4,766 research outputs found

    Online Multi-object k-coverage with Mobile Smart Cameras

    Get PDF
    In this paper, we combine k-coverage with the Cooperative Multi- robot Observation of Multiple Moving Targets problem, de ning the new problem of online multi-object k -coverage. We demonstrate the bene ts of mobility in tackling this and propose a decentralised multi-camera coordination that improves this further. We show that coordination exploiting shared visual features is more e ective than coordination based on Euclidean distance. When coordinating k-coverage in a distributed way, our results suggest that the design of coordination mechanisms should shi towards decisions being made by potential responders with up-to-date knowledge of their own state, rather than a coordinating camera

    Location Awareness in Multi-Agent Control of Distributed Energy Resources

    Get PDF
    The integration of Distributed Energy Resource (DER) technologies such as heat pumps, electric vehicles and small-scale generation into the electricity grid at the household level is limited by technical constraints. This work argues that location is an important aspect for the control and integration of DER and that network topology can inferred without the use of a centralised network model. It addresses DER integration challenges by presenting a novel approach that uses a decentralised multi-agent system where equipment controllers learn and use their location within the low-voltage section of the power system. Models of electrical networks exhibiting technical constraints were developed. Through theoretical analysis and real network data collection, various sources of location data were identified and new geographical and electrical techniques were developed for deriving network topology using Global Positioning System (GPS) and 24-hour voltage logs. The multi-agent system paradigm and societal structures were examined as an approach to a multi-stakeholder domain and congregations were used as an aid to decentralisation in a non-hierarchical, non-market-based approach. Through formal description of the agent attitude INTEND2, the novel technique of Intention Transfer was applied to an agent congregation to provide an opt-in, collaborative system. Test facilities for multi-agent systems were developed and culminated in a new embedded controller test platform that integrated a real-time dynamic electrical network simulator to provide a full-feedback system integrated with control hardware. Finally, a multi-agent control system was developed and implemented that used location data in providing demand-side response to a voltage excursion, with the goals of improving power quality, reducing generator disconnections, and deferring network reinforcement. The resulting communicating and self-organising energy agent community, as demonstrated on a unique hardware-in-the-loop platform, provides an application model and test facility to inspire agent-based, location-aware smart grid applications across the power systems domain

    Robust and cheating-resilient power auctioning on Resource Constrained Smart Micro-Grids

    Get PDF
    The principle of Continuous Double Auctioning (CDA) is known to provide an efficient way of matching supply and demand among distributed selfish participants with limited information. However, the literature indicates that the classic CDA algorithms developed for grid-like applications are centralised and insensitive to the processing resources capacity, which poses a hindrance for their application on resource constrained, smart micro-grids (RCSMG). A RCSMG loosely describes a micro-grid with distributed generators and demand controlled by selfish participants with limited information, power storage capacity and low literacy, communicate over an unreliable infrastructure burdened by limited bandwidth and low computational power of devices. In this thesis, we design and evaluate a CDA algorithm for power allocation in a RCSMG. Specifically, we offer the following contributions towards power auctioning on RCSMGs. First, we extend the original CDA scheme to enable decentralised auctioning. We do this by integrating a token-based, mutual-exclusion (MUTEX) distributive primitive, that ensures the CDA operates at a reasonably efficient time and message complexity of O(N) and O(logN) respectively, per critical section invocation (auction market execution). Our CDA algorithm scales better and avoids the single point of failure problem associated with centralised CDAs (which could be used to adversarially provoke a break-down of the grid marketing mechanism). In addition, the decentralised approach in our algorithm can help eliminate privacy and security concerns associated with centralised CDAs. Second, to handle CDA performance issues due to malfunctioning devices on an unreliable network (such as a lossy network), we extend our proposed CDA scheme to ensure robustness to failure. Using node redundancy, we modify the MUTEX protocol supporting our CDA algorithm to handle fail-stop and some Byzantine type faults of sites. This yields a time complexity of O(N), where N is number of cluster-head nodes; and message complexity of O((logN)+W) time, where W is the number of check-pointing messages. These results indicate that it is possible to add fault tolerance to a decentralised CDA, which guarantees continued participation in the auction while retaining reasonable performance overheads. In addition, we propose a decentralised consumption scheduling scheme that complements the auctioning scheme in guaranteeing successful power allocation within the RCSMG. Third, since grid participants are self-interested we must consider the issue of power theft that is provoked when participants cheat. We propose threat models centred on cheating attacks aimed at foiling the extended CDA scheme. More specifically, we focus on the Victim Strategy Downgrade; Collusion by Dynamic Strategy Change, Profiling with Market Prediction; and Strategy Manipulation cheating attacks, which are carried out by internal adversaries (auction participants). Internal adversaries are participants who want to get more benefits but have no interest in provoking a breakdown of the grid. However, their behaviour is dangerous because it could result in a breakdown of the grid. Fourth, to mitigate these cheating attacks, we propose an exception handling (EH) scheme, where sentinel agents use allocative efficiency and message overheads to detect and mitigate cheating forms. Sentinel agents are tasked to monitor trading agents to detect cheating and reprimand the misbehaving participant. Overall, message complexity expected in light demand is O(nLogN). The detection and resolution algorithm is expected to run in linear time complexity O(M). Overall, the main aim of our study is achieved by designing a resilient and cheating-free CDA algorithm that is scalable and performs well on resource constrained micro-grids. With the growing popularity of the CDA and its resource allocation applications, specifically to low resourced micro-grids, this thesis highlights further avenues for future research. First, we intend to extend the decentralised CDA algorithm to allow for participants’ mobile phones to connect (reconnect) at different shared smart meters. Such mobility should guarantee the desired CDA properties, the reliability and adequate security. Secondly, we seek to develop a simulation of the decentralised CDA based on the formal proofs presented in this thesis. Such a simulation platform can be used for future studies that involve decentralised CDAs. Third, we seek to find an optimal and efficient way in which the decentralised CDA and the scheduling algorithm can be integrated and deployed in a low resourced, smart micro-grid. Such an integration is important for system developers interested in exploiting the benefits of the two schemes while maintaining system efficiency. Forth, we aim to improve on the cheating detection and mitigation mechanism by developing an intrusion tolerance protocol. Such a scheme will allow continued auctioning in the presence of cheating attacks while incurring low performance overheads for applicability in a RCSMG
    • …
    corecore