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We study distributed detection and fusion in sensor networkswith bathtub-shaped failure (BSF) rate of the sensorswhichmay or not
send data to the Fusion Center (FC).The reliability of semiconductor devices is usually represented by the failure rate curve (called
the “bathtub curve”), which can be divided into the three following regions: initial failure period, random failure period, and wear-
out failure period. Considering the possibility of the failed sensors which still work but in a bad situation, it is unreasonable to trust
the data from these sensors. Based on the above situation, we bring in new characteristics to failed sensors. Each sensor quantizes
its local observation into one bit of information which is sent to the FC for overall fusion because of power, communication, and
bandwidth constraints. Under this sensor failure model, the Extension Log-likelihood Ratio Test (ELRT) rule is derived. Finally,
the ROC curve for this model is presented.The simulation results show that the ELRT rule improves the robust performance of the
system, compared with the traditional fusion rule without considering sensor failures.

1. Introduction

Distributed detection and decision fusion using multiple
sensors have attracted significant attention because of their
wide applications, such as security, traffic, battlefield surveil-
lance, and environmental monitoring. Considering a wireless
sensor network consisting of 𝑀 distribution sensors and a
Fusion Center (FC), each sensor makes a binary hypothesis
decision; then their decisions are sent to the FC to make a
global decision which decides whether the target is present
[1–8]. At each local sensor, the local likelihood ratio test
is conducted and the local decision then is sent to the
FC to make a global log-likelihood ratio test which is the
optimal test statistic [4, 5]. The methods of decision fusion,
such as Chair-Varshney Test (CVT) rule, Counting Rule test,
Generalized Likelihood Ratio Test, and Bayesian View, have
been compared in [6]. Considering the imperfect communi-
cation channel between the sensors and the FC, the authors
in [7] extended the classical parallel fusion structure by
incorporating the fading channel layer that is omnipresent in
sensor networks. Then, the likelihood ratio based fusion rule
given fixed local decision devices is derived. In [1], the authors
have derived the optimal power allocation between training

and data at each sensor over orthogonal channels that are
subject to pathloss, Rayleigh fading, and Gaussian noise. In
[9], the authors have proposed a new adaptive decentralized
soft decision combining rule for multiple-sensor distributed
detection systems with data fusion which does not require
the knowledge of the false alarm and detection probabilities
of the distributed sensors. Based on multiple decisions from
each individual sensor assuming that the probability distri-
butions are not known, the fusion rule which is insensitive
to instabilities of the sensors probability distributions was
derived in [10]. In [11], the authors studied an efficient design
of a sensor network, the graph model as the formal tool to
describe the interaction among the nodes, the distributed
estimation problem, and the network topology.Decentralized
detection through distributed sensors that perform level-
triggered sampling and communicate with a FC via noisy
channels was studied in [12]. The problem of decentralized
detection in wireless sensor networks in the presence of one
or more classes of misbehaving nodes was considered in [13].
In [14], the authors considered the problemof sensor resource
management for multitarget tracking in decentralized track-
ing systems. In [15], the decentralized estimation of unknown
random vectors by using wireless sensors and a FC was
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studied. In [16], the authors proposed a unified framework for
sensor management in multimodal sensor networks, which
is inspired by the trading behavior of economic agents in
commercial markets. The computationally efficient fusion
rulewhich involves injecting a deliberate randomdisturbance
to the local sensor decisions before fusionwas designed in [8].

However, the failed sensors which may or not send
their untrusted data to the FC are not taken into account.
Most sensor fusion methods rely on the strong assumption
that the sensors generate the data operation according to a
predetermined characteristic at all times. But when a sensor
fails or wears out, detection systems demonstrate behaviors
different from the expected. In [17], it has been shown
that Bayes Risk Error is a Bregman divergence between
the actual and estimated prior distribution probabilities. In
[18], the authors have studied a different approach and have
constructed a fusion rule which is sensor-failure-robust by
including a sensor failure model and minimizing expected
Bayesian risk.

In this paper, we raise a new approach which expands
the traditional log-likelihood ratio test by including a sensor
failure model. We assume that the failed sensors which still
send their data to the FC will follow new characteristics. Of
course, we do not pay attention to the failed sensors which
will not send their data to the FC. In order to study the
sensor failures, the analysis of reliability is introduced. For
manymechanical and electronic components, the failure rate
function (or the hazard rate function) which determines the
number of failures occurring per unit time has a bathtub
shape. The bathtub-shaped failure rate life distribution has
been derived in [19, 20].Thenwe can calculate the probability
of sensor failures by using the initial number of all sensors,
the number of sensors received by the FC, and the number of
failed sensors through the failure rate. Ourmethodmakes the
log-likelihood ratio test robust by expanding the traditional
log-likelihood ratio test including BSF.

The remainder of this paper is organized as follows.
Sensor mode is presented in Section 2. In Section 3, we
introduce the analysis of reliability and propose the concept
of failure of sensors. In Section 4, the ELRT rule which
considers the failure of sensors is derived and the numerical
results based on the Monte Carlo are given. At last, we
summarize in Section 5.

2. Sensor Mode

We consider𝑀 sensor nodes which are deployed in a Region
Of Interest (ROI) with area 𝐴

2. Noises at local sensors are
independent and identically distributed (i.i.d.) and follow the
standard Gaussian distribution with zero mean and variance
1 which can be written as

𝑛
𝑖
∼ 𝑁 (0, 1) 𝑖 = 1, . . . ,𝑀. (1)

We assume that sensors make their local decisions inde-
pendently without collaborating with other sensors. Each
sensor makes a binary local decision choosing from

𝐻
1
: 𝑟
𝑖
= 𝑠
𝑖
+ 𝑛
𝑖
,

𝐻
0
: 𝑟
𝑖
= 𝑛
𝑖
,

(2)

where 𝐻
1
is the hypothesis of target presence and 𝐻

0
is the

hypothesis of target absence. 𝑟
𝑖
is the signal received by the

sensor 𝑖 and 𝑛
𝑖
denotes the noise observed by the sensor 𝑖.

The signal strength 𝑠
𝑖
decays as the sensor moves away from

the target and follows the isotropic attenuation power model
as defined in [3]:

𝑠
2

𝑖
=
𝑃
0
𝑑
𝛾

0

𝑑
𝛾

𝑖

, (3)

where 𝑃
0
is the original signal power from the target at a

reference distance𝑑
0
and𝑑
𝑖
represents the Euclidean distance

between the target and the sensor 𝑖. The signal attenuation
exponent 𝛾 ranges from 2 to 3.

Assuming that the local sensor 𝑖 uses the threshold 𝜏
𝑖
to

make the local binary decisions 𝐼
𝑖
in which 1 represents the

target is present and 0 represents the target is absent, then
all decisions are sent to the FC denoted by I = (𝐼

1
, . . . , 𝐼

𝑀
)

to make a final decision 𝑍, where 1 represents the target is
present and 0 represents the target is absent. According to
the Neyman-Pearson lemma [6], the local sensor-level false
alarm rate and probability of detection are given by

𝑃
𝑓𝑖
= 𝑃 (decision of sensor 𝑖 = 1 | 𝐻

0
) = 𝑄 (𝜏

𝑖
) ,

𝑃
𝑑𝑖
= 𝑃 (decision of sensor 𝑖 = 1 | 𝐻

1
) = 𝑄 (𝜏

𝑖
− 𝑠
𝑖
) ,

(4)

where 𝑄(𝑥) = ∫
∞

𝑥
(1/√2𝜋)𝑒

−(𝑦
2
/2)
𝑑𝑦 is the complementary

distribution function of the standard Gaussian.

3. Analysis of Reliability

3.1. Failure of Sensors

Definition 1. Sensor failures are that their lifetimes have
reached or been reaching to the end. They are divided into
two classes: Little Bad (LB) sensor which still sends its
untrusted data to the FC and Fully Bad (FB) sensor which
has not worked.

We define𝑅
𝑖
as the event that the sensor 𝑖 fails. Obviously,

the event of sensor failures is a Bernoulli event with 𝑃
𝑖
=

𝑃(𝑅
𝑖
= 0) denoting the probability of the event of failure of

the sensor 𝑖.

A sensor deployment example is shown in Figure 1. How-
ever, in this paper, for simplicity, we assume that the sensors
are located uniformly in the ROI. The circles represent the
good sensors. The squares represent the FB sensors. The
triangles represent the LB sensors. And the star represents the
target. Our attention, of course, is not paid to the state of FB
sensors, but the state of LB sensors is our interest. According
to Definition 1, the data sent by the LB sensors is untrusted;
that is, their characteristics of 𝑃

𝑓𝑖
and 𝑃

𝑑𝑖
have changed. We

assume that the LB sensors characteristics of 𝑃
𝑓𝑖
and 𝑃

𝑑𝑖
are

denoted by 𝑃
𝑓𝑖
and 𝑃

𝑑𝑖
, respectively.

3.2. Analysis of Reliability. Analysis of reliability life data
refers to the study and modeling of observed product lives.
Life data can be lifetimes of products in the marketplace,
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Figure 1: A sensor deployment example. In sensor networks for
distribution detection the local observations have to be quantized
before being transmitted to the FC which is demanded to make the
final decision about the target’s presence. Area of the square region:
𝐴
2; circle: the good sensors; square: the failed sensors which are bad

and do not send their data to the FC; triangle: the failed sensors
which still send their untrusted data to the FC; and star: the target.
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Figure 2: Bathtub-shaped failure with three stages which are initial
failure period, random failure period, and wear-out failure period,
respectively.

such as the time the product operated successfully or the
time the product operated before it failed. These lifetimes
can be measured in hours, miles, cycles-to-failure, stress
cycles, or any other metrics with which the life or exposure
of a product can be measured. All such data of product
lifetimes can be encompassed in the term of life data or,
more specifically, product life data. Otherwise, in reliability,
one often characterizes a lifetime distribution through three
functions [21]: reliability function, failure rate function, and
mean residual life.

Furthermore, for many mechanical and electronic com-
ponents, the failure rate function has a bathtub shape. As is
shown in Figure 2, the failure rate has three stages: initial

failure period which is considered to occur when a latent is
formed, random failure period which occurs once devices
having latent defects have already failed and been removed,
and wear-out failure period which occurs due to the aging
of devices from wear and fatigue. In the random failure
period, the remaining high-quality devices operate stably.The
failures that occur during this period can usually be attributed
to randomly occurring excessive stress, such as power surges
and software errors.

In [19], the authors have studied a simplemodel by adding
two Weibull survival functions. The failure rate function is
given by

𝑟 (𝑡) = 𝑎𝑏(𝑎𝑡)
𝑏−1

+ 𝑐𝑑(𝑐𝑡)
𝑑−1

, 𝑡, 𝑎, 𝑐 ≥ 0, 𝑏 > 1, 𝑑 < 1,

(5)

where 𝑎, 𝑏, 𝑐, and 𝑑 are related with life data of the products.
Otherwise, Bebbington et al. [20] argue that it is worth adding
a constant, say ℎ

0
≥ 0, to the failure rate function. This yields

the reduced additive Weibull failure rate function

𝑟 (𝑡) = 𝑎𝑏(𝑎𝑡)
𝑏−1

+ (
𝑎

𝑏
) (𝑎𝑡)

1/𝑏−1
+ ℎ
0
, ℎ
0
≥ 0. (6)

In (6), let 𝑑 = 1/𝑏 and 𝑐 = 𝑎 to simplify (5).

3.3. Probability of Random Variable 𝑅
𝑖
. Let 𝑀 be the initial

number of the sensors and let𝑁 be the number of the sensors
received by the FC at time 𝑡. Let 𝑚 be the failure number
including all the FB and LB sensors at time 𝑡.

From (6), we know

𝑚 = ⌈∫

𝑡

0

𝑟 (𝑡) 𝑑𝑡⌉ , (7)

where ⌈𝑥⌉ denotes the smallest integer which is not less than
𝑥.

The number of good sensors 𝑛 at time 𝑡 can be easily
calculated as follows:

𝑛 = 𝑀 − 𝑚. (8)

If 𝑁 > 𝑛, it denotes that the 𝑁 sensors include the LB
sensors which is

𝑠 = 𝑁 − 𝑛, (9)

where 𝑠 denotes the LB sensors received by the FC at time 𝑡.
In the𝑁 sensors, there is equal possibility for each sensor

to fail. So, the probability of 𝑅
𝑖
= 0 can be calculated as

follows:

𝑃
𝑖
=

𝑠

𝑁
𝐼
𝑁
+ (𝑁 − 𝑛) , (10)

where 𝐼
𝑁
+(𝑁 − 𝑛) is the indicator function and 𝑁

+ is the
positive integer set: 𝐼

𝑁
+(𝑁 − 𝑛) = 1, if 𝑁 − 𝑛 > 0; otherwise

𝐼
𝑁
+(𝑁 − 𝑛) = 0, if𝑁 − 𝑛 ≤ 0.
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4. Fusion Rule

4.1. CVT Rule. Based on the local sensors decision set, the
traditional log-likelihood ratio test rule is given by [4]

Λ
opt
0

= log
𝑃 (I | 𝐻

1
)

𝑃 (I | 𝐻
0
)

=

𝑁

∑

𝑖=0

(𝐼
𝑖
log

𝑃
𝑑𝑖

𝑃
𝑓𝑖

+ (1 − 𝐼
𝑖
) log

1 − 𝑃
𝑑𝑖

1 − 𝑃
𝑓𝑖

) .

(11)

4.2. ELRT Rule. At the local sensor 𝑖, the likelihood function
under the hypothesis of𝐻

1
can be expressed as

𝑃 (𝐼
𝑖
| 𝐻
1
) = ∑

𝑅
𝑖

𝑃 (𝐼
𝑖
| 𝐻
1
, 𝑅
𝑖
) 𝑃 (𝑅

𝑖
| 𝐻
1
)

= 𝑃 (𝐼
𝑖
| 𝐻
1
, 𝑅
𝑖
= 1) 𝑃 (𝑅

𝑖
= 1 | 𝐻

1
)

+ 𝑃 (𝐼
𝑖
| 𝐻
1
, 𝑅
𝑖
= 0) 𝑃 (𝑅

𝑖
= 0 | 𝐻

1
) .

(12)

With the local decisions which aremutually independent,
the likelihood function at the FC in the hypothesis of𝐻

1
is

𝑃 (I | 𝐻
1
) =

𝑁

∏

𝑖=1

𝑃 (𝐼
𝑖
| 𝐻
1
) . (13)

From (12) and (13), we obtain

𝑃 (I | 𝐻
1
) =

𝑁

∏

𝑖=1

(𝑃 (𝐼
𝑖
| 𝐻
1
, 𝑅
𝑖
= 1) 𝑃 (𝑅

𝑖
= 1 | 𝐻

1
)

+ 𝑃 (𝐼
𝑖
| 𝐻
1
, 𝑅
𝑖
= 0) 𝑃 (𝑅

𝑖
= 0 | 𝐻

1
))

=

𝑁

∏

𝑖=1

(𝑃 (𝐼
𝑖
| 𝐻
1
, 𝑅
𝑖
= 1) (1 − 𝑃

𝑖
)

+ 𝑃 (𝐼
𝑖
| 𝐻
1
, 𝑅
𝑖
= 0) 𝑃

𝑖
)

= ∏

𝑆
1

(𝑃
𝑑𝑖
(1 − 𝑃

𝑖
) + 𝑃


𝑑𝑖
𝑃
𝑖
)

⋅∏

𝑆
0

((1 − 𝑃
𝑑𝑖
) (1 − 𝑃

𝑖
) + (1 − 𝑃



𝑑𝑖
) 𝑃
𝑖
) ,

(14)

where the second equality of (14) comes from the fact that
𝑅
𝑖
and 𝐻

1
are uncorrelated. The third equality of (14) is the

application of (4). 𝑆
1
(or 𝑆
0
) denotes the set of 𝐼

𝑖
= 1 (or 𝐼

𝑖
=

0).

Similarly, under the hypothesis of𝐻
0
, we obtain

𝑃 (𝐼
𝑖
| 𝐻
0
) = ∑

𝑅
𝑖

𝑃 (𝐼
𝑖
| 𝐻
0
, 𝑅
𝑖
) 𝑃 (𝑅

𝑖
| 𝐻
0
)

= 𝑃 (𝐼
𝑖
| 𝐻
0
, 𝑅
𝑖
= 1) 𝑃 (𝑅

𝑖
= 1 | 𝐻

0
)

+ 𝑃 (𝐼
𝑖
| 𝐻
0
, 𝑅
𝑖
= 0) 𝑃 (𝑅

𝑖
= 0 | 𝐻

0
) ,

(15)

𝑃 (I | 𝐻
0
) =

𝑁

∏

𝑖=1

(𝑃 (𝐼
𝑖
| 𝐻
0
, 𝑅
𝑖
= 1) 𝑃 (𝑅

𝑖
= 1 | 𝐻

0
)

+ 𝑃 (𝐼
𝑖
| 𝐻
0
, 𝑅
𝑖
= 0) 𝑃 (𝑅

𝑖
= 0 | 𝐻

0
))

= ∏

𝑆
1

(𝑃
𝑓𝑖
(1 − 𝑃

𝑖
) + 𝑃


𝑓𝑖
𝑃
𝑖
)

⋅∏

𝑆
0

((1 − 𝑃
𝑓𝑖
) (1 − 𝑃

𝑖
) + (1 − 𝑃



𝑓𝑖
) 𝑃
𝑖
) .

(16)

Finally, combining (14) and (16) into (11), the ELRT rule
is therefore

Λ
opt
1

= log
𝑃 (I | 𝐻

1
)

𝑃 (I | 𝐻
0
)

= log
{

{

{

(∏

𝑆
1

[𝑃
𝑑𝑖
(1 − 𝑃

𝑖
) + 𝑃


𝑑𝑖
𝑃
𝑖
]

×∏

𝑆
0

[(1 − 𝑃
𝑑𝑖
) (1 − 𝑃

𝑖
) + (1 − 𝑃



𝑑𝑖
) 𝑃
𝑖
])

× (∏

𝑆
1

[𝑃
𝑓𝑖
(1 − 𝑃

𝑖
) + 𝑃


𝑓𝑖
𝑃
𝑖
]

×∏

𝑆
0

[(1 − 𝑃
𝑓𝑖
)(1 − 𝑃

𝑖
) + (1 − 𝑃



𝑓𝑖
)𝑃
𝑖
])

−1

}

}

}

= log[

[

∏

𝑆
1

𝑃
𝑑𝑖
(1 − 𝑃

𝑖
) + 𝑃


𝑑𝑖
𝑃
𝑖

𝑃
𝑓𝑖
(1 − 𝑃

𝑖
) + 𝑃


𝑓𝑖
𝑃
𝑖

×∏

𝑆
0

(1 − 𝑃
𝑑𝑖
) (1 − 𝑃

𝑖
) + (1 − 𝑃



𝑑𝑖
) 𝑃
𝑖

(1 − 𝑃
𝑓𝑖
) (1 − 𝑃

𝑖
) + (1 − 𝑃



𝑓𝑖
)𝑃
𝑖

]

]

=

𝑁

∑

𝑖=1

[

[

𝐼
𝑖
log

𝑃
𝑑𝑖
(1 − 𝑃

𝑖
) + 𝑃


𝑑𝑖
𝑃
𝑖

𝑃
𝑓𝑖
(1 − 𝑃

𝑖
) + 𝑃


𝑓𝑖
𝑃
𝑖

+ (1 − 𝐼
𝑖
) log

(1 − 𝑃
𝑑𝑖
) (1 − 𝑃

𝑖
) + (1 − 𝑃



𝑑𝑖
) 𝑃
𝑖

(1 − 𝑃
𝑓𝑖
) (1 − 𝑃

𝑖
) + (1 − 𝑃



𝑓𝑖
)𝑃
𝑖

]

]

.

(17)

The advantage of such a formulation is that it allows us
to consider all states of the sensors. Such a fusion rule obeys
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Figure 3: The ROC curves for different fusion rules and different
times: 𝛾 = 2, 𝐴 = 200𝑚, 𝑑

0
= 1𝑚, 𝑀 = 196, 𝑃

0
= 400, 𝑥

𝑡
= 50𝑚,

𝑦
𝑡
= 45𝑚, 𝜏

𝑖
= 𝜏 = 1.7,𝑃

𝑑𝑖
= 𝑃
𝑑𝑖
/5,𝑃
𝑓𝑖
= 0.5, 𝑡

1
= 1, 𝑡
2
= 2, 𝑎 = 0.25,

𝑏 = 8, and ℎ
0
= 4.

our intuitions at the extreme cases. When 𝑃
𝑖
= 0, the case

that 𝑠 < 0 in (10) indicates no sensors fail; then the ELRT
rule is simplified to the traditional fusion rule defined in (11).
With the increase of 𝑃

𝑖
, the performance of ELRT rule will

be more better than the traditional rule without considering
sensor failures.

4.3. Location of the Target. From (3) and (4), we know
𝑃
𝑑𝑖

is the function of 𝑑
𝑖
, if the 𝜏

𝑖
is given. So, the CVT

rule and the ELRT rule both require the knowledge of the
coordinates of the targetwhich are denoted by (𝑥

𝑡
, 𝑦
𝑡
). In [22],

the authors proposed to use Generalized Likelihood Ratio
Test (GLRT) statistic which uses the Maximum Likelihood
Estimate (MLE) of (𝑥

𝑡
, 𝑦
𝑡
) assuming 𝐻

1
is true. The authors

showed that the GLRT fusion rule’s performance was close to
that of the state which the target’s location was fully known
to the FC. In [6], the uniform prior for the target is chosen
when nothing else is available. However, in this paper, the
coordinates of the target are given by (𝑥

𝑡
, 𝑦
𝑡
) = (50, 45) to

simplify the process because ourmajor interest is the problem
of failure.

4.4. Numerical Results. Figure 3 shows the ROC curves for
the two different test statistics: CVT rule and ELRT rule. In
this simulation, 104 Monte Carlo runs have been used. We
choose 𝑡

1
= 1 and 𝑡

2
= 2 for simulating. At 𝑡

1
(or 𝑡
2
),

the characteristics of 𝑃
𝑑𝑖

and 𝑃
𝑓𝑖

have changed for the LB
sensors. We choose 𝑃



𝑑𝑖
= 𝑃
𝑑𝑖
/5 and 𝑃



𝑓𝑖
= 0.5 for the LB

sensors due to their poor performances. The worst case that
the failed sensors are all the LB sensors and they make wrong
decisions under the hypothesis of 𝐻

1
(or 𝐻

0
) is only taken
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Figure 4:The ROC curves obtained by CVT at different times: 𝛾 =
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into consideration. Note that the performance of the CVT
rule without failed sensors serves as an upper bound for other
fusion methods. But the performance of the CVT rule with
failed sensors at 𝑡

1
= 1 (or 𝑡

2
= 2) rapidly decreases. Their

performances are outperformed by the ELRT rule. So, the
ELRT rule improves the robust performances of the system.

In order to reflect the influence of failed sensors, we
perform more simulations. In Figure 4, the ROC curves
corresponding to the CVT at different times are plotted. In
each time, we assume that all the failed sensors send either
1 or 0 to the FC, that is, when the sensor fails, it sends 1
(or 0) to the FC all the time without considering the true
environment. The failed sensors are randomly selected from
all the sensors. In this simulation, we use 𝑡 = 1, 2, 4.5, 5, 6, 6.3,
and 6.7 to conduct the experiment. In Figure 4, we see that the
performance of the system decreases over time. Especially at
time 6.3 and 6.7, the ROC curves sharply decrease. Another
observation is that when at low time, the ROC curves are
close to each other. The reason of these phenomena is that
the number of failed sensors changes over time. At low time,
a small number of failed sensors have a negative but not big
effect on the performance of the system. At high time, a large
number of failed sensors have a major negative effect on the
performance of the system.

To show the number of failed sensors how to change
over time, the bar chart of the number of failed sensors is
plotted in Figure 5. The major parameters are set as before:
𝑎 = 0.25, 𝑏 = 8, and ℎ

0
= 4. One observation is that the

number of failed sensors begins to increase slowly at low time.
When at time 6, the number of failed sensors increases at high
speed. Another observation is that the cutoff point between
the random failure period and the wear-out period is within
the range of 5 to 6. The curve of the number of failed sensors
over time also reflects the features of bathtub-shaped failure.
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In Figure 6, the ROC curves corresponding to ELRT over
time are plotted. In this simulation, we also assume that each
sensor sends 1 (or 0) to the FC all the time when it becomes
failure. The time 𝑡 = 1, 2, 4.5, 5, 6, 6.3, and 6.7 are also
chosen to conduct the experiment. The failed sensors are
randomly selected from all the sensors. From the figure, we
show that the ROC curves decrease over time but become a
sharp decline at high time because of a large number of failed
sensors. These features of ELRT are similar to the CVT.Their
performances of the system are both affected by the failed
sensors.

To compare the ROC curves between the ELRT and the
CVT, their comparisons at each time are plotted in Figure 7.

All the basic parameters are set as before. In this simulation,
we also assume that each sensor sends 1 (or 0) to the FC
all the time when it becomes failure. The failed sensors are
randomly selected from all the sensors. From Figure 7(a) to
Figure 7(i), all the ROC curves of ELRT are above the ROC
curves of the CVT; that is, the performances of the CVT
are outperformed by the ELRT rule with failed sensors. At
time 6.7, the performance of the system has a sharp decline
because of a large number of failed sensors.

In summary, the performances of the ELRT and CVT
are both affected by the bathtub-shaped failure. Because the
ELRT considers the failed sensors, their performances are
better than those of the CVT without considering the failed
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sensors when the features of failed sensors meet the bathtub-
shaped failure.

5. Conclusion

We have derived the ELRT rule based on BSF model for
distributed target detection in sensor networks. It is assumed
that each sensor receives a signal that attenuates as a function
of the distance between the target and the local sensor.

The BSF model which introduces the analysis of reliability
classifies the sensors’ states into three stages: initial failure
period, random failure period, and wear-out failure period.
We have shown that the ELRT fusion rule outperforms the
CVT rule without considering failed sensors. The ELRT
fusion rule improves the robust performance of the system. In
the future, we will investigate the design of 𝑃

𝑑𝑖
and 𝑃



𝑓𝑖
when

the sensors become failures and the location’s estimation of
the target.
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