echo -e "Scenario Collection :\t $DATESTR -MULTI.txt"
21 for i in ‘seq $START $INCREMENT $END ‘
22 do
23 for j in ‘seq 1 1 $REPEAT ‘
24 do
25 echo "Calling workflow -r $i"
26
27 ./ workflow.sh -r $i >> "$OUTPUTFILE.txt"
28 echo "---" >> "$OUTPUTFILE.txt"
29 sleep $WAIT
30 done
31 done
32 echo "Generating $DATESTR -MULTI.csv ..."
33 python ./ TextToCsv.py -i "$OUTPUTFILE.txt" > "$OUTPUTFILE.csv"
34
35 echo "Job finished!"

124

workflow.sh

1 #!/bin/bash
2 FETCHBLOCK=true
3 SLEEPTIME =20
4 EVENTPREFIXSET=false
5 REQUESTSET=false
6 REQUEST =500
7 QUIET=false
8 BLOCKNUM =6
9 TEST=false

10 IN=0
11 WAITT =10
12 DATESTR=$(date +"%Y-%m-%d_%H-%M-%S-%1N")
13
14 while getopts :r:b:e:s:q:t:w: option
15 do
16 case "${option}"
17 in
18 b) BLOCKNUM=${OPTARG}
19 FETCHBLOCK=false ;;
20 r) REQUEST=${OPTARG };;
21 t) TEST=true
22 IN=${OPTARG };;
23 w) WAITT=${OPTARG };;
24 esac
25 done
26
27 if ["$EVENTPREFIXSET" = false]; then
28 EVENTPREFIX=$DATESTR
29 fi
30
31 if ["$FETCHBLOCK" = true]; then
32 BLOCKNUM=$(node ./ GetNextBlockNumber.js)
33 fi
34
35 if ["$TEST" = true]; then
36 node TestBounds.js $DATESTR $REQUEST $IN $WAITT
37 else
38 node GenerateEvents.js $REQUEST $DATESTR $BLOCKNUM
39 fi
40
41 #Wait for Explorer to Update
42 sleep $SLEEPTIME
43
44 node GetBlockTxDataToCSV.js $DATESTR $BLOCKNUM $REQUEST

125

GenerateEvents.js

1 var blockNum = 0;
2 var request = require(’request ’);
3 var reqProctimes = [];
4 var args = process.argv.slice (2);
5 var numEvents = 1;
6 var errorTotal = 0;
7 var successTotal = 0;
8 var timeoutErr =0;
9 var hlfError = 0;

10 var count = 0;
11 var rendTime =’’;
12 var requestEndTime = ’’;
13 var scenarioEndTime = {};
14 var scenarioName = "";
15 var endpoints = [
16 "http: //192.168.64.21:3000/ api/RoadEventTransaction",
17 "http: //192.168.64.22:3000/ api/RoadEventTransaction",
18 "http: //192.168.64.23:3000/ api/RoadEventTransaction"
19]
20
21 // Initialize variables based on passed CLI parameters
22 if(args.length >0){
23 numEvents = parseInt(args [0]);
24 scenarioName = args [1];
25 blockNum = parseInt(args [2]);
26 }
27
28 console.log("Scenario:\t\t"+ scenarioName);
29 console.log("Events:\t\t\t"+ numEvents);
30 console.log("Start Block:\t\t"+ blockNum);
31
32 // Allows find-replace for more than one appearances
33 //of the substring in the string to search
34 String.prototype.replaceAll = function(search , replacement) {
35 var target = this;
36 return target.replace(new RegExp(search , ’g’), replacement

);
37 };
38
39 // Makes an HTTP POST Request to a given url ,
40 //with given data. Finds the last request response time.
41 function HTTPPostRequest(request_url ,data , success_callback ,

error_callback , index = 0) {
42 reqProctimes[index]. startTime= new Date();
43 request ({ url:request_url ,method:"POST", json: data ,

headers: {
44 "content-type": "application/json",
45 },}, function (err , res , json) {
46 if (err && error_callback) {
47 error_callback(err);
48 errorTotal ++;
49 timeoutErr ++;
50 }
51 else if(json && json.eventId) {
52 if(success_callback)

126

53 success_callback(json , index);
54 successTotal ++;
55 }
56 else{
57 errorTotal ++
58 hlfError ++;
59 }
60 scenarioEndTime = new Date();
61 reqProctimes[index]. endTime= new Date();
62 count--;
63 });
64 reqCount ++;
65 if(reqCount == numEvents){
66 rendTime = new Date();
67 requestEndTime = (rendTime.getTime () - startTime.

getTime ())/1000;
68 }
69 };
70
71 // Submit RoadEvent transactions for load testingt
72 var reqCount = 0;
73 var SOURCEVEHICLE = 0;
74 var timePerReq = 1000/ numEvents;
75 var timeCount = 0;
76 var startTime = new Date();
77 for(i = 0; i < numEvents;i++){
78 var endpoint = endpoints[i%3];
79 OTHERVEHICLE = SOURCEVEHICLE +1;
80 let data = {};
81 data.$class="org.afit.transportation.RoadEventTransaction"
82 data.eventId=scenarioName+’-’+i;
83 data.location ={};
84 data.location.$class="org.afit.transportation.Location";
85 data.location.lat =158.814
86 data.location.lng = 224.262;
87 data.eventTimestamp = new Date().toISOString ();
88 data.type = "ACCIDENT";
89 data.vehiclesInvolved =["V"+SOURCEVEHICLE ,"V"+OTHERVEHICLE

];
90 data.validated= false;
91 data.sourceId= "V"+SOURCEVEHICLE;
92
93 count ++;
94 reqProctimes.push({ startTime: ’’, endtime: ’’});
95 setTimeout(HTTPPostRequest , timeCount +(i*timePerReq),

endpoint , data , null , null ,i);
96 SOURCEVEHICLE = SOURCEVEHICLE +2;
97 }
98
99

100 //Wait for all HTTP POST requests to return and calculates
errors ,

101 //mean request time , total time elapsed , etc.
102 var interval = setInterval(function () {
103 if (count == 0) {
104 var meanReqProcTime = 0;
105 var totalReqProcTime = 0;
106 for(i = 0;i<numEvents;i++){

127

107 reqProctimes[i]. reqTime =(reqProctimes[i]. endTime.
getTime () -reqProctimes[i]. startTime.getTime ())
/1000;

108 totalReqProcTime += reqProctimes[i]. reqTime;
109 }
110 var meanReqProcTime = totalReqProcTime/reqProctimes.

length;
111 clearInterval(interval);
112 scenarioEndTime = (scenarioEndTime.getTime () -

startTime.getTime ())/1000;
113
114 console.log("Request Submit Time: \t"+requestEndTime);
115 console.log("Request/sec:\t\t"+(numEvents/

requestEndTime));
116 console.log("Mean Req Time:\t\t"+meanReqProcTime);
117 console.log("Total Time Elapsed:\t"+scenarioEndTime);
118 console.log("Successful Requests:\t"+successTotal);
119 console.log("Timeout Errors:\t\t"+timeoutErr);
120 console.log(’HLF Errors:\t\t’+hlfError);
121 console.log("Total Error:\t\t"+errorTotal);
122 }
123 }, 2000);

128

TestBounds.js

1 var request = require(’request ’);
2 var args = process.argv.slice (2);
3 var errorTotal = 0;
4 var successTotal = 0;
5 var EVENTPREFIX = new Date().getTime () / 1000;
6 var scenarioEndTime = {};
7 var scenarioName = "";
8 var numEvents = 1;
9 var increments = 10;

10 var waitTime = 2;
11 var endpoints = [
12 "http: //192.168.64.21:3000/ api/RoadEventTransaction",
13 "http: //192.168.64.22:3000/ api/RoadEventTransaction",
14 "http: //192.168.64.23:3000/ api/RoadEventTransaction"
15]
16 if(args.length >0){
17 scenarioName = args [0]
18 numEvents = parseInt(args [1]);
19 increments = parseInt(args [2]);
20 waitTime = parseInt(args [3]);
21
22 }
23
24 console.log("Sending " + numEvents + " events in increments of

"+increments+" every "+waitTime+"ms...")
25
26 String.prototype.replaceAll = function(search , replacement) {
27 var target = this;
28 return target.replace(new RegExp(search , ’g’), replacement

);
29 };
30
31 function HTTPPostRequest(request_url ,data , success_callback ,

error_callback , isJSONRequest , index = 0) {
32 request ({ url:request_url ,method:"POST", json: data ,

headers: {
33 "content-type": "application/json",
34 },}, function (err , res , json) {
35 if (err && error_callback) {
36 error_callback(err);
37 errorTotal ++;
38 }
39 else if(json.eventId) {
40 if(success_callback)
41 success_callback(json , index);
42 successTotal ++;
43 }
44 else{
45 console.log(json);
46 errorTotal ++
47 }
48 scenarioEndTime = new Date();
49 count--;
50
51 });

129

52
53 };
54
55 //Get all BlockTx info
56 var SOURCEVEHICLE = 0;
57 var timeoutSum =0;
58 var count = numEvents;
59 var eventId = 0;
60 var reqs = increments;
61
62 function sendRequests(x){
63 console.log("Sending " + x + " events.");
64 for(i = 0; i < x;i++){
65 var endpoint = endpoints[i%3];
66 OTHERVEHICLE = SOURCEVEHICLE +1;
67 let data = {};
68 data.$class="org.afit.transportation.

RoadEventTransaction"
69 data.eventId=scenarioName+’-’+eventId ++;
70 data.location ={};
71 data.location.$class="org.afit.transportation.Location

";
72 data.location.lat =158.814
73 data.location.lng = 224.262;
74 data.eventTimestamp = new Date().toISOString ();
75 data.type = "ACCIDENT";
76 data.vehiclesInvolved =["V"+SOURCEVEHICLE %3000,"V"+

OTHERVEHICLE %3000];
77 data.validated= false;
78 data.sourceId= "V"+SOURCEVEHICLE %3000;
79 HTTPPostRequest(endpoint , data);
80 SOURCEVEHICLE = SOURCEVEHICLE +2;
81 }
82 }
83 while(reqs<=numEvents){
84
85 setTimeout(sendRequests , timeoutSum , reqs);
86 reqs = reqs + increments;
87 timeoutSum += waitTime;
88 }

130

GetBlockTxData.js

1 const request = require(’request ’);
2 const uri = ’http: //192.168.64.21:8081/ api/’;
3
4 function GetBlockTxListUri(channel_genesis){
5 return uri+’blockAndTxList/’+channel_genesis+’/0’;
6 }
7
8 function GetTransactionUri(channel_genesis , txid){
9 return uri+’transaction/’+channel_genesis+’/’+txid;

10 }
11
12 function HTTPGetRequest(request_url , success_callback ,

error_callback , isJSONRequest , index =0) {
13 request ({ url: request_url , json: isJSONRequest },

function (err , res , json) {
14 if (err && error_callback) {
15 error_callback(err);
16 }
17 else {
18 success_callback(json ,index);
19 }
20 });
21 };
22
23 var blocks = [];
24 let gb = ’’;
25 var count = 0;
26 //Get all Block TX Info
27 count ++;
28 request(GetBlockTxListUri(gb), { json: true }, (err , res , body

) => {
29 if (err) { return console.log(err); }
30 if(body.rows){
31 blocks.push (... body.rows);
32 blocks.forEach(block =>{
33 block.transactions = [];
34 //For each block transaction get transaction

details
35 block.txhash.forEach(tx =>{
36 count ++;
37 request(GetTransactionUri(gb ,tx),{ json: true

}, (err , res , body) =>{
38 if(err) return console.log(err);
39 if(body.row && body.row.chaincodename ===

’afit-transportation-network ’){
40 var txTime = new Date(body.row.

createdt);
41 var bTime= new Date(block.createdt);
42 var transaction = {};
43 transaction.hash = body.row.hash;
44 transaction.createdt = body.row.

createdt;
45 transaction.write_set = body.row.

write_set;
46 transaction.endorsers = body.row.

endorser_msp_id;

131

47 transaction.creator = body.row.
creator_msp_id;

48 transaction.timeToBlock = bTime -
txTime;

49 transaction.validation_code = body.row
.validation_code;

50 block.transactions.push(transaction);
51 }
52 count--;
53 });
54 });
55 });
56 }
57 count--;
58 });
59
60 //Wait to fetch all TX data then output all blocks and TX data
61 //to console.
62 var interval = setInterval(function (){
63 if(count == 0){
64 console.log(JSON.stringify(blocks));
65 clearInterval(interval);
66 }
67 } ,100);

132

Appendix K. Performance Scenario Sample Data Output

Scenario Req

No.

Block Req Sub-

mit Time

Req/s Avg Total

Req Time

Total Time

Elapsed

SuccessfulTimeout

Error

HLF Er-

ror

Total Er-

rors

Avg

TPS

Peak

TPS

Total

Blocks

Avg

BPS

Peak

BPS

Avg

TPB

Peak

TPB

Min

TPB

Total

Tx

Total

Time

1 10 6 0.902 11.08647451.1162 1.576 10 0 0 0 5 6 1 1 1 10 10 10 10 1

2 10 7 0.903 11.074197120.901 1.36 10 0 0 0 5 7 1 1 1 10 10 10 10 1

3 10 8 0.902 11.08647450.9405 1.395 10 0 0 0 5 7 1 1 1 10 10 10 10 1

4 20 9 0.951 21.030494221.56615 2.505 20 0 0 0 10 14 2 1 1 10 10 10 20 1

5 20 11 0.951 21.030494221.4166 2.532 20 0 0 0 10 16 2 1 1 10 15 5 20 1

6 20 13 0.951 21.030494221.66775 2.654 20 0 0 0 10 17 2 1 1 10 11 9 20 1

7 30 15 0.968 30.991735542.2277 2.99 30 0 0 0 15 28 2 2 2 15 20 10 30 1

8 30 17 0.968 30.991735542.139566667 2.935 30 0 0 0 15 22 2 2 2 15 19 11 30 1

9 30 19 0.968 30.991735542.1227 2.721 30 0 0 0 15 16 2 2 2 15 25 5 30 1

10 40 21 0.976 40.983606562.67125 3.245 40 0 0 0 20 33 2 2 2 20 35 5 40 1

11 40 23 0.977 40.941658142.978225 3.731 40 0 0 0 20 31 2 2 2 20 27 13 40 1

12 40 25 0.978 40.89979552.962325 3.612 40 0 0 0 20 28 2 2 2 20 32 8 40 1

13 50 27 0.981 50.968399593.344 3.894 50 0 0 0 25 34 2 2 2 25 47 3 50 1

14 50 29 0.983 50.86469993.4654 4.104 50 0 0 0 25 49 2 1 1 25 43 7 50 1

15 50 31 0.982 50.916496953.3642 3.903 50 0 0 0 25 39 2 2 2 25 47 3 50 1

16 60 33 0.986 60.851926983.927666667 4.751 60 0 0 0 30 39 2 1 1 30 40 20 60 1

17 60 35 0.987 60.790273564.76945 5.74 60 0 0 0 30 38 3 1.5 2 20 45 4 60 1

18 60 38 0.986 60.851926983.830566667 4.782 60 0 0 0 30 50 2 1 1 30 30 30 60 1

19 70 40 0.988 70.850202434.556257143 5.589 70 0 0 0 35 67 3 3 3 23.3333333350 10 70 1

20 70 43 0.988 70.850202434.508871429 5.546 70 0 0 0 35 39 3 1.5 2 23.3333333350 5 70 1

21 70 46 0.987 70.921985824.343228571 5.356 70 0 0 0 35 64 2 1 1 35 47 23 70 1

22 80 48 0.989 80.889787665.139575 6.198 80 0 0 0 40 52 3 1.5 2 26.6666666750 13 80 1

23 80 51 0.989 80.889787665.1492 6.122 80 0 0 0 40 52 3 1.5 2 26.6666666750 11 80 1

24 80 54 0.991 80.726538854.9079125 5.908 80 0 0 0 40 51 3 1.5 2 26.6666666750 6 80 1

25 90 57 0.99 90.909090915.538566667 6.577 90 0 0 0 45 73 3 1.5 2 30 50 19 90 1

26 90 60 0.99 90.909090915.797511111 6.79 90 0 0 0 45 62 3 1.5 2 30 50 3 90 1

27 90 63 0.991 90.817356215.714155556 6.78 90 0 0 0 45 72 3 1.5 2 30 50 11 90 1

28 100 66 0.991 100.90817366.44078 7.508 100 0 0 0 50 54 3 1.5 2 33.3333333350 22 100 1

29 100 69 0.992 100.80645166.55511 7.644 100 0 0 0 50 55 3 1.5 2 33.3333333350 13 100 1

133

Appendix L. Julia Analysis Script

1 using DataFrames , CSV , Statistics , Gadfly , Cairo , Suppressor
2 using Genie
3 import Genie.Router: route
4 import Genie.Renderer: json!
5
6 #Fetch scenario data from CSV file in local directory and
7 #perform calculations on data. Return results in the web

response
8 function AnalyzeBCData ()
9 html_text=""

10
11 #Find latest generated .csv data file in Data directory
12 wd = pwd()
13 dataPath="../../ Data/"
14 cd(dataPath)
15 rd = filter(x ->occursin(".csv",x), readdir(pwd()))
16 val ,ind = findmax(map(ctime ,rd))
17 fileName = split(rd[ind],".csv")[1]
18 filePath= "../../ Data/"*fileName
19 cd(wd)
20
21 #Read sceanario .csv data
22 df = CSV.read(filePath*".csv", delim=",")
23
24 #Sort by block number
25 df = sort!(df, [: block_number])
26
27 #Find earliest tx time
28 minTxTime , ind = findmin(df.createdt)
29
30 #Create columns times starting from the earliest scenario

tx and block
31 df[: txcreated_norm] = 1
32 df[: blockcreated_norm] = 1
33 for r in eachrow(df)
34 r[: txcreated_norm] = r[: createdt] - minTxTime
35 r[: blockcreated_norm] = r[: block_createdt] - df.

block_createdt [1]
36 end
37
38 #Get number of tx’s
39 rows = nrow(df)
40
41 #Group tx’s by time (second) and calculate peak , mean

values
42 txGroupedByTime = by(df, :txcreated_norm , N = :

txcreated_norm => length)
43 maxTime , ind = findmax(txGroupedByTime [: txcreated_norm])
44 maxTime = maxTime +1;
45 meanTPS = mean(txGroupedByTime [:N])
46 peakTPS , row = findmax(txGroupedByTime [:N])
47
48 #Group tx’s by Block (second) and calculate peak , mean

values
49 txGroupedByBlockNum = by(df , :block_number , N=:

block_number => length)

134

50 blocks = nrow(txGroupedByBlockNum)
51 meanTPB = mean(txGroupedByBlockNum [:N])
52 peakTPB , row = findmax(txGroupedByBlockNum [:N])
53 minTPB , row = findmin(txGroupedByBlockNum [:N])
54
55 #Compute block stats
56 blocksGroupedByBlockTime = unique(by(df , :block_number , x

-> [x.blockcreated_norm][1]))
57 blocksGroupedByBlockTime = by(blocksGroupedByBlockTime , :

x1 , N = :block_number => length)
58 meanBPS = mean(blocksGroupedByBlockTime [:N])
59 peakBPS , row = findmax(blocksGroupedByBlockTime [:N])
60
61 #Generate response string
62 html_text=html_text*"Average TPS:$meanTPS;"
63 html_text=html_text*"Peak TPS:$peakTPS;"
64 html_text=html_text*"Total Blocks:$blocks;"
65 html_text=html_text*"Average BPS:$meanBPS;"
66 html_text=html_text*"Peak BPS:$peakBPS;"
67 html_text=html_text*"Mean TPB:$meanTPB;"
68 html_text=html_text*"Peak TPB:$peakTPB;"
69 html_text=html_text*"Min TPB:$minTPB;"
70 html_text=html_text*"TXs:$rows;"
71 html_text=html_text*"Max Time:$maxTime"
72 html_text
73 end
74
75 #Add function to root route
76 route("/", AnalyzeBCData)
77
78 #Start server
79 Genie.AppServer.startup ()

135

Bibliography

1. U.S. DOT - ITS/JPO, “USDOT’s Intelligent Transportation Systems (ITS)

Strategic Plan 2015-2019,” p. 96, 2014. [Online]. Available: https://rosap.ntl.

bts.gov/view/dot/3506 [Accessed: 2018-08-10]

2. A. Sumalee and H. W. Ho, “Smarter and more connected: Future intelligent

transportation system,” IATSS Research, vol. 42, no. 2, pp. 67–71, 2018.

[Online]. Available: https://doi.org/10.1016/j.iatssr.2018.05.005

3. U.S. Government Accountability Office (GAO), “Intelligent Transportation

Systems’ Promise for Managing Congestion Falls Short, and DOT Could Better

Facilitate Their Strategic Use,” Tech. Rep. September, 2005. [Online]. Available:

https://www.gao.gov/assets/250/247752.pdf

4. S. M. Hussain, T. S. Ustun, P. Nsonga, and I. Ali, “IEEE 1609 WAVE and IEC

61850 Standard Communication Based Integrated EV Charging Management in

Smart Grids,” IEEE Transactions on Vehicular Technology, vol. 67, no. 8, pp.

7690–7697, 2018.

5. “IEEE Standard for Wireless Access in Vehicular Environments - Security

Services for Applications and Management Messages,” IEEE Std 1609.2-2016

(Revision of IEEE Std 1609.2-2013), pp. 1–240, 2016. [Online]. Available:

https://doi.org/10.1109/5.771073

6. T. Derenge, “FCC ALLOCATES SPECTRUM IN 5.9 GHz RANGE FOR

INTELLIGENT TRANSPORTATION SYSTEMS USES,” p. 2, oct 1999.

[Online]. Available: https://docs.fcc.gov/public/attachments/DOC-177370A1.

pdf [Accessed: 2018-12-26]

7. “IEEE Standard for Wireless Access in Vehicular Environments (WAVE)

- Networking Services,” IEEE Std 1609.3-2010 (Revision of IEEE Std

1609.3-2007), pp. 1–144, 2010. [Online]. Available: http://ieeexplore.ieee.org/

document/5680697/

8. J. W. Connors, “Assessing the Competing Characteristics of Privacy

and Safety within Vehicular Ad Hoc Networks,” Ph.D. dissertation,

Air Force Institute of Technology, 2018. [Online]. Available: https:

//apps.dtic.mil/dtic/tr/fulltext/u2/1055987.pdf

9. B. Cronin, “Vehicle Based Data and Availability,” U.S.D.O.T, ITS/JPO, Tech.

Rep., 2012. [Online]. Available: https://www.its.dot.gov/itspac/october2012/

PDF/data availability.pdf

136

10. “5.9 GHz DSRC Connected Vehicles for Intelligent Transportion Systems,” Tech.

Rep., 2013. [Online]. Available: https://ecfsapi.fcc.gov/file/7520943378.pdf

11. K. C. Bentjen, “Mitigating The Effects of Cyber Attacks and Human Control

in an Autonomous Intersection,” Ph.D. dissertation, Air Force Institute of

Technology, 2018. [Online]. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/

1055973.pdf

12. I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,

W. Trappe, and I. Seskar, “Security and Privacy Vulnerabilities of In-Car

Wireless Networks: A Tire Pressure Monitoring System Case Study,” in

Proceedings of the 19th USENIX Conference on Security. USENIX Association,

2010, p. 21. [Online]. Available: https://www.usenix.org/legacy/event/sec10/

tech/full papers/Rouf.pdf

13. F. M. Benčić and I. P. Žarko, “Distributed Ledger Technology: Blockchain

Compared to Directed Acyclic Graph,” 2018 IEEE 38th International Conference

on Distributed Computing Systems (ICDCS), pp. 1569–1570, 2018. [Online].

Available: http://arxiv.org/abs/1804.10013

14. S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Tech. Rep.,

2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

15. L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,”

ACM Transactions on Programming Languages and Systems, vol. 4, no. 3, pp.

382–401, 1982. [Online]. Available: http://portal.acm.org/citation.cfm?doid=

357172.357176

16. L. Baird, “The Swirlds Hashgraph Consensus Algorithm: Fair, Fast,

Byzantine Fault Tolerance,” Swirlds, Tech. Rep., 2016. [Online]. Available:

https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

17. L. Baird, M. Harmon, and P. Madsen, “Hedera: A Governing Council

& Public Hashgraph Network,” pp. 1–27, 2018. [Online]. Available: https:

//s3.amazonaws.com/hedera-hashgraph/hh-whitepaper-v1.1-180518.pdf

18. A. Dorri, M. Steger, S. S. Kanhere, and R. Jurdak, “BlockChain: A Distributed

Solution to Automotive Security and Privacy,” IEEE Communications Magazine,

vol. 55, no. 12, pp. 119–125, 2017.

19. S. Popov, “The Tangle,” 2018. [Online]. Avail-

able: https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/

45eae33637ca92f85dd9f4a3a218e1ec/iota1 4 3.pdf [Accessed: 2018-07-25]

137

20. M. Pilkington, “Blockchain Technology: Principles and Applications,” Research

Handbook on Digital Transformations, edited by F. Xavier Olleros and

Majlinda Zhegu. Edward Elgar, 2016, pp. 225–246, 2016. [Online]. Available:

https://ssrn.com/abstract=2662660

21. V. Buterin, “On Public and Private Blockchains,” Web, 2015. [Online]. Available:

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/ [Ac-

cessed: 2018-08-08]

22. J. O’Connell, “What Are the Use Cases for Private Blockchains? The Experts

Weigh In,” 2016. [Online]. Available: https://bitcoinmagazine.com/articles/

what-are-the-use-cases-for-private-blockchains-the-experts-weigh-in-1466440884/

[Accessed: 2019-01-08]

23. J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain, “Enabling Lo-

calized Peer-to-Peer Electricity Trading among Plug-in Hybrid Electric Vehicles

Using Consortium Blockchains,” IEEE Transactions on Industrial Informatics,

vol. 13, no. 6, pp. 3154–3164, 2017.

24. Y. Yuan and F.-Y. Wang, “Towards blockchain-based intelligent transportation

systems,” in 2016 IEEE 19th International Conference on Intelligent

Transportation Systems (ITSC), 2016, pp. 2663–2668. [Online]. Available:

http://ieeexplore.ieee.org/document/7795984/

25. Z. Zheng, S. Xie, H.-N. Dai, and H. Wang, “Blockchain Challenges and

Opportunities : A Survey Shaoan Xie Hong-Ning Dai Huaimin Wang,”

International Journal of Web and Grid Services, pp. 1–24, 2016. [Online].

Available: http://inpluslab.sysu.edu.cn/files/blockchain/blockchain.pdf

26. M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proceeding

OSDI ’99 Proceedings of the third symposium on Operating systems design and

implementation, no. February. New Orleans, LO, USA: USENIX Association

Berkeley, 1999, pp. 173–186.

27. Hyperledger Architecture Working Group, “Hyperledger Ar-

chitecture, Volume 1,” p. 15, 2017. [Online]. Avail-

able: https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger

Arch WG Paper 1 Consensus.pdf [Accessed: 2018-06-22]

28. K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the

Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

138

29. Y. Kopylova, C. Farkas, and W. Xu, “Accurate accident reconstruction in

VANET,” in Li Y. (eds) Data and Applications Security and Privacy XXV.

DBSec 2011. Lecture Notes in Computer Science, vol. 6818 LNCS, 2011,

pp. 271–279. [Online]. Available: http://dl.ifip.org/db/conf/dbsec/dbsec2011/

KopylovaFX11.pdf

30. M. Singh and S. Kim, “Blockchain Based Intelligent Vehicle Data sharing

Framework,” CoRR, 2017. [Online]. Available: http://arxiv.org/abs/1708.09721

31. C. Oham, S. S. Kanhere, R. Jurdak, and S. Jha, “A Blockchain Based Liability

Attribution Framework for Autonomous Vehicles,” Tech. Rep., 2018. [Online].

Available: https://arxiv.org/pdf/1802.05050.pdf

32. M. Cebe, E. Erdin, K. Akkaya, H. Aksu, and S. Uluagac, “Block4Forensic:

An Integrated Lightweight Blockchain Framework for Forensics Applications of

Connected Vehicles,” IEEE Communications Magazine, vol. 56, no. 10, pp.

50–57, 2018. [Online]. Available: https://arxiv.org/pdf/1802.00561.pdf

33. C. Oham, R. Jurdak, S. S. Kanhere, A. Dorri, and S. Jha, “B-FICA: BlockChain

based Framework for Auto-insurance Claim and Adjudication,” University of

New South Wales, CSIRO Data61, Tech. Rep., 2018. [Online]. Available:

https://arxiv.org/pdf/1806.06169.pdf

34. G. Greenspan, “MultiChain Private Blockchain-White Paper,” Tech.

Rep., 2015. [Online]. Available: https://www.multichain.com/download/

MultiChain-White-Paper.pdf [Accessed: 2019-01-04]

35. E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De

Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan,

C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,

C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick, “Hyperledger

Fabric: A Distributed Operating System for Permissioned Blockchains,”

in EuroSys 18: Thirteenth EuroSys Conference 2018. Porto, Portugal:

ACM, 2018, p. 15. [Online]. Available: https://arxiv.org/abs/1801.10228http:

//dx.doi.org/10.1145/3190508.3190538

36. C. Cachin, “Architecture of the Hyperledger Blockchain Fabric,” Tech. Rep.,

2016. [Online]. Available: https://www.zurich.ibm.com/dccl/papers/cachin dccl.

pdf

37. P. Thakkar, S. Nathan, and B. Vishwanathan, “Performance Benchmarking and

Optimizing Hyperledger Fabric Blockchain Platform,” 2018. [Online]. Available:

http://arxiv.org/abs/1805.11390

139

38. The Linux Foundation, “Hyperledger Fabric (1.2) Glossary,” 2018.

[Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-1.2/

glossary.html [Accessed: 2018-12-06]

39. C. H. Papadimitriou and P. C. Kanellakis, “On Concurrency Control by

Multiple Versions,” in PODS ’82 Proceedings of the 1st ACM SIGACT-SIGMOD

symposium on Principles of database systems. ACM, 1982, pp. 1–7. [Online].

Available: papers://2cd573f8-44b1-4938-8484-cf0e6dcd735b/Paper/p891

40. “Hyperledger Composer,” 2018. [Online]. Available: https://hyperledger.github.

io/composer/latest/ [Accessed: 2018-12-06]

41. “Hyperledger Explorer,” 2018. [Online]. Available: https://github.com/

hyperledger/blockchain-explorer

42. M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, SUMO-Simulation

of Urban MObility An Overview. [Online]. Available: http://sumo.dlr.de/pdf/

simul 2011 3 40 50150.pdf

43. The Linux Foundation, “Bringing up a Kafka-based Ordering Service,” 2018.

[Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-1.2/

kafka.html [Accessed: 2018-12-07]

44. NHTSA, “Odometer Fraud,” 2010. [Online]. Available: https://www.nhtsa.gov/

equipment/odometer-fraud [Accessed: 2019-01-16]

45. D. Corum, “Insurance Research Council Finds That Fraud and Buildup

Add Up to $7.7 Billion in Excess Payments for Auto Injury Claims,”

Insurance Research Council, Tech. Rep., 2015. [Online]. Available: https:

//www.insurancefraud.org/downloads/InsuranceResearchCouncil02-15.pdf

46. “The State of Insurance Fraud Technology,” Coalition Against Insurance

Fraud, Tech. Rep., 2016. [Online]. Available: https://www.insurancefraud.org/

downloads/State of Insurance Fraud Technology2016.pdf

47. N. Nachar, “The Mann-Whitney U: A Test for Assessing Whether Two

Independent Samples Come from the Same Distribution,” Tech. Rep. 1, 2008.

[Online]. Available: http://www.tqmp.org/RegularArticles/vol04-1/p013/p013.

pdf

48. P. A. Bernstein and N. Goodman, “Multiversion concurrency control—theory

and algorithms,” ACM Transactions on Database Systems, vol. 8, no. 4, pp.

465–483, 1983. [Online]. Available: http://portal.acm.org/citation.cfm?doid=

319996.319998

140

49. A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “MedRec: Using blockchain

for medical data access and permission management,” Proceedings - 2016 2nd

International Conference on Open and Big Data, OBD 2016, pp. 25–30, 2016.

50. K. Bentjen, S. Graham, and S. Nykl, “Modelling Misbehaviour in Automated Ve-

hicle Intersections in a Synthetic Environment,” ICCWS 2018 13th International

Conference on Cyber Warfare and Security, 2018.

51. J. Sousa, A. Bessani, and M. Vukolić, “A Byzantine Fault-Tolerant Ordering

Service for the Hyperledger Fabric Blockchain Platform,” no. 1, pp. 51–58, 2017.

[Online]. Available: http://arxiv.org/abs/1709.06921

52. Y. Qian, K. Lu, and N. Moayeri, “A secure VANET MAC protocol for DSRC ap-

plications,” in IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications

Conference. New Orleans, LO, USA: IEEE, 2008, pp. 1945–1949.

53. “HLF Private Data,” 2018. [Online]. Available: https://hyperledger-fabric.

readthedocs.io/en/release-1.2/private-data/private-data.html [Accessed: 2018-

10-29]

141

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2019 Master’s Thesis Sept 2017 — Mar 2019

Modeling a Consortium-based Distributed Ledger Network with
Applications for Intelligent Transportation Infrastructure

18G230

Cintron, Luis A., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering an Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-18-M-019

Air Force Research Laboratory
2241 Avionics Circle
WPAFB OH 45433-7765
Attn: Steven Stokes
COMM 937-528-8035
Email: steven.stokes@us.af.mil

AFRL/RYWA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Emerging distributed-ledger networks are changing the landscape for environments of low trust among participating
entities. Implementing such technologies in transportation infrastructure communications and operations would enable,
in a secure fashion, decentralized collaboration among entities who do not fully trust each other. This work models a
transportation records and events data collection system enabled by a Hyperledger Fabric blockchain network and
simulated using a transportation environment modeling tool. A distributed vehicle records management use case is shown
with the capability to detect and prevent unauthorized vehicle odometer tampering. Another use case studied is that of
vehicular data collected during the event of an accident. It relies on broadcast data collected from the Vehicle Ad-hoc
Network (VANET) and submitted as witness reports from nearby vehicles or road-side units who observed the event
taking place or detected misbehaving activity. The experimental testbed shows that Hyperledger Fabric and other
distributed ledger technologies hold promise for the collection of transportation data and the collaboration of applications
and services that consume it.

Intelligent Transportation Systems, Distributed Ledger Technologies, Blockchain, V2X Communication, VANET

U U U UU 160

Dr. Scott Graham, AFIT/ENG

(937) 255-6565 x4581; scott.graham@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-22-2019

	Modeling a Consortium-based Distributed Ledger Network with Applications for Intelligent Transportation Infrastructure
	Luis A. Cintron
	Recommended Citation

	tmp.1565968017.pdf.N00Ct

