8 research outputs found

    Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power

    Get PDF
    AbstractThere is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today's distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today's distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order to minimize the global line losses of the feeder. The mathematical model is presented in details. Further, case studies are completed with simulations involving a 15-bus radial distribution system. These simulations are run for 24 hour periods, with actual solar data and demand data

    Increasing Integration of Wind Power in Medium Voltage Grid by Voltage Support of Smart Transformer

    Get PDF
    The voltage rise during wind energy penetration represents a limit of the wind power integration in the distribution grid. The Smart Transformer (ST), a power electronics-based transformer, can provide additional services to the distribution grids, for instance the voltage support in MV grid by means of reactive power injection. In this paper, this service is applied to increase the hosting capacity of wind power in MV grids

    Multi-objective optimal dispatch of distributed energy resources

    Get PDF
    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability --Abstract, page iv

    Decentralized Control of Distributed Generation for Voltage Profile Optimization in Smart Feeders

    No full text

    Self-organising multi-agent control for distribution networks with distributed energy resources

    Get PDF
    Recent years have seen an increase in the connection of dispersed distributed energy resources (DERs) and advanced control and operational components to the distribution network. These DERs can come in various forms, including distributed generation (DG), electric vehicles (EV), energy storage, etc. The conditions of these DERs can be varying and unpredictably intermittent. The integration of these distributed components adds more complexity and uncertainty to the operation of future power networks, such as voltage, frequency, and active/reactive power control. The stochastic and distributed nature of DGs and the difficulty in predicting EV charging patterns presents problems to the control and management of the distribution network. This adds more challenges to the planning and operation of such systems. Traditional methods for dealing with network problems such as voltage and power control could therefore be inadequate. In addition, conventional optimisation techniques will be difficult to apply successfully and will be accompanied with a large computational load. There is therefore a need for new control techniques that break the problem into smaller subsets and one that uses a multi-agent system (MAS) to implement distributed solutions. These groups of agents would coordinate amongst themselves, to regulate local resources and voltage levels in a distributed and adaptive manner considering varying conditions of the network. This thesis investigates the use of self-organising systems, presenting suitable approaches and identifying the challenges of implementing such techniques. It presents the development of fully functioning self-organising multi-agent control algorithms that can perform as effectively as full optimization techniques. It also demonstrates these new control algorithms on models of large and complex networks with DERs. Simulation results validate the autonomy of the system to control the voltage independently using only local DERs and proves the robustness and adaptability of the system by maintaining stable voltage control in response to network conditions over time.Recent years have seen an increase in the connection of dispersed distributed energy resources (DERs) and advanced control and operational components to the distribution network. These DERs can come in various forms, including distributed generation (DG), electric vehicles (EV), energy storage, etc. The conditions of these DERs can be varying and unpredictably intermittent. The integration of these distributed components adds more complexity and uncertainty to the operation of future power networks, such as voltage, frequency, and active/reactive power control. The stochastic and distributed nature of DGs and the difficulty in predicting EV charging patterns presents problems to the control and management of the distribution network. This adds more challenges to the planning and operation of such systems. Traditional methods for dealing with network problems such as voltage and power control could therefore be inadequate. In addition, conventional optimisation techniques will be difficult to apply successfully and will be accompanied with a large computational load. There is therefore a need for new control techniques that break the problem into smaller subsets and one that uses a multi-agent system (MAS) to implement distributed solutions. These groups of agents would coordinate amongst themselves, to regulate local resources and voltage levels in a distributed and adaptive manner considering varying conditions of the network. This thesis investigates the use of self-organising systems, presenting suitable approaches and identifying the challenges of implementing such techniques. It presents the development of fully functioning self-organising multi-agent control algorithms that can perform as effectively as full optimization techniques. It also demonstrates these new control algorithms on models of large and complex networks with DERs. Simulation results validate the autonomy of the system to control the voltage independently using only local DERs and proves the robustness and adaptability of the system by maintaining stable voltage control in response to network conditions over time

    Aspects industriels de la gestion de tension et la capacité d'accueil de la génération photovoltaïque dans les réseaux basse tension

    No full text
    In this thesis, voltage measurements provided by the advanced metering infrastructure (AMI) are used to control an on-load tap changer located at the secondary substation. The thesis presents a practical and a straightforward method of selecting the low voltage customers whose voltage measurements are used as an input to the controller of the on-load tap changer. The developed method takes into account the load and the topology of the network. Furthermore, a simple method of creating synthetic and statistically correct load curves for networks studies is presented. The created methods have been tested by using real data of low voltage networks on a common platform in the power distribution industry leading to encouraging results; a few customers per low voltage network should be monitored in order to achieve accurate voltage measurements.This methodology is further applied to estimate the hosting capacity of photovoltaic power generation in a given low voltage network.In the first part, the evolution of the hosting capacity by using three different types of voltage control; an on-load tap changer of five and nine tap positions and voltage control through photovoltaic power generators, is studied. The study considers two different cases for placing and sizing the photovoltaic generators in a low voltage network. The results of 38 low voltage networks are provided.In the second part, the hosting capacities of 631 low voltage networks, located in a French metropolitan area, are analysed by using an on-load tap changer of five and an on-load tap changer of nine tap positions.The work has been together with Électricité Réseau Distribution France (ERDF), the major French distribution system operator. All studies presented in the thesis are based on the real operational data of the company. Moreover, all studies are implemented on a platform that is widely used in the power distribution industry.As an introductory part to low voltage networks, the thesis provides a general view about the French power system. In addition, the thesis presents a number of selected technologies considering low voltage networks that seem promising in the future.Dans cette thèse, les mesures de tension fournies par l'infrastructure de comptage avancé (Advanced Metering Infrastructure, AMI) sont utilisées pour contrôler un régleur en charge situé à la sous station HTA/BT. La thèse présente une méthode simple permettant de sélectionner les clients basse tension pour lesquels les mesures de tension sont utilisées comme une entrée au contrôleur du régleur en charge. Le procédé mis au point tient compte de la charge et de la topologie du réseau. En outre, une méthode simple pour créer des courbes réalistes et statistiquement correctes pour les études de réseaux est présenté. Les méthodes créées ont été testées en utilisant des données réelles de réseaux basse tension sur un logiciel très utilisé dans le secteur de la distribution d'électricité ont conduit à des résultats encourageants; quelques clients par réseau basse tension doivent être surveillés afin d’estimer avec une grande précision où se situe les extremums de tension sur le réseau.Cette méthodologie est également utilisée pour estimer la capacité d'accueil de génération d'énergie photovoltaïque dans un réseau à basse tension donné.Dans la première partie, l'évolution de la capacité d'accueil en utilisant trois types de contrôle de tension différents; un régleur en charge de cinq et neuf positions et le contrôle de la tension à travers les générateurs photovoltaïques, sont étudiés. L'étude considère deux cas différents pour le placement et le dimensionnement des générateurs photovoltaïques dans un réseau basse tension. Les résultats sur 38 réseaux basse tension sont fournis.Dans la deuxième partie, les capacités d'accueil de 631 réseaux basse tension, situés dans une région métropolitaine française, sont analysés en utilisant un régleur en charge de cinq et neuf positions.Le travail a été réalisé en collaboration avec Électricité Réseau Distribution France (ERDF), le principal opérateur du réseau de distribution français. Toutes les études présentées dans la thèse reposent sur les données réelles de fonctionnement normal. En outre, toutes les études sont mises en œuvre sur un logiciel largement utilisé dans l'industrie de la distribution d'énergie.Comme une partie introductive aux réseaux basse tension, la thèse fournit une vue générale sur le système électrique français. De plus, la thèse présente un certain nombre de technologies sélectionnés en tenant compte des réseaux basse-tension qui semblent prometteurs pour le futur

    Aspects industriels de la gestion de tension et la capacité d'accueil de la génération photovoltaïque dans les réseaux basse tension

    Get PDF
    In this thesis, voltage measurements provided by the advanced metering infrastructure (AMI) are used to control an on-load tap changer located at the secondary substation. The thesis presents a practical and a straightforward method of selecting the low voltage customers whose voltage measurements are used as an input to the controller of the on-load tap changer. The developed method takes into account the load and the topology of the network. Furthermore, a simple method of creating synthetic and statistically correct load curves for networks studies is presented. The created methods have been tested by using real data of low voltage networks on a common platform in the power distribution industry leading to encouraging results; a few customers per low voltage network should be monitored in order to achieve accurate voltage measurements.This methodology is further applied to estimate the hosting capacity of photovoltaic power generation in a given low voltage network.In the first part, the evolution of the hosting capacity by using three different types of voltage control; an on-load tap changer of five and nine tap positions and voltage control through photovoltaic power generators, is studied. The study considers two different cases for placing and sizing the photovoltaic generators in a low voltage network. The results of 38 low voltage networks are provided.In the second part, the hosting capacities of 631 low voltage networks, located in a French metropolitan area, are analysed by using an on-load tap changer of five and an on-load tap changer of nine tap positions.The work has been together with Électricité Réseau Distribution France (ERDF), the major French distribution system operator. All studies presented in the thesis are based on the real operational data of the company. Moreover, all studies are implemented on a platform that is widely used in the power distribution industry.As an introductory part to low voltage networks, the thesis provides a general view about the French power system. In addition, the thesis presents a number of selected technologies considering low voltage networks that seem promising in the future.Dans cette thèse, les mesures de tension fournies par l'infrastructure de comptage avancé (Advanced Metering Infrastructure, AMI) sont utilisées pour contrôler un régleur en charge situé à la sous station HTA/BT. La thèse présente une méthode simple permettant de sélectionner les clients basse tension pour lesquels les mesures de tension sont utilisées comme une entrée au contrôleur du régleur en charge. Le procédé mis au point tient compte de la charge et de la topologie du réseau. En outre, une méthode simple pour créer des courbes réalistes et statistiquement correctes pour les études de réseaux est présenté. Les méthodes créées ont été testées en utilisant des données réelles de réseaux basse tension sur un logiciel très utilisé dans le secteur de la distribution d'électricité ont conduit à des résultats encourageants; quelques clients par réseau basse tension doivent être surveillés afin d’estimer avec une grande précision où se situe les extremums de tension sur le réseau.Cette méthodologie est également utilisée pour estimer la capacité d'accueil de génération d'énergie photovoltaïque dans un réseau à basse tension donné.Dans la première partie, l'évolution de la capacité d'accueil en utilisant trois types de contrôle de tension différents; un régleur en charge de cinq et neuf positions et le contrôle de la tension à travers les générateurs photovoltaïques, sont étudiés. L'étude considère deux cas différents pour le placement et le dimensionnement des générateurs photovoltaïques dans un réseau basse tension. Les résultats sur 38 réseaux basse tension sont fournis.Dans la deuxième partie, les capacités d'accueil de 631 réseaux basse tension, situés dans une région métropolitaine française, sont analysés en utilisant un régleur en charge de cinq et neuf positions.Le travail a été réalisé en collaboration avec Électricité Réseau Distribution France (ERDF), le principal opérateur du réseau de distribution français. Toutes les études présentées dans la thèse reposent sur les données réelles de fonctionnement normal. En outre, toutes les études sont mises en œuvre sur un logiciel largement utilisé dans l'industrie de la distribution d'énergie.Comme une partie introductive aux réseaux basse tension, la thèse fournit une vue générale sur le système électrique français. De plus, la thèse présente un certain nombre de technologies sélectionnés en tenant compte des réseaux basse-tension qui semblent prometteurs pour le futur
    corecore