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Abstract

AN ALGEBRAIC SERVICE COMPOSITION MODEL FOR THE

CONSTRUCTION OF LARGE-SCALE IOT SYSTEMS

Damian Isaid Arellanes Molina
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2019

The Internet of Things (IoT) is an emerging paradigm that envisions the intercon-
nection of (physical and virtual) objects through innovative distributed services. With
the advancement of hardware technologies, the number of IoT services is rapidly grow-
ing due to the increasing number of connected things. Currently, there are about 19
billion connected things, and it is predicted that this number will grow exponentially
in the coming years. The scale of IoT systems will hence surpass human expectations
as such systems will require the composition of billions of services into complex be-
haviours. Thus, scalability in terms of the size of IoT systems becomes a significant
challenge.

Existing service composition mechanisms (i.e., orchestration, choreography and
dataflows) were primarily designed for the integration of enterprise services, not for
the physical world. For that reason, they do not provide the requisite semantics and
hence properties for tackling the scalability challenge that future IoT systems pose.
In this thesis, we identify crucial scalability requirements for IoT systems, and pro-
pose an algebraic service composition model for the construction of large-scale IoT
systems. The resulting model, DX-MAN, has been validated with a software platform
and evaluated against the scalability requirements. A comparison with the related work
shows that DX-MAN advances the state of the art on IoT service composition and it is,
therefore, promising for the construction of future large-scale IoT software systems.
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Chapter 1

Introduction

“The art of asking questions is more valuable than

solving problems.”
— George Cantor, 1867

With the advent of the Internet of Things (IoT), we are entering a world where
software is becoming more and more pervasive. IoT is an emerging paradigm that
promises the interconnection of practically every (physical and virtual) object through
innovative distributed services. Like traditional enterprise services, IoT services inter-
act in many different ways via the Internet to realise a global system behaviour. How-
ever, unlike traditional enterprise systems, IoT systems will require the interaction of
billions of services since the number of connected things (and therefore services) is
rapidly growing. Currently, there are around 19 billion devices connected to the Inter-
net infrastructure [IoT18, SNP+15] and it is estimated that this number will increase
by a factor of 1.92 in the next six years (see Figure 1.1). Hence, scalability becomes a
crucial concern for the full realisation of future IoT systems.

Scalability is typically considered as a system capability to handle increasing work-
loads [HN18, VN17, ARJ18, MVT17, SA16, LLZ14]. In particular, vertical scalability
[SBAB19, CPS17, RMBG18] refers to the addition or removal of computing resources
in a single IoT node, while horizontal scalability [CSB19, WLB09, SNP+15] involves
the addition or removal of IoT nodes. These kinds of scalability have been exten-
sively investigated [CGK+11, MSR17, XH16, GMA17, CSC+18, CPS17, RMBG18,
CdCSR+15, BD16, VN17], unlike scalability in terms of the number of services com-
posed in an IoT system, which this thesis refers to as functional scalability.

Existing service composition mechanisms were primarily designed for the integra-
tion of static enterprise services, not for the physical world. For that reason, they may

10
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Original data collected and plotted by IoT Analytics Research, 2018 

Figure 1.1: Total number of active device connections worldwide [IoT18].

not address the functional scalability challenges that IoT systems pose. Early IoT sys-
tems were deployed in closed environments using private Application Programming
Interfaces (APIs) and private data. However, future IoT systems will be deployed in
open environments (also known as software ecosystems [MS03]) with an overwhelm-
ing number of available services, as a result of the vast amount of connected things
[WSJ15]. Hence, billions of IoT services will be composed into complex IoT systems
[FGG+06, AIM10, DPB17, RNN+16, Kop11, TG18], thereby raising the challenging
question of How to construct IoT systems composed of a large number of services?

This thesis proposes a service composition model for the construction of large-
scale IoT systems. The model advances the state of the art on IoT service composition
and it is the first one to address the functional scalability problem.

1.1 IoT Service Composition

Compositionality is the ability to combine services into complex behaviours via a ser-

vice composition mechanism [LDC17]. This thesis particularly focuses on service
composition mechanisms that define behaviour by workflow control flow.
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Workflows are increasingly important for IoT systems because they allow the in-
tegration of IoT services into complex tasks that automate a specific context [XV14,
PKS+15, MCS16, SKNS15, SHHA19]. For example, a smart home can be automated
with a workflow that regulates the temperature of a room according to environmental
changes. In the domain of smart agriculture, a workflow can be defined to analyse data
coming from harvest sensors, predict diseases and react accordingly.

Defining future IoT workflows is a challenging task that requires a proper com-
position mechanism able to handle any number of services. As a single entity cannot
build systems of such a magnitude in one go, this thesis envisions that those workflows
will emerge from the collaborative interaction of many individuals, organisations and
inanimate objects worldwide.

Large-scale physical systems are not science fiction. The most prominent exam-
ple is the Internet which was created in a collaborative effort over many years. Now,
with the emergence of IoT, we are moving towards a generation of large-scale “soft-
ware” systems composed of billions of interacting distributed services. This time the
scale will be not only a particular property of networking systems, but also an inherent
characteristic of software systems. For that reason, a service composition mechanism
should enable the management of individual workflow segments to preserve global sys-
tem properties while allowing the addition, removal, maintenance and replacement of
any number of services. As a large-scale workflow cannot be depicted and even visu-
alised in full, it is infeasible to show a complete example in this thesis (and everywhere
else). Nonetheless, Chapter 4 provides an inductive insight on such workflows.

1.2 Problem Statement

Current service composition mechanisms were designed for enterprise systems that
comprise relatively few services. However, with the advent of IoT, new challenges
arise as a consequence of the overwhelmingly large number of available services.

Large-scale IoT systems will potentially be composed of billions of interacting dis-
tributed services that span multiple geographically dispersed administrative domains
[GLL18, GBLL15, HTM+14, RCL14]. Hence, no single entity should govern an en-
tire composition workflow to ensure that every participant has control over its workflow
part [ATS14, FYG09, AL18b]. Consequently, a service composition mechanism must
support interoperability by defining distributed cross-domain workflows.

Large-scale IoT systems could also exhibit a high degree of heterogeneity in many
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different forms [AL18b, DPB17, NAG19]. For instance, there may be different service
providers (e.g., Amazon AWS IoT and IBM Watson), a wide variety of programming
languages (e.g., Swift and embedded C), multiple operating systems (e.g., Contiki and
TinyOS) and different network communication protocols (e.g., CoAP and MQTT). The
separation of control flow, data flow and computation enables a flexible composition
of services in such heterogeneous environments, as it allows independent maintenance,
validation, verification, reuse and evolution of such functional concerns. Also, ser-
vices are loosely coupled because control flow is never embedded in the computation
of many services. For that reason, a service composition mechanism must separate
control, data and computation [NAG19].

As the number of composed services becomes massive, execution failures become
unavoidable, more challenging to manage and may potentially unleash catastrophic
consequences (for individuals or societies) [SA11]. As it allows the visualisation of
workflow logic, explicit control flow becomes crucial for monitoring, tracking, verify-
ing, maintaining and evolving complex, large-scale IoT systems. Therefore, it is a vital
need for any IoT service composition mechanism.

Large-scale IoT systems will also be inherently dynamic and uncertain due to the
presence of churn in the operating environment [BD16, BS16, WYG+17, DPB17,
IGH+11, ZGLB10, Kop11]. Churn means that things (and their services) dynami-
cally connect and disconnect from the network, as a result of auto-scaling, software
upgrades, failures, poor connection and mobility. It is particularly evident when an
IoT system uses resource-constrained things with a poor connection [HHP15] or when
there are mobile things involved [WYG+17, TJLG17]. Hence, churn results in physi-
cal service locations (i.e., IP addresses) changing over time frequently. For that reason,
a composition mechanism must support location transparency for dealing with highly
dynamic environments.

Highly dynamic environments are also subjected to variability caused by exter-
nal or internal factors [SS15, GZW+17, MASS08, HGR12]. External factors are
beyond the scope of the system, and include changes in requirements and increas-
ing workloads. Internal factors are associated with the system operation, and in-
clude system failures and sub-optimal behaviours. A service composition mecha-
nism must then support the definition of alternative workflows that adapt a composite
to changes in both the external and the internal environment. As manually choos-
ing them is a costly and inefficient management process, workflows must be selected
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with minimal or without human intervention [CBF+16]. Thus, workflow variabil-

ity is a crucial desideratum for the realisation of large-scale autonomous IoT systems
[FGG+06, GZW+17, WRS18, HGR12, BMGG+16, SKNS15].

Network performance is also crucial for large-scale IoT systems that potentially
exchange vast amounts of data continuously. Such an exchange must be as efficient
as possible to avoid performance bottlenecks, achieve better response time and im-
prove throughput [KLS+10]. Since they require only one network hop to pass data di-
rectly from a service producer to a service consumer, decentralised data flows provide
the best QoS and are, therefore, crucial for a composition mechanism that supports
the construction of data-intensive IoT systems [AL19a, GKB12, BWVH12, BCF09,
Liu02, BWR09, SDSB19, CSGD+14].

Overall, this thesis addresses the problem of how to compose future large-scale
IoT systems that may potentially be multi-domain, complex, heterogeneous, highly
dynamic and data-intensive.

1.3 Aim and Research Questions

This thesis is grounded on the hypothesis that algebraic service composition can be

leveraged for tackling the functional scale of future IoT systems. To verify this, the
following questions are addressed:

RQ1 What are the functional scalability requirements of IoT systems?

RQ2 What are the existing IoT service composition mechanisms that define work-
flows at design-time for the construction of IoT systems?

RQ3 What is the degree of satisfaction of existing IoT service composition mecha-
nisms with respect to the functional scalability requirements identified?

RQ4 How could IoT services interact at run-time in a large-scale IoT system?

RQ5 Are algebraic service interactions suitable for large-scale IoT systems in terms
of the functional scalability requirements identified?

RQ6 Does the proposed model fulfil all the functional scalability desiderata identi-
fied?
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Figure 1.2 shows the three-level dependency tree among the research questions of
this thesis. The hypothesis is at the top-level of the hierarchy and requires the study
of RQ3, RQ6 and RQ5 which, in turn, need the investigation of RQ1. The research
questions RQ3 and RQ5 also depend on the study of RQ2 and RQ4, respectively.

Research 

Question

Hypothesis

Figure 1.2: Dependency tree among the research questions of the thesis.

1.4 Research Methodology

This section describes the research methodology which is defined with BPMN 2.0
notation [OMG11] and consists of seven fundamental stages (see Figure 1.3).

Exclusive Gateway Start Process End ProcessSequence Flow

StageLoop ProcessParallel Gateway

Do they

ful�l all 

requirements?

Are algebraic

interactions

unsuitable

For each functional scalability requirement

Is there any 

problem?

No

Yes

Yes

No

Yes

No

RQ1
RQ2,RQ3

RQ4,RQ5

RQ6

RQ6

Figure 1.3: Research methodology.

The investigation starts with the identification of the research problem and the con-
sequent discovery of functional scalability requirements. The requirements are then
used to ascertain if there is at least one mechanism that fulfils all the desiderata. If
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this is the case, further requirements are identified. In parallel, IoT service interactions
are reviewed and evaluated also in terms of the desiderata identified. If and only if
algebraic service compositions are suitable for large-scale IoT systems and no com-
position mechanism satisfies all the desiderata, a novel service composition model is
developed, whose desiderata support is validated and evaluated in parallel. The inves-
tigation finishes if no problems arise during validation and evaluation. Otherwise, the
model is revised and changed accordingly. For completeness, the remaining of this
section briefly describes the individual stages of the methodology.

1.4.1 Identification of the Research Problem

This stage identifies the research problem via a comprehensive study of both large-
scale software systems and service composition. The problem is systematically tack-
led by investigating the research questions (presented in Section 1.3) according to the
temporal logic formula 1.1 [Ven17]. The precedence binary relation ≺ means that the
study of one question precedes the investigation of another one. For example, x ≺ y

means that the question x is studied before the question y. On the other hand, the re-
lation � means that a question is addressed before or at the same time as another one.
For example, x� y means that the question x is investigated before or at the same time
as the question y.

RQ1≺ ((RQ2≺ RQ3)� (RQ4≺ RQ5))≺ (RQ6� RQ7) (1.1)

1.4.2 Identification of Functional Scalability Requirements

This stage addresses the research question RQ1 by analysing research papers, maga-
zines, websites and experiences from companies (that deal with “large-scale” software
systems). The idea is to iteratively identify different functional scalability require-
ments and the relationship between them. As IoT service composition is an abstrac-
tion rather than a concrete implementation, the requirements cannot be quantitative, but
only qualitative. Figure 1.4 shows that this stage identifies six crucial desiderata: (i)
explicit control flow; (ii) distributed workflows; (iii) location transparency; (iv) decen-

tralised data flows; (v) separation of control, data and computation; and (vi) workflow

variability.
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Figure 1.4: Functional scalability requirements of IoT systems.

A glance at Figure 1.4 reveals the association between requirements and large-
scale system qualities. For instance, workflow variability implies the reusability of
multiple behaviours in different contexts, while loose coupling entails the reusability

of services in systems that exhibit different requirements. As another example, the
separation of control and data facilitates the evolution of large-scale systems because
workflow logic and data flow logic can evolve separately. The requirements and their
association are explained later in this dissertation. Further details can also be found in
[AL19b, AL18b].

1.4.3 Review and Evaluation of IoT Service Composition Mecha-
nisms

This stage addresses the research question RQ2 by conducting a systematic review
of the literature on service composition mechanisms that define IoT workflows. The
survey reveals that there are three primary mechanisms, namely (centralised and dis-
tributed) dataflows, (centralised and distributed) orchestration and choreography. Once
the literature review is done, the research question RQ3 is studied to ascertain if there
is at least one mechanism that fulfils all the scalability requirements identified. As the
answer is negative, this stage concludes that it is meaningful to investigate the devel-
opment of a novel composition model (with the desiderata in mind).
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1.4.4 Review and Evaluation of IoT Service Interactions

This stage addresses the research question RQ4 to discover how services could in-
teract in large-scale IoT systems. To do so, it systematically reviews and classifies
service interactions that happen at run-time in current IoT systems. This activity re-
veals that there are four primary interaction schemas, namely direct message passing,
indirect message passing, (P2P and broker-based) event-driven interactions and (one-
and multi-level) exogenous interactions. Once the schemas have been identified, this
stage addresses RQ5 by conducting a systematic comparison of IoT service interac-
tions in terms of the functional scalability requirements identified. The conclusion is
that algebraic composition results in multi-level exogenous interactions which turns
out to be the most promising schema.

1.4.5 Development of the Model

This stage studies the research question RQ6 by investigating the development of a
novel algebraic service composition model, DX-MAN, that satisfies the functional
scalability requirements to a degree of 100%. To do so, this stage particularly:

• Determines if control flow is visible in algebraic composite services.

• Investigates the possibility of partitioning workflow control flow over multiple
algebraic composite services that reside on different network nodes.

• Analyses if algebraic compositions provide location transparency.

• Investigates a decentralised data exchange approach that leverages algebraic
composition for the analysis of data dependencies.

• Investigates the possibility of separating control, data and computation.

• Investigates the resulting type of algebraic composition (i.e., compositionality)
and the possibility of using algebraic composition operators as variability oper-
ators.

1.4.6 Validation

This stage also works on the research question RQ6 and it is crucial for ensuring model
soundness because it validates that specific functional scalability requirements truly
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exist in the DX-MAN model. In particular, it iteratively implements and tests a set
of requirements in a distributed software platform [AL17a], and then validates them.
Figure 1.5 illustrates this sequential process.

Implementation

Testing

Validation

Requirement 1
Requirement 2

Requirement N

Figure 1.5: Validation strategy.

Note that the platform is causally connected to the model so that it is continuously
refined throughout the thesis to reflect model updates.

1.4.7 Evaluation

This stage qualitatively and empirically evaluates the DX-MAN model using the strat-
egy depicted in Figure 1.6. It particularly addresses the research question RQ6 by
conducting a comparative evaluation of DX-MAN with existing IoT service composi-
tion mechanisms in terms of functional scalability requirements and compositionality.
For further analysis, explicit control flow, workflow variability, compositionality and
location transparency are evaluated through pertinent case studies. Decentralised data

flows is the only requirement that is evaluated empirically with a controlled experi-
ment.

Figure 1.6: Evaluation strategy.
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1.5 Contributions

The main contributions of this thesis are:

1. A survey on IoT service composition mechanisms, which focuses on funda-
mental semantics (i.e., how to compose services) underlying so-called “compo-
sition algorithms,” programming frameworks, programming languages and soft-
ware platforms. The survey simplifies the vast amount of work on IoT service
composition under a common classification that consists of three primary mech-
anisms: (centralised and distributed) dataflows, (centralised and distributed) or-
chestration and choreography. The findings show that IoT service composition
is just another name for composition of Service-Oriented Architectures (SOA).

2. An evaluation framework to measure the functional scalability degree of
IoT service composition mechanisms, which considers six crucial desiderata:
(i) explicit control flow; (ii) distributed workflows; (iii) location transparency;
(iv) decentralised data flows; (v) separation of control, data and computation;
and (vi) workflow variability. The framework provides a useful starting point
towards the construction of large-scale IoT systems, which can be refined to
consider further scalability requirements.

3. An analysis and classification of service interactions for the scalability of
IoT systems, where interactions are simplified into four major schemas: (i) di-
rect message passing; (ii) indirect message passing; (iii) (P2P and broker-based)
event-driven interactions; and (iv) (one- and multi-level) exogenous interactions.
The analysis is a qualitative evaluation that uses an early version of the proposed
framework to determine which schema best fulfils the functional scalability re-
quirements of IoT systems. The results show that exogenous multi-level in-
teractions are the most promising ones. This research contribution serves as a
guideline for future research on large-scale IoT service interactions.

4. A novel service composition model referred to as DX-MAN, which was de-
signed to fulfil all the functional scalability requirements of the proposed frame-
work. The model uses algebraic composition to enable a systematic hierarchi-
cal bottom-up construction of service-based software systems, which is a well-
known technique for tackling scale and complexity. Unlike existing service com-
position mechanisms, it provides total compositionality to enable workflow vari-
ability. Furthermore, it is the only composition approach that separates control,
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data and computation. The most notable characteristics of the proposed model
result in the following sub-contributions:

4.1 A workflow variability theory for the design-time definition of a (poten-
tially) infinite family of workflow control flows, which combines variability
with behaviour and provides workflows that are both non-deployable and
executable only. At deployment-time, the theory allows system designers
to manually choose the workflow that best fulfils the system requirements.
At run-time, a self-adaptive mechanism (i.e., a feedback control loop) au-
tonomously decides and executes the optimal workflow for the current sys-
tem conditions. Thus, the theory is a cornerstone for the adaptation of
service behaviour to different contexts.

4.2 An approach for the realisation of decentralised data flows and the
exogenous coordination of control flow. It leverages the separation of
concerns to avoid passing data alongside control, which contrasts with ex-
isting exogenous composition mechanisms (e.g., orchestration) where data
is tightly coupled with control and passes through (multiple) mediators.
Overall, the proposed approach is beneficial for loosely-coupled, large-
scale IoT systems that exchange huge amounts of data continuously.

1.6 Thesis Overview

This thesis is presented according to the guiding principles of a Journal Format. The
core contribution is a collection of six published peer-reviewed papers and one manuscript
submitted, which I have produced during my PhD studies:

[AL17b] Damian Arellanes and Kung-Kiu Lau. Exogenous Connectors for Hierarchical
Service Composition. In International Conference on Service-Oriented Com-

puting and Applications (SOCA), pages 125–132. IEEE, 2017.

[AL17a] Damian Arellanes and Kung-Kiu Lau. D-XMAN: A Platform For Total Com-
positionality in Service-Oriented Architectures. In International Symposium on

Cloud and Service Computing (SC2), pages 283–286. IEEE, 2017.

[AL18a] Damian Arellanes and Kung-Kiu Lau. Algebraic Service Composition for
User-Centric IoT Applications. In Dimitrios Georgakopoulos and Liang-Jie Zhang,
editors, Internet of Things – ICIOT 2018, volume 10972 of Lecture Notes in
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Computer Science, pages 56–69, Cham, Switzerland, 2018. Springer. Best Pa-
per Award.

[AL19c] Damian Arellanes and Kung-Kiu Lau. Workflow Variability for Autonomic IoT
Systems. In International Conference on Autonomic Computing (ICAC), pages
24-30. IEEE, 2019.

[AL19a] Damian Arellanes and Kung-Kiu Lau. Decentralized Data Flows in Algebraic
Service Compositions for the Scalability of IoT Systems. In World Forum on

Internet of Things (WF-IoT), pages 668–673. IEEE, 2019.

[AL18b] Damian Arellanes and Kung-Kiu Lau. Analysis and Classification of Ser-
vice Interactions for the Scalability of the Internet of Things. In International

Congress on Internet of Things (ICIOT), pages 80–87. IEEE, 2018. Runner-up
for the Carole Goble medal for outstanding doctoral paper in Computer Sci-
ence.

[AL19b] Damian Arellanes and Kung-Kiu Lau. Evaluating IoT Service Composition
Mechanisms for the Scalability of IoT Systems. Manuscript submitted to the

Future Generation Computer Systems Journal, 2019.

In all the first-authored publications, I contributed to the main ideas proposal, re-
search development, research planning, literature review, writing, evaluation and anal-
ysis of the results. My supervisor, Kung-Kiu Lau, also contributed to the ideas, proof-
read the papers and approved the results. To comply with the Journal Format policy,
the self-contained papers are presented as they appear in print, with their respective
abstracts, figures and references. Hence, there is a reasonable amount of repetition.

The first paper [AL17b] presents an initial version of the proposed model, DX-
MAN, in the context of SOA. It describes the main semantic constructs and introduces
exogenous connectors as service composition operators. The paper presents and dis-
cusses the concept of algebraic composition which is also referred to as total compo-

sitionality and enables a systematic hierarchical bottom-up construction of SOA sys-
tems. A qualitative evaluation shows that composition operators define explicit control

flow for the coordinated execution of such systems. It also evaluates the composition-

ality of the model and the support for location transparency. Both the separation of

control, data and computation, and the distribution of workflow control flow (over the
network) are discussed throughout the paper.
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The second paper [AL17a] presents a platform that implements the semantic con-
structs of the DX-MAN model. The platform delivers the necessary programming
abstractions and the runtime environment to design, deploy and execute distributed
service-based software systems. It is a useful starting point for the validation of explicit
control flow, compositionality and the separation of control, data and computation. As
it is causally connected to the model, the platform is updated whenever a new feature
is added into DX-MAN. For that reason, it is a fundamental tool for the validation of
the model as the thesis progresses, which later evolved into an IoT platform that is
available online at http://github.com/damianarellanes/dxman.

The third paper [AL18a] extends the semantics of the DX-MAN model with work-

flow variability by combining variability with behaviour. It introduces the notions of
abstract workflow tree and concrete workflow tree, which allow the selection of work-
flows at run-time. The evaluation is done using a case study in the domain of IoT
end-user applications, where workflow variability is leveraged to mitigate change of
run-time user requirements. The paper briefly discusses how existing IoT service com-
position mechanisms allow the definition of only one workflow at a time, which is a
detrimental issue as the number of services increases.

The fourth paper [AL19c] advances the theory of workflow variability by extending
the semantics of DX-MAN with both autonomic capabilities and the notion of work-

flow spaces. Exogenous connectors are presented as composition operators that define
workflow variants, and new operators for (exclusive and inclusive) branching are in-
troduced. The new semantics endow composite services with feedback control loops
that autonomously select workflows at run-time whenever the context changes. As
workflows are non-deployable and executable only, a feedback control loop changes a
composite service behaviour by executing the selected variant, instead of dynamically
reconfiguring the whole system’s workflow. A comparison with the state of the art on
workflow variability is presented and a qualitative evaluation is conducted using a case
study in the domain of autonomous smart homes.

The fifth paper [AL19a] describes the data flow dimension of DX-MAN, which
allows the definition of data flows per workflow variant, and proposes an approach that
leverages the separation of control and data for the realisation of decentralised data

flows. The algebraic semantics of the model allows a well-defined data dependency
graph (at design-time) which is analysed (at deployment-time) to form a direct map-
ping between data consumers and data producers. Such a mapping prevents composi-
tion operators from passing data during workflow execution. The approach is validated
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on top of the DX-MAN platform [AL17a] using the Blockchain as the underlying data
space. An empirical evaluation is done by comparing decentralised data flows versus
distributed data flows within the model. Results confirm that the approach scales well
with the size of IoT systems. The solution is also compared qualitatively with the state
of the art on service composition approaches that support “decentralised data flows.”

The sixth paper [AL18b] classifies and analyses IoT service interactions into four
schemas: direct interactions, indirect interactions, (P2P and broker-based) event-driven
interactions and (one- and multi-level) exogenous interactions. The schemas are de-
scribed with a case study in the domain of smart cities and evaluated with a framework
that considers four functional scalability requirements: explicit control flow, separa-

tion of control and computation, distributed workflows and location transparency. The
evaluation aims to determine how well the schemas fulfil the framework desiderata.
Results show that multi-level exogenous interactions best meets the requirements. As
DX-MAN results in such run-time interactions, the paper [AL18b] suggests that alge-
braic composition can be suitable for tackling the functional scale of IoT systems.

The last paper [AL19b] systematically reviews and evaluates existing IoT service
composition mechanisms, namely (centralised and distributed) dataflows, (centralised
and distributed) orchestration and choreography. Unlike [AL18b], it focuses on ser-
vice composition mechanisms that define composite services at design-time, not on
service interactions that happen at run-time. Thus, the papers complement each other.
In particular, [AL19b] presents a qualitative evaluation based on an extension of the
framework initially discussed in [AL18b]. It additionally considers compositionality,
separation of data, decentralised data flows and workflow variability. Compositional-
ity is further considered because it is the key enabler of workflow variability. Overall,
[AL19b] describes functional scalability requirements in terms of a large-scale IoT
scenario in the smart parking domain, and presents a systematic comparison of DX-
MAN with the related work by showing the degree of satisfaction of such requirements.
The results show that DX-MAN is promising for the construction of large-scale IoT
systems since it fulfils all the framework desiderata.

Figure 1.7 illustrates the relationship between the included papers, the research
questions and the thesis contributions. It shows that paper [AL19b] addresses the
questions RQ1, RQ2, RQ3 and RQ6, where Contribution1 derives from RQ2 and
Contribution2 results from RQ1. Paper [AL18b] also works on RQ1 and results in
Contribution3 since it additionally addresses RQ4 and RQ5. Notably, the question
RQ6 is the most complex one because it is investigated by [AL17a, AL17b, AL18a,
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AL19a, AL19b, AL19c] in a collaborative endeavor to develop, validate and evaluate
the novel service composition model that this thesis proposes, i.e., Contribution4. For
concreteness, Figure 1.7 also shows that Contribution4.1 and Contribution4.2 derive
from Contribution4.

Research Question Research ContributionResearch Paper

A accomplishes BA B Accomplishing A results in BA B B derives from AA B

Figure 1.7: Relationship between the included papers, research questions and contri-
butions.

Figure 1.8 illustrates the relationship between the included papers and functional
scalability requirements. In particular, paper [AL17b] evaluates explicit control flow,
distributed workflows, location transparency and the separation of concerns in the
DX-MAN model. Papers [AL18a] and [AL19c] collaboratively analyse workflow vari-

ability, while article [AL19a] individually focuses on decentralised data flows. The
DX-MAN platform [AL17a] validates all the functional scalability requirements.

Paper [AL17b]

Paper [AL17a]

(i) Explicit Control Flow

(ii) Distributed Workflows

(iii) Location Transparency

(iv) Separation of Control,
Data, and Computation

(v) Workflow Variability
Paper [AL18a]

Paper [AL19c]

Paper [AL19a]
(vi) Decentralised Data 
Flows

A evaluates BA B

Research  Paper

A validates BA B

Functional
Scalability
Requirement

Figure 1.8: Relationship between the included papers and functional scalability re-
quirements.

The rest of the dissertation is structured as follows. Chapter 2 presents an overview
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of IoT services, scalability and service composition. Chapter 3 comprehensively de-
scribes the state of the art on IoT service composition by discussing orchestration,
choreography and dataflows. Since the thesis borrows the notion of exogenous con-
nectors from the X-MAN component model, Chapter 3 also describes such a model.
Chapter 4 presents the core contributions of the thesis in the form of seven original re-
search papers by myself and my supervisor. Finally, Chapter 5 draws the conclusions
by bringing the thesis together, discussing limitations, providing a critical evaluation
of the findings and setting out open challenges for future work.



Chapter 2

Universe of Discourse

“We do not learn, and that what we call learning is

only a process of recollection.”
— Plato, 385 B.C.E.

This chapter outlines the universe of discourse for the rest of the dissertation. It
presents an overview of IoT services, scalability and service composition.

2.1 IoT Services

Kevin Ashton coined the term Internet of Things (IoT) in a presentation made in 1999
at Procter and Gamble [Ash09], referring to the interconnection of everything via the
Internet for the creation of a ubiquitous computing environment [Wei91]. As per the
recommendation of ITU-T Y.4000, IoT has been recently redefined as “a global in-

frastructure for the information society, enabling advanced services by interconnecting

(physical and virtual) things based on existing and evolving interoperable information

and communication technologies” [ITU12].
A thing is practically a physical or virtual construct of the real world, which is ca-

pable of being identified and integrated into communication networks through specific
protocols. The difference between physical and virtual things lies in their tangibility
[Pop78]. A physical thing is a tangible object of the physical world, which is capable of
being sensed, actuated and connected, e.g., home appliances, robots, buildings, plants
and people. Contrastingly, a virtual thing is a non-tangible construct formed from a
human idea which only exists in the information world, e.g., Clouds and enterprises.

The broad range of available things inevitably requires dealing with a high degree
of heterogeneity in a distributed environment. Accordingly, SOA represents the best

27
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way of dealing with this issue [CGB16], as it is “a logical way of designing a software

system to provide services either to end-user applications or other services distributed

in a network, via published and discoverable interfaces” [PTDL07]. Thus, it is ex-
pected that physical and virtual things will provide services to expose behaviour via
interfaces [AHGZ16, BWN16, NPCA16, XHL14, GTK+10, ARJ18].

According to the Oxford dictionary, the word service can be a noun or a verb re-
ferring to the action of helping or doing work for someone. Considering a service as
a noun allows the encapsulation of behaviour (i.e., actions) in the form of operations
described as verbs. Thus, a software service is a distributed component that provides a

set of operations through network-accessible endpoints [GGKS02, CDK+02, PZL08].
In general, IoT services are virtual representations of the behaviour of things, which
can be combined with other services into more complex behaviours to yield complex,
service-oriented IoT systems [PKGZ08, GTMW11, GTK+10, CGD14]. Thus, things
are integrated through the composition of the services they provide (see Section 2.2).

Resource-constrained things (e.g., pulse sensors) typically provide fine-grained
services for basic functionality (e.g., fetching sensor data), whilst non-resource con-
strained things (e.g., a Cloud) may offer coarse-grained services in addition (e.g., ser-
vices for geolocation or complex industrial processes). Enterprise services are typi-
cally coarse-grained as they are deployed on infrastructures that have a lot of resources,
whilst services of physical things are often fine-grained because they are usually de-
ployed on resource-constrained things.

Figure 2.1 shows the relationship between things, services and operations. Fig-
ure 2.1(a) depicts a washing machine (i.e., a resource-constrained physical thing) that
offers the Washing and Drying fine-grained services with two operations each (for
starting and stopping the respective processes). Figure 2.1(b) shows a City Council

Cloud (i.e., a non-resource constrained virtual thing) that offers the services Council-

Tax and Parking. The CouncilTax service provides the operations pay (for paying a
tax bill) and check (to query council tax information). The Parking service offers the
operations getNearest (for getting the closest parking space from a driver’s location)
and registerDisabled (for registering an impaired driver).

The rest of the dissertation uses the notation S.O to denote an operation O in service
S, e.g., Parking.getNearest refers to the getNearest operation provided by the Parking

service.
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Washing Machine
Thing
IoT Service

Washing

Drying

City Council Cloud

CouncilTax

Parking

start
stop

start
stop

pay
check

getNearest
registerDisabled

Operation

Figure 2.1: Relationship between things, IoT services and operations.

2.2 IoT Service Composition

An IoT service is a distributed unit of composition, which constitutes the virtual rep-
resentation of a thing’s behaviour, and can be either atomic or composite. An atomic

service is a well-defined and self-contained piece of behaviour that cannot be divided
into other services [BD13, LDC17, Bel10]. A composite service, on the other hand, is
a more complex unit that provides value-added functionality and is formed by the com-
bination of (atomic or composite) services [BD13, JGB17, LDC17, PKGZ08, Gui09,
GTK+10, CGD14]. For example, a humidity sensing service can be combined with a
temperature service into an air conditioning composite [BBDL+13].

The ability of combining services is referred to as compositionality and is realised
by a composition mechanism [LDC17]. Thus, an IoT system requires a things in-
frastructure, the definition of what a service is and the selection of a composition
mechanism [RAF+17]. In any scenario, composition is done regardless of both the
technologies being used and the things infrastructure. Service technologies include
REST [Pau09, Fie00], WS-* [PZL08, GIM12], OSGi [LWKH17, RVC+07] and many
others.1 Figure 2.2 illustrates the concept of IoT service composition.

IoT Composite ServiceIoT Atomic Service Composition Mechanism

S1 S2 Sn
S1 S2 Sn

S3
S3

Figure 2.2: IoT service composition.

A service composition mechanism defines a meaningful interaction between ser-
vices [LDC17] by considering two functional dimensions: control flow and data flow

1In RESTful services, operations are exposed as resources [Pau09].
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[PLB+17, LDB15]. Control flow refers to the order in which interactions occur [DD04,
AL18b], whilst data flow defines how data is moved among services [PLB+17]. This
thesis focuses on service composition mechanisms that define behaviour by workflows.

A workflow describes a series of discrete steps for the realisation of a compu-
tational activity, which can be control-driven, data-driven or hybrid [Shi07]. In a
control-driven workflow, steps (also known as tasks [Ama19a], actors [LAB+06], tran-
sitions [Pet62], procedures [ZWF07], thorns [GAL+03], activities [OAS07] and units
[TSWH07]) are executed according to explicit control flow constructs that define se-
quencing, looping, branching or parallelising. A data-driven workflow invokes steps
whenever data becomes available without explicitly defining any control flow con-
structs [Ope19]. In a hybrid workflow, some parts are control-driven while others are
data-driven [TSWH07]. Figure 2.3 illustrates a generic workflow that executes the
operation op1, then decides to invoke either op2 or op3 and, finally, triggers the opera-
tions op4 and op5 in parallel. Operation invocations happen regardless of the workflow
kind.

op1

op2

op3

op4

op5

Workflow Step Workflow Start

Branching Control Construct Paralleling Control Construct

Control FlowWorkflow Termination

Figure 2.3: A generic workflow.

2.3 Algebraic Service Composition

Mathematical functions can be composed into other (higher-order) functions [Dev04],
and two mathematical functions are composable if they have compatible input/output
types. For example, f : X → Y and g : Y → Z can be composed into a higher-order
function g ◦ f : X → Z s.t. X → Y and Y → Z are type signatures. This composition
can also be expressed as g( f (x)) or (x f )g where x ∈ X [Gal11]. Figure 2.4 shows that,
intuitively, the input of the outer function g is the output of the inner function f .

Mathematical functions are composed algebraically and, therefore, hierarchically
in a bottom-up fashion. Algebraic service composition is thus the process by which a
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f g
x f(x) g(f(x))

Figure 2.4: Mathematical function composition.

composition operator hierarchically composes multiple services of type S into a com-
posite service of type S. The resulting composite can be further composed into even
more complex composites, and has an interface constructed from the sub-service inter-
faces [LDC17, AL17b, AL19c]. Formally, an algebraic service composition operator
is a function ◦ with the following type:

◦ : S×S×·· ·×S→ S (2.1)

Applying ◦ does not require any glue code that has to be defined manually for
the systematic construction of (hierarchical) composite services [LDC17]. Figure 2.5
shows that algebraic composition produces a service of type S at every level of the
construction hierarchy. In particular, composing the services S1 ∈ S and S2 ∈ S results
in the composite S5 ∈ S, i.e., ◦(S1,S2) = S5. Likewise, composing the services S3 ∈ S
and S4 ∈ S produces the composite S6 ∈ S, i.e., ◦(S3,S4) = S6. At the top level, S5 ∈ S
and S6 ∈ S are further composed into S7 ∈ S which is the most complex composite in
the hierarchy construction, i.e., ◦(S5,S6) = ◦(◦(S1,S2),◦(S3,S4)) = S7. It is important
to note that this notion of composition only considers homogeneous algebras, not het-
erogeneous algebras where a composite would be of the same type as at least one of
the composed services [LDC17, LR10].

S1∈ S2∈

S5∈

S3∈ S4∈

S6∈

S7∈

(S5 S6, )= S7

(S1 S2, )=S5 (S3 S4, )=S6

( , )(S1 S2, ) (S3 S4, ) =

Figure 2.5: Algebraic service composition.

2.4 Scalability of IoT Systems

Typically, scalability is the capability to handle increasing workloads in an IoT sys-
tem [HN18, VN17, ARJ18, MVT17, SA16, LLZ14]. In this case, it is a metric that
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indicates how system performance improves over time. Workloads are usually mea-
sured in terms of either the number of requests dispatched [HN18] or the data streams
generated [SA16]. The overall goal of scalable solutions is to enhance the Quality
of Service (QoS) for guaranteeing a certain level of performance under the presence
of high workloads, e.g., by minimising bandwidth, energy, latency and response time
while maximising throughput. To quantitatively measure QoS, several network aspects
of a service are considered such as jitter, packet loss and availability [LLZ14].

Currently, there are two kinds of scalability: vertical and horizontal.2 Vertical scal-
ability (or scaling up) [SBAB19, CPS17, RMBG18] refers to the addition or removal of
computing resources in a single thing. For example, adding more memory to increase
the buffer size or adding more processor capacity to speed up processing. On the other
hand, horizontal scalability (or scaling out) [CSB19, WLB09, SNP+15] involves the
addition or removal of things that participate in an IoT system. Its goal is to distribute
the workload over multiple things so as to decrease individual loads, minimise the re-
sponse time and enhance concurrency. Figure 2.6 depicts the contrast between vertical
and horizontal scalability.

Thing

IoT Service

Hardware Resource

Thing Thing Thing

Thing

Service

Service

Service

a) Vertical Scalability b) Horizontal Scalability

c) Functional Scalability

Figure 2.6: Scalability of IoT systems.

Both vertical and horizontal scalability have been extensively addressed in the lit-
erature [CGK+11, MSR17, XH16, GMA17, CSC+18, CPS17, RMBG18, CdCSR+15,

2IoT cloud environments benefit from dynamically scaling vertically, horizontally or both.
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BD16, VN17], unlike functional scalability which this thesis refers to as the capability
to accommodate growth in terms of the number of services composed in an IoT system
(see Figure 2.6(c)). Functional scalability enables the composition of any number of
services, without severely impacting both system behaviour and global system prop-
erties such as performance, maintenance, evolution and monitoring. Figure 2.7 shows
that functional scalability is orthogonal to vertical and horizontal scalability.

Vertical
Scalability

Horizontal Scalability

Functional
Scalability

Figure 2.7: Scalability dimensions.

Like the other kinds of scalability, functional scalability requires the definition of
metrics to measure the degree of satisfaction for accommodating new services. This
thesis proposes six qualitative metrics discussed in Chapter 4. It does not claim that
such metrics are complete since quantitative metrics for QoS, identified for vertical and
horizontal scalability, can also be important. However, quantitative metrics are only
applicable to specific implementations. As service composition is an abstraction rather
than a concrete implementation, this thesis strongly argues that qualitative metrics are
the best ones to measure the degree of satisfaction of functional scalability in service
composition mechanisms. For the rest of the dissertation, the terms scalability and
functional scalability are used interchangeably.



Chapter 3

Related Work

“Simplicity is a great virtue, but it requires hard

work to achieve it and education to appreciate it.

And to make matters worse: complexity sells

better.”
— Edsger Dijkstra, 1984

This chapter reviews the fundamental semantics of current IoT service composi-
tion mechanisms that define workflows: (centralised and distributed) dataflows, (cen-
tralised and distributed) orchestration and choreography. The semantics refers to
how to compose services and underlies so-called composition algorithms [WZY+19,
LLZ14, JM15, KAC+16, DXY+18, YLC14, SSC+17, AMC18, HW16, ZZLH18,
LDCN14, ASC14, BAA19, BYDA18, UGBBM+17], programming frameworks
[SBWS+17, LLW15, XV14, KDB15, VGS+13, CGV+18, KKMK16], languages
[ÅHNM19, MGZ14] and platforms [KHDB+17, NGM+17, MBB18, ASM+19,
RVHTGGMC14, KSRD14, CSGD+14], which have been somehow confusingly in-
cluded in “IoT service composition” surveys [HN18, AIM10, ARJ18, HS19, ARJ19].

It is essential to mention that, in the literature, IoT service composition is just an-
other name for traditional SOA composition and is done regardless of service “archi-
tectures.” Microservice Architecture [LSCPE18, CS16, New15] has gained consider-
able attention in the last few years and is becoming increasingly important and popular
for the development of IoT systems [FPSC18, KHLL18, CCG+18, QNG+18, TVS18].
Every Microservice Architecture is an SOA, but not the other way round [Zim17].
Hence, the composition mechanisms presented in this chapter can be used interchange-
ably in both Microservices and traditional SOA services. In fact, there are no compo-
sition mechanisms specifically aimed for Microservices.

34
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Although it does not have any support for IoT services, this chapter also presents an
overview of the X-MAN component model from which the proposed model borrows
the notion of exogenous connectors.

3.1 Dataflows

Dataflows, or Flow-Based Programming [Mor10, JHM04, Mor78], is a composition
mechanism that defines a workflow using data transformations (e.g., filter, split, union
and sort) as well as exogenous data exchange between services [PLB+17, ACKM04].
A dataflow description is a directed graph where vertices are asynchronous data pro-
cessing units (invoking service operations), and edges are connections for passing data
streams between vertices via the network (by message passing or events). A vertex
explicitly defines input ports and output ports. When it receives data from all inputs,
it performs some computation and writes results in output ports. The resulting data is
then moved to other vertices via an edge. This process is illustrated in Figure 3.1.

Flow2
oV-A1

a) Centralised Dataflows b) Distributed Dataflows
Flow1

A

opA1

B

opB1

C

opC1

D

opD1

V-B1i o V-C1i o V-D1i o oV-A1
Flow1

A

opA1

B

opB1

C

opC1

D

opD1

V-B1i o V-C1i o V-D1i o

IoT Composite Service (Coordinator) IoT Atomic Service Operation Vertex
Data Flow (Edge) i Input o Output Implicit Control Flow

Figure 3.1: Composition by dataflows.

Dataflows can be centralised or distributed. A centralised dataflow [Ope19,
KSRD14] defines a single coordinator for managing an entire graph and exoge-
nously invokes service operations. A distributed dataflow [GBLL15, GLL18, GLL19,
NTGS19] partitions and distributes a complex graph over multiple coordinators that in-
teract directly by exchanging data between vertices. Figure 3.1(a) shows a centralised
dataflow for a pipeline of services A, B, C and D. When the coordinator Flow1 is trig-
gered, vertex V-A1 invokes A.opA1 and passes the result to the vertex V-B1 which, in
turn, executes B.opB1. Next, the result of V-B1 is passed to the vertex V-C1 which exe-
cutes C.opC1. Finally, the data of V-C1 is moved to the vertex V-D1 and then processed
by D.opD1. A distributed version of the same pipeline is shown in Figure 3.1(b), where
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there is an edge between V-B1 and V-C1 for moving data from the Flow1 composite to
the Flow2 composite.

Dataflows are increasingly popular for composing IoT systems. In particular, they
are widely used for the Internet of Data (IoD) [FCXC12] which involves data collection
from multiple sources (e.g., sensors), data analysis and control of the physical world.
This paradigm has been referred to as Sense-Compute-Control (SCC) [TMD09].1 Cur-
rently, there are many platforms for composing IoT services by dataflows. Examples
include Node-RED [Ope19], COMPOSE [PVC+14], Glue.Things [KSRD14], Lab-
VIEW [Nat19], Paraimpu [PCP12], Virtual Sensors [KHDB+17], SpaceBrew [Spa19],
FogFlow [CSC+18], ASU VIPLE [DLLMC18], ThingNet [QNG+18], Calvin [PA15],
IoT Services Orchestration Layer [Int19], NoFlo [NoF19] and many others [PBT+19,
TKY+17, MVF+15, HLR17].

As the Web 2.0 became more data-centric and user-friendly [Pau09, PLB+17],
dataflows have gained popularity for IoD through mashups. Mashups [PG17] are re-
alised by dataflows [PLB+17, CBZF16], and they allow the composition and visual-
isation of data streams on a graphical user interface displayed on the Web [PLB+17,
DM14, Pau09]. Examples of IoT mashup tools include WoTKit [BL12], IoTMaaS
[IKK13] and Clickscript [GTMW11].

Dataflows have been accepted as coordination languages because a graph is defined
in a coordinator that exogenously invokes services according to a dataflow description
[JHM04, GBLL15, Mor10]. A dataflow graph is typically created with a graphical
editor and executed by an engine (i.e., the coordinator), and it is triggered by either
timing constraints or events.

Formally, flow-based programming is not algebraic because it can be defined as a
function DFL with the following type:

DFL : OP×OP×·· ·×OP 7→WF (3.1)

where OP is the service operation type and WF is the type of workflows that invoke a
set of operations of type OP.

1Do not confuse data analysis tools [NPPZ18, GDG12] with dataflows. A data analysis tool is a
software that allows the collection, storing, indexing, processing, monitoring and visualisation of data.
On the other hand, dataflows specify how data is passed between services, according to a dataflow graph
specification.
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3.2 Orchestration

Orchestration can be centralised or distributed. Centralised orchestration [Pel03,
BDO05, SQV+14, LDB15] describes interactions between services from the perspec-
tive of a central coordinator (also known as orchestrator) which has control over all
parties involved. It explicitly defines workflow control flow to coordinate the invoca-
tion of service operations, in order to realise some complex function that cannot be
achieved by any individual service [LWKH17, DP06, RVC+07]. In a distributed or-
chestration, also known as “decentralised orchestration” [HSPDB14, JDB16, NCS04,
CCMN04, PPT14, WML08, MWL10, SGK+10, KLS+10, FDGGB14], multiple coor-
dinators collaboratively define workflow control flow.

An orchestration is typically defined using a workflow language such as BPEL
[OAS07, SKG+09, RVC+07, PCPG10, GEPF11, Ove08, CRWS12, DMMS10] or
BPMN [OMG11, MCS16]. The resulting workflow has tasks for passing control
among services according to explicit control flow constructs (for sequencing, paral-
lelising, branching and looping) [PLB+17]. In distributed orchestration, the interac-
tion between coordinators can be done in three different ways: (i) with an extra task

[JDB16], (ii) with two additional tasks [NCS04, CCMN04, FDGGB14] or (iii) with-

out any extra task [MWL10, WML08, HSPDB14]. In the former interaction, an or-
chestration invokes the interface of another orchestration using an external task to the
system’s workflow control flow. In the second interaction, there are two different tasks
for receiving and passing control (and data) between two orchestrations. Finally, in the
last interaction style, two orchestrations interact by moving control (and data) directly
between the tasks of the system’s workflow control flow.

An orchestration engine is responsible for executing a workflow process by in-
voking service operations in a given order. Although traditional engines can be used
(e.g., Camunda BPM workflow engine [Cam19, MCS16], Activiti [Rad12, PKAK18]
and AWS Step Functions [Ama19b]), recently we have seen the emergence of orches-
tration engines particularly designed for IoT systems (e.g., PROtEUS [SHS15] and
[CZCC18]).2

Figure 3.2(a) illustrates a centralised orchestration for the services A, B, C and D,
where the coordinator Orch1 defines a “composite service” for the sequential invoca-
tion of A.opA1, B.opB1, C.opC1 and D.opD1. Three distributed versions are depicted
in Figure 3.2(b). In the former, Orch1 defines a “composite service” for the sequential

2A workflow engine can be deployed on either a specialised server [Cam19] or a service bus like a
Gateway [SHLP05, Jos07, NGM+17].
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Figure 3.2: Composition by orchestration.

execution of A.opA1 and B.opB1, and then uses an extra task to pass control (and data)
to Orch2. Orch2 defines another “composite service” to sequentially invoke C.opC1

and D.opD1. The second distributed version uses two extra tasks for passing and re-
ceiving control (and data) between Orch1 and Orch2. Finally, in the last distributed
version, control and data are passed directly from B.opB1 to C.opC1.

Formally, orchestration is not algebraic because it can be defined as a function
ORCH with the following type:

ORCH : OP×OP×·· ·×OP 7→WF (3.2)

where OP is the service operation type and WF is the type of workflows that invoke a
set of operations of type OP.
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3.3 Choreography

A choreography describes service interactions from a global perspective using a pub-
lic contract (also known as protocol) [BWR09, Pel03, BDO05, SQV+14, DKB08].
The contract specifies a “conversation” among participants via decentralised mes-
sage exchanges, and it can be modelled by a global observer using a choreography
modelling language [SQV+14, DKB08, New15].3 An interaction-based modelling
language allows the definition of event-driven or request-response messages by con-
necting required and provided interfaces. Examples include WS-CDL [RTF06] and
Let’s Dance [ZBDH06]. An interconnected interface model, on the other hand, al-
lows the specification of explicit control flow per participant. Examples include
BPEL4Chor [DKLW07], Web Service Choreography Interface (WSCI) [AAF02] and
BPMN [DB07].4

A public contract defines roles for the collaborative realisation of a global work-
flow, where there is no control over the internal details of the participants involved
[DP06]. A role explicitly describes a participant workflow control flow in terms of ex-
pected and produced messages. When a concrete service instance plays a role, it must
behave accordingly by exchanging messages with other instances, using either direct
message passing (e.g., invoking REST APIs) or events [AL18b, New15, CSGD+14,
BBDL+13].5 This process is known as choreography enactment.

IoT is moving towards a more decentralised environment to reduce the bottleneck
caused by centralised environments. As choreographies represent a natural way of
dealing with such a decentralisation, there are currently some platforms for compos-
ing IoT services by choreographies, e.g., CHOReVOLUTION [OW2], ChorSystem
[WAS+16], Actorsphere [Act19], BeC3 [CSGD+14] and TraDE [HBKL18].

Figure 3.3 shows a sequential choreography for the services A, B, C and D, where
a protocol (defined with standard BPMN 2.0 notation [OMG11]) specifies that B.opB1

expects a message from A.opA1, C.opC1 a message from B.opB1 and D.opD1 a message
from C.opC1. When the choreography is enacted, there is a chain reaction that starts
with the invocation of A.opA1 and finishes with the execution of D.opD1.

3A Microservice architecture prefers choreography over orchestration to support decentralised work-
flows [New15].

4The choice of the contract depends on the type of participants involved which can be either atomic
services or orchestrations.

5Service participants are tightly coupled in terms of dependencies. In choreographies based on direct
message-passing, services hardcode invocation calls in service computation. In event-driven choreogra-
phies, services are tightly coupled because senders and receivers agree on a topic queue in advance
[ZBL17].
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Figure 3.3: Composition by choreography.

Formally, choreography is not an algebraic composition mechanism because it can
be defined as a function CHOR with the following type:

CHOR : OP×OP×·· ·×OP 7→WF (3.3)

where OP is the service operation type and WF is the type of workflows that invoke a
set of operations of type OP.

3.4 X-MAN Component Model

The X-MAN component model [LVEW05, LT12] considers components and exoge-
nous connectors as first-class entities (see Figure 3.4). A component can be either
atomic or composite, and it is a passive unit of composition that exposes behaviour
via an interface of provided services. Exogenous connectors encapsulate control flow
to initiate and coordinate the execution of a component-based software system. The
coordination of control occurs from outside components.

An atomic component is the most primitive composition unit in the X-MAN com-
ponent model. It is constructed by connecting an invocation connector with a com-
putation unit which encapsulates the implementation of some behaviour in a chosen
programming language (see Figure 3.4(a)). For ensuring component encapsulation,
computation units cannot call one another.

A composite component is formed by connecting a composition connector with
multiple (atomic or composite) sub-components (see Figure 3.4(c)). A composition
connector coordinates the execution of sub-components by passing control and data,
and can be defined for exclusive branching and sequencing (see Figure 3.4(b)). In
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Figure 3.4: The X-MAN component model.

particular, a sequencer connector allows the composition of C1, . . . ,Cn components
and executes them in a predefined sequential order. An exclusive branching connector
enables the composition of components C1, . . . ,Cn and chooses which component to
invoke according to a fixed condition. There are also exogenous connectors that are
not used for composition, but for adapting the behaviour of individual components.
These special connectors are called adapters and can define looping or guarding.

The X-MAN component model enables a hierarchical, incremental, bottom-up
construction of software systems, where every composition produces a composite that
can be further composed with other components. This process is also referred to as
algebraic composition by which a software system exhibits a self-similar composition
structure (see Figure 3.5). Thus, the execution of an X-MAN composition starts at the
top-level connector and traverses the rest of the connectors according to control flow
constructs. When control reaches an invocation connector, a computation is triggered
and then control returns upwards.

X-MAN services are interfaces that require inputs and provide outputs to the ex-
ternal world. To define a data flow, such a component model allows the connection
of a data channel between two services. During a system execution, each exogenous
connector reads and writes data values on associated data channels. Horizontal data
routing happens between the sub-components within a composite, whereas vertical
data routing occurs between the interface of a composite and its sub-components. See
[LT12] for further details on this matter.
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Figure 3.5: Self-similarity in the X-MAN component model.

3.4.1 X-MAN vs. DX-MAN

The proposed model, DX-MAN, borrows the notion of exogenous connectors from the
X-MAN component model. However, there are substantial differences between them.

X-MAN is a general-purpose component model for building single-process soft-
ware systems. Contrastingly, DX-MAN is a distributed, multi-process model partic-
ularly designed for the construction of service-oriented IoT systems. For that reason,
DX-MAN components are services that reside on different things so exogenous con-
nectors exchange control in a distributed fashion via the network. In addition to se-
quencing, exclusive branching, looping and guarding, DX-MAN provides exogenous
connectors for parallelising and inclusive branching. Furthermore, adapters are not
limited to looping and guarding only, since their semantics allow any control flow
structure supported by the model.

As DX-MAN follows SOA principles for the definition of services and service
composition, the fundamental semantics of what a service is and how to compose are
completely different. A DX-MAN service is a component semantically equivalent to a
workflow space that defines a family of workflow control flow variants. On the other
hand, an X-MAN service is just a component interface, with inputs and outputs, which
defines only one workflow at a time. Formally, the interface of an X-MAN component
is a set of services {s ∈ (I,O)} s.t. each service s is a tuple consisting of a (non-empty)
finite set of data inputs I and a (non-empty) finite set of data outputs O. Remarkably,
the interface of a DX-MAN service is a tuple (I,O,W ) consisting of a finite set of data
inputs I, a finite set of data outputs O and a (finite or infinite) set of workflows W .

In terms of data management, DX-MAN supports decentralised data flows for an
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optimal QoS in data-intensive IoT systems. This exchange is by no means possible
in the X-MAN component model where data always follows control. Table 3.1 sum-
marises the comparison.

Table 3.1: X-MAN vs. DX-MAN.

3.5 Analysis of Related Work

Table 3.2 summarises the results of the analysis of existing IoT service composition
mechanisms with respect to the functional scalability desiderata identified [AL18b,
AL19b]: (i) explicit control flow; (ii) service location transparency; (iii) distributed
workflows; (iv) decentralised data flows; (v) separation of control, data and computa-
tion; and (vi) workflow variability. Requirements (i), (ii), (iii), (iv) and (vi) are binary
because they can be either supported (i.e., a tick mark) or not supported (i.e., a cross
mark).
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Table 3.2: Analysis of of existing IoT service composition mechanisms w.r.t. func-
tional scalability desiderata of IoT systems.

Centralised dataflows is the worst mechanism because it only supports one binary
requirement (i.e., location transparency) and separates two concerns (i.e., data and
computation). Distributed dataflows fulfils scalability requirements with a slightly
higher degree because it additionally offers distributed workflows. Although cen-
tralised orchestration provides the same satisfaction degree as distributed dataflows,
it supports different requirements (i.e., explicit control flow and location transparency)
and separates different concerns (i.e., control and computation). Distributed orchestra-
tion is similar since it supports distributed workflows in addition. Finally, choreogra-
phy covers three binary requirements (i.e., explicit control flow, distributed workflows
and decentralised data flows) and does not provide any separation of concerns since
control and data are mixed in service computation. The X-MAN component model is
not considered in the analysis because it does not have any support for IoT services.

Overall, none of the existing IoT service composition mechanisms fulfil all the
functionality scalability desiderata. The included paper [AL19b] presents a detailed
and extended analysis of the results.
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Commented Collection of Original
Publications

“If the doors of perception were cleansed then

everything would appear to man as it is, Infinite.”
— William Blake, 1793

This chapter presents the core contributions of the thesis in the form of six pub-
lished peer-reviewed papers and one submitted manuscript. The published papers ap-
pear in international conference proceedings, and the other article was submitted to
a journal with a high impact factor. The contributions are presented in the order dis-
cussed in Section 1.6, and Appendix A shows the formal permissions for reusing them.

For each publication source, this chapter shows impact measurements in terms of
ranking (if available), acceptance rate (if available in the publication year), impact fac-
tor, citation ranking (if there are citations) and awards (if any). A conference impact
factor is estimated for the most recent (possible) year by analysing academic citations
from Google Scholar [Goo19]. The rankings are obtained from CORE [Com18] and
Qualis [Coo16] (which assess major conferences and journals in Computer Science).
The citation ranking is determined by retrieving and sorting paper citations also from
Google Scholar [Goo19]. For the journal submitted, we obtained the most recent im-
pact factor, the SCImago Journal Rank and (SJR) and the Source Normalised Impact
per Paper (SNIP) from the official website [Els19].
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Abstract—Service composition is currently done by (hierarchi-
cal) orchestration and choreography. However, these approaches
do not support explicit control flow and total compositionality,
which are crucial for the scalability of service-oriented systems.
In this paper, we propose exogenous connectors for service
composition. These connectors support both explicit control flow
and total compositionality in hierarchical service composition.
To validate and evaluate our proposal, we present a case study
based on the popular MusicCorp.

Index Terms—hierarchical service composition, scalability, or-
chestration, choreography, microservices, exogenous connectors

I. INTRODUCTION

In Service-Oriented Architectures (SOA) [26], service com-
position is increasingly challenging as SOA systems get ever
larger [10]. Therefore, the de facto approaches for service
composition, namely (hierarchical) orchestration and chore-
ography, need to address scalability.

Microservice architecture [7], [18] is the leading trend in
SOA [26]. It prefers choreography over orchestration so as
to avoid a single point of failure and attack, as well as
performance bottlenecks. However, Netflix, a pioneer of this
architectural style, has recently expressed that they found
it difficult to scale with growing business needs by using
choreographies because the implicit control flow therein is
hard to visualize. For this reason, Netflix now prefers service
orchestration [16].

Apart from explicit control flow, we believe that total
compositionality is also crucial for scalability since it en-
ables hierarchical construction of SOA systems. By total
compositionality we mean algebraic composition, which is
not present in choreography, orchestration or even hierarchical
orchestration.

In this paper, we propose exogenous connectors [13], [12]
for hierarchical service composition. These connectors are
architectural elements that coordinate the execution of an
SOA system by passing only control. Like orchestration,
exogenous connectors define explicit control flow, but unlike
(hierarchical) orchestration and choreography, they enable
total compositionality.

The rest of the paper is organized as follows. Sect. II
briefly revisits the paradigms for service composition. Sect.
III describes our approach. Sect. IV presents a case study to
demonstrate the suitability of our approach. Sect. V outlines a

qualitative evaluation of our approach and presents a discus-
sion of the results. Finally, Sect. VI presents the conclusion
and the future work.

II. ORCHESTRATION, HIERARCHICAL ORCHESTRATION
AND CHOREOGRAPHY REVISITED

In this section, we review the paradigms for service compo-
sition, namely (hierarchical) orchestration and choreography,
rather than reviewing methods [24], [14], languages [9], tools
or platforms [2] using these paradigms.

We believe that explicit control flow and total compo-
sitionality are crucial for the scalability of SOA systems.
Explicit control flow means that an architectural entity ex-
plicitly defines the order in which individual services are
executed. On the one hand, in orchestration, control flow
is defined in the central coordinator [21], [9]; similarly, in
hierarchical orchestration, control flow is defined in nested
(inner and outer) orchestrations [8], [4], [25]. On the other
hand, choreography defines control flow only implicitly, in
the collaborative exchange of messages [20], [6], [21], [23].
Implicit control flow is hard to monitor, track, maintain and
evolve since it is hard to visualize entirely [16], [5], [3], [18],
[10].

Compositionality is assumed to be present in orchestration,
hierarchical orchestration, and choreography, as a coordination
of service invocations [15]. However, this is not total com-
positionality, by which we mean algebraic composition: two
or more services can be composed into a new (composite)
service of the same type, that preserves all the operations
provided by the composed services.1 Total compositionality
implies a hierarchical composition structure but not the other
way round; in fact, an orchestration can be hierarchical but not
compositional.2 Totally compositional architectures are more
tractable than non-compositional architectures ones because
they make it easier to evaluate the individual parts [17]. Fur-
thermore, hierarchical construction is a well-known technique
for tackling scale and complexity.

Table I shows that orchestration, hierarchical orchestration,
and choreography do not define a composition of entire
services, but a workflow of invocations of selected and named

1See 6 in Appendix A for a formal definition of total compositionality.
2See Appendix B.



TABLE I
COMPOSITIONALITY IN SOA.

Resulting type of composition Number of operations preserved from the composed services Compositionality
Orchestration Workflow Number of selected and named operations Partial

Hierarchical Orchestration Workflow Number of selected and named operations Partial
Choreography Workflow Number of selected and named operations Partial
Our Approach Service All Total

operations in the composed services [19], [1], [20], [21], [22].3

(Selecting and) Naming a specific set of operations results in a
partial composition in which individual workflows are required
for the invocation of operations in the composed services; thus,
the operations that are not (selected and) named are lost so
they cannot be invoked. Of course, all the operations could be
included; however, the resulting workflow would be potentially
complex as the number of operations increases, leading to
combinatorial explosion. In contrast, our approach enables
total compositionality, since the resulting type of composition
is another service with all the operations of the composed
services (not a workflow with selected and named operations).
In a total composition, any operation of any composed service
can be invoked without the need of individual workflows.

Consider two services: S1 which provides the operations
op11 and op12, and S2 which provides the operations op21
and op22. Fig. 1 shows a possible composition of these
services using orchestration, our approach, hierarchical orches-
tration and choreography. In this figure, it is clear that orches-
tration, hierarchical orchestration, and choreography results in
a partial composition, i.e., a workflow that loses operations of
the composed services. For instance, the operation op22 cannot
be invoked in any of these approaches; any such change would
require an entirely new workflow. In contrast, in our approach,
the symbol # is a wildcard indicating that any operation of the
service involved can be invoked, e.g., both operations op11 and
op12 are available to be invoked in service S1.

Table II shows that orchestration, hierarchical orchestration
and choreography does not support total compositionality.
Only our approach supports total compositionality and, like
orchestration (and hierarchical orchestration), exogenous con-
nectors also define explicit control flow.

TABLE II
ORCHESTRATION VS. HIERARCHICAL ORCHESTRATION VS.

CHOREOGRAPHY VS. OUR APPROACH.

Total Compositionality Explicit Control
Flow

Orchestration
Hierarchical
Orchestration
Choreography
Our Approach

3See 2 in Appendix A.

Fig. 1. Compositionality and control flow in SOA.

III. EXOGENOUS CONNECTORS FOR SERVICE
COMPOSITION

We propose exogenous connectors for service composition,
which define explicit control flow and enable hierarchical con-
struction of SOA systems. Our notion of total compositionality
is akin to mathematical function composition where two or
more functions can be composed into a new function of the
same type that can be further composed with other func-
tions. Mathematical functions are composed algebraically and,
hence, hierarchically. With this in mind, a service composition
results in a new service that can be composed into even bigger
services. Fig. 2 shows that, unlike (hierarchical) orchestration
and choreography,4 at every level of the hierarchy the result of
composition is a service (of type S). The operator ◦ denotes
a service composition.

Fig. 2. Hierarchical service composition using exogenous connectors.

4See Appendix B.



A. Design of Exogenous Connectors

Our notion of exogenous connectors is borrowed from the
X-MAN component model [11], [12], [13], but our approach
is significantly different from X-MAN, especially in the se-
mantics of distribution,5 services and service composition. A
detailed comparison with X-MAN is out of scope, but we will
briefly discuss the main differences in Sect. V.

Exogenous connectors are architectural elements that medi-
ate the interaction between services. They originate control and
coordinate the execution of an SOA system; to this end, they
encapsulate a network communication mechanism in general
and control in particular. There are three kinds of connectors:
(i) invocation, (ii) composition and (iii) adaptation.

An invocation connector is connected with a computation
unit which encapsulates the implementation of some behaviour
and is not allowed to call other computation units (see Fig.
3(a)). An invocation connector provides access to the opera-
tions implemented in the computation unit.

(a) Atomic
    Service

(b) Composition
      Connector

(c) Composite
     Service

Fig. 3. Exogenous connectors and services.

A composition connector is a composition operator (◦) that
defines explicit control flow and coordinates the execution of
n > 1 (atomic and/or composite) services (see Fig. 3(b)).
Composition connectors can be defined for the usual control
structures in SOA for sequencing, branching, and parallelism.
The sequencer connector allows the composition of services
S1, . . . , Sn and executes them in sequential order. The selector
connector allows the composition of services S1, . . . , Sn and
can choose the services out of them to be executed, according
to a predefined condition. The parallel connector composes
S1, . . . , Sn services and executes all of them in parallel.

Fig. 3(d) shows that n ≥ 0 adaptation connectors can
be connected with either a composition connector or an
invocation connector. Adaptation connectors can be defined
for complementary control structures in SOA such as looping
and guarding. They do not require the composition of services
as they only operate, if a predefined condition is true, over an
individual service. The control structure for looping defines a
number of iterations, while a guard connector provides gating.

Our approach is then a Turing complete set for defining
explicit control flow for sequencing, branching, and loop-
ing. Composition connectors can define (and encapsulate)

5X-MAN is not distributed.

workflows for the set of composed services. Composition
connectors and adapters are able to receive, initiate and return
control; whereas invocation connectors are only able to receive
and return control.

Services only provide operations and do not call directly
operations provided by other services. Fig. 3 shows that there
are two kinds of services: (i) atomic and (ii) composite. An
atomic service is formed by connecting an invocation connec-
tor with a computation unit (see Fig. 3(a)), whose interface
has all the operations implemented in the computation unit.

A composite service consists of a set of (atomic and/or
composite) services composed by a composition connector
(see Fig. 3(c)). Its interface is constructed from the interfaces
of the composed services; thereby, a composite has available
all the operations of the composed services (see Fig. 4).

Services are decoupled from the hierarchical control flow
structure provided by connectors. Fig. 4 shows that composite
services are self-similar as exogenous connectors enable com-
positional and, therefore, hierarchical construction in a bottom-
up fashion. The connectors of the top- and middle-levels are
of variable arities and types since they can be connected to
any number of connectors. At the bottom-level, there are unary
invocation connectors which connect to single connectors. We
use the master-slave pattern so higher-level connectors are the
masters of the lower-level connectors they are connected to.

Atomic 
service

Composite
service

Explicit 
Control Flow

Composition
Connector

Adaptation
Connector

Invocation
Connector

Operation

Fig. 4. Total compositionality and explicit control flow in our approach.

The precise choice of connectors, the number of levels of
the hierarchy and the connection structure, depend on the
relationship between the behaviour of the individual services
and the behaviour that the system is intended to achieve.
The control structure is always hierarchical, which means
that there is always one connector at the top-level (the top-
level composite can represent an SOA system per se). This
connector initiates the control flow in the whole system. For
instance, the connector CC1 initiates the generic SOA system
presented in Fig. 4.

Fig. 5 shows a possible data flow for the service composition
presented in Fig. 4, where we can see that data is represented
by parameters and data flow is orthogonal to control flow.
Input parameters are the required data by either an operation or
a (composition or adaptation) connector, while output parame-



ters are data resulting from an operation’s computation.6 Con-
nectors read input parameter values and write output parameter
values on data channels [11]. Composition and adaptation
connectors read input parameters to achieve their purpose, e.g.,
a selector may define a condition price < 2000 that requires
the input parameter price. An invocation connector reads input
parameters and writes output parameters for the operations of
the computation unit it is connected to.

Fig. 5. Data flow in our approach.

A data channel connects two endpoints: an origin parameter
from with a destination parameter to. There is a set of
data channels for each operation of a composite service; for
instance, in the composite Composite1 in Fig. 5, the operation
op121A has only one data channel, whereas the operation
op11A has three data channels. Data channels are automati-
cally created (on service composition) for each operation of a
composite service; nevertheless, composite service operations
can be customized so as to add and/or remove data channels.
In Fig. 5, the data channels connected to the input parameters
of connectors CC12 and AC11, respectively, were added
manually.

Fig. 6 illustrates that both composite and atomic services
can be potentially mapped onto different nodes over a network.
In particular, Fig. 6 shows a possible mapping of the services
and connectors presented in Fig. 4. Exogenous connectors
reside in the same network address as the service they belong
to. For instance, the atomic service Atomic11, its invocation
connector IC11, and its adaptation connector AC11 reside in
203.0.113.7. Services are location- and workflow-agnostic as
exogenous connectors encapsulate service location and define
explicit control flow. The workflow of an SOA system is
distributed among the involved exogenous connectors.

B. Implementation of Exogenous Connectors

We implemented the meta-model of our proposal in Java
(see Fig. 7).7 The purple section encompasses the classes for
exogenous connectors, the green section includes the classes
for network communication and the rest of the classes are
concerned with services and data representation. Services and
exogenous connectors were defined as a hierarchy of Java

6Connectors do not have output parameters because they do not perform
any computation.

7https://gitlab.cs.man.ac.uk/mbaxrda2/ExogenousConnectors

Fig. 6. Connector and service mappings over a network.

classes. The superclasses ConnectorType and Service allow
the definition of any connector and any service, respectively,
at any level of the hierarchy.

Network 
Communication 
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Connectors 
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Service Operation Parameter

ParameterIn

ParameterOut
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1

1

Fig. 7. Meta-model of our proposal.

The ServiceInfo class encapsulates the service name and the
service kind as well as the details (i.e., name, IP address and
listening port) of the node wherein the service is deployed.
A service provides at least one operation with at least one
parameter. Parameters and data channels have unique IDs
within a network.

The ExogenousConnector class encapsulates a network
communication mechanism for the interaction between ex-
ogenous connectors via the network. Although we particu-
larly use Remote Method Invocation (RMI), it is possible to
replace it with any other mechanism such as HTTP/REST.
Thus, exogenous connectors use RMI to coordinate an SOA
system execution (by passing only control) via the network.
As we rely on hierarchical composition, a composition con-
nector contains an RMICoordinator instance which provides
the transferControl() method to pass control to the remote
connectors of the composed services. Exogenous connectors
have unique IDs within a network.



Our exogenous connectors are synchronous so they are
always listening for remote invocations from higher-level
connectors. The ConnectorType class has the abstract method
activate() which is invoked remotely by other connectors.
This method is implemented according to the intended control
structure of the exogenous connector involved.

A selector connector associates each lower-level connector
with a condition by which these connectors are invoked. An
adaptation connector associates a single lower-level connec-
tor with a single condition. Sequencer connectors remotely
invoke, in a given order, a list of lower-level connectors.
A parallel connector creates a Thread pool of n threads,
where n is the number of composed services; hence, the
parallel execution of services is performed by Java threads.
An invocation connector uses the invoke() method provided
by Java reflection to execute an operation in the connected
computation unit.

Total compositionality does not require any glue that has
to be constructed manually; therefore, invocation connectors
dynamically invoke an operation (provided by the atomic ser-
vice they belong to) by reading an invocation map from a data
space. An invocation map associates a service ID (i.e., an entry
key) with the ID of the operation (i.e., an entry value) to be
invoked in that service. During the deployment of a composite
service CS, Algorithm 1 generates an invocation map Mi for
each operation Opi provided by CS. For each data channel
dci of the operation Opi, Algorithm 2 analyzes the respective
endpoints (i.e., the origin from and the destination to). Only
data channels connected to service operation parameters are
analyzed8 and we particularly assume that the given data
channels are valid. Invocation maps are written in the data
space DS with the operation ID as the key.

Algorithm 1 Algorithm for the generation of invocation maps
Input: The data space DS and the composite service CS

being deployed
. Opi:An operation provided by the composite CS

for all OPi ∈ CS do
. Mi:Invocation map for the operation Opi

Mi ← newInvocationMap()
. dci:A data channel for the operation Opi

for all dci ∈ OPi do
analyzeEndpoint(DS,CS,Mi, dci.from)
if dc.to.notInConnector() then

analyzeEndpoint(DS,CS,Mi, dci.to)
end if

end for
DS.write(Opi.id,Mi)

end for

When a data channel is connected to a parameter of an
operation provided by a composite service (different to the one
being deployed), the invocation map Mendpoint (previously

8Data channels connected to connector parameters are not analyzed because
connectors do not provide operations.

Algorithm 2 Algorithm for the analysis of a data channel
endpoint
Input: The data space DS, the composite service CS being

deployed, the invocation map Mi being generated and the
data channel endpoint to analyze
if endpoint.service is a composite then

if endpoint.service is not the composite CS then
Mendpoint = DS.read(endpoint.operationId)
for all key, value ∈Mendpoint do

Mi.putIfAbsent(key, value)
end for

end if
else

Mi.putIfAbsent(endpoint.serviceId,
endpoint.operationId)

end if

generated by that composite) is retrieved from the data space
DS and combined with the invocation map Mi.9 Otherwise, if
the data channel is connected to an atomic service’s operation
and the invocation map Mi does not have an entry for that
service, the association between the atomic service ID and the
operation ID is created in the invocation map Mi.

We also developed an algorithm for reading and writing data
efficiently. However, we do not present this algorithm due to
space constraints.

C. Platform Support

We implemented a platform in Java for the development of
SOA systems based on exogenous connectors. A central ser-
vice repository was implemented to store and retrieve services.
Data is managed by a shared data space: MozartSpaces 2.3.10

Network Service
Repository

Data
Space

Fig. 8. Platform support.

System instances sit above the Platform API which provides
the constructs for designing and deploying services as well as
executing systems. Platform Core provides the functionality
for repository, data and deployment management. Network
Mgmt contains the communication mechanisms to perform
actions over the network such as passing control between
connectors. Our platform requires every node to have support
for Java Runtime Environment (JRE) 1.8.

IV. CASE STUDY

Our case study (see Fig. 9) is based on the popular Music-
Corp [18]. It is focused on the creation of customers which get
a new record in a loyalty points bank and receive a welcome

9The invocation maps for the operations of sub-composite services are
generated in advance as composite services are deployed in a bottom-up way.

10http://www.mozartspaces.org



pack/email. We do not show data flow as services are com-
posed by composition connectors which rely on control flow.
The source code was generated using the platform API and it is
available at https://gitlab.cs.man.ac.uk/mbaxrda2/MusicCorp.

Fig. 9. Compositionality and explicit control flow in our case study.

The atomic services LoyaltyPointsBank, Courier1, Courier2
and EmailService offer primitive operations to achieve the
intended behavior of our case study. LoyaltyPointsBank has
the operation createRecord to store customer details in a
database. Courier1 and Courier2 provide the operations to
send a welcome pack by standard and fast delivery, respec-
tively. EmailService exposes the sendWelcomeEmail operation
to send a welcome email to new customers.

Our case study is constructed in a hierarchical bottom-up
fashion. First, Courier1 and Courier2 are composed into Post-
Service by the selector connector SEL1. Then, the composite
SenderService uses the sequencer connector SEQ2 to compose
PostService and EmailService. Finally, LoyaltyPointsBank and
SenderService are composed into CustomerService by the
sequencer connector SEQ1.

At the bottom-level, we have the invocation connectors IC1,
IC2, IC3, and IC4. In the next level, we have the adapter
GUA1. Then, we have the selector SEL1. Next, we have
the sequencer SEQ2. Finally, at the top-level, we have the
sequencer SEQ1.

The execution of our case study is control-driven. The top-
level connector SEQ1 starts the execution by passing control
to the invocation connector IC1 and the sequencer SEQ2,
in that order. Next, SEQ2 invokes the selector SEL1 which
activates either the invocation connector IC2 or the invocation
connector IC3, depending on the customer address. Then,
SEQ2 invokes the adapter GUA1 (which denies the invocation
of EmailService if the customer email is invalid). Finally,
SEQ2 returns the control to the top-level connector SEQ1 and
the execution terminates.

In general, SEQ1 defines a sequential invocation of Loy-
altyPointsBank and SenderService. Similarly, SEQ2 defines a
sequential execution of PostService and EmailService. SEL1
explicitly defines a condition for invoking either Courier1 or
Courier2. GUA1 defines gating for EmailService.

We implemented a client to remotely execute the operation
CreateCustomer in CustomerService. Our case study was
tested in localhost with each service running in a separate pro-
cess (to simulate different nodes in the Local Area Network).
We mapped a service per node.

Fig. 10 displays a screenshot of the standard output for the
composite SenderService, resulting from the execution of our
case study. A glance at the bottom of Fig. 10, reveals the
explicit control flow defined by the sequencer SEQ2 (with ID
4684084166367832649): SEQ2 passes control to the selector
SEL1 (with ID -5878785820492134700) of PostService and,
then, to the adapter GUA1 (with ID 84636168467804098) of
EmailService.

To achieve total compositionality, the composition of two or
more services must yield another service that (1) preserves all
the operations provided by the composed services and (2) can
be composed into even bigger services. Our composite services
inherit all the operations from their respective composed
services. Thus, primitive operations are initially defined in
atomic services and inherited on composition. For instance,
as shown in Fig. 9 and 10, PostService and EmailService are
composed into SenderService by the sequencer SEQ2 (with
ID 4684084166367832649); thereby, the composite Sender-
Service has available the operations sendWelcomeStd, sendWel-
comeFast, and sendWelcomeEmail.

V. EVALUATION AND DISCUSSION

Although our notion of exogenous connectors is borrowed
from the X-MAN component model, there are important
differences. X-MAN is a general-purpose and a single-process
component model, whereas our approach is particularly fo-
cused on SOA systems. For this reason, unlike X-MAN, our
approach is distributed (i.e., multi-process) so services are
mapped onto different network addresses, and the control flow
is distributed over a network. Moreover, in contrast to X-MAN,
we followed SOA principles for the definition of services and
service composition. We also changed the semantics of X-
MAN so as to support (1) the parallel invocation of services
and (2) the execution of multiple services that satisfy a partic-
ular condition in the selector connector. Finally, we developed
an algorithm to dynamically invoke primitive operations in
atomic services, so the manual mapping of operations (during
the design phase) is not required anymore.

Total compositionality entails a strictly hierarchical way
of constructing SOA systems by composing services. In our
approach, atomic services form a flat layer and the entire
control structure (of composition and adaptation connectors)
sits on top of this. This hierarchical composition structure
is split up among the exogenous connectors (which are dis-
tributed over a network). A hierarchical structure enables
location transparency which is crucial for scalability since
service locations may dynamically change. For instance, if
PostService changes its location, only the connector of the
composite SenderService is affected without requiring updates
to other connectors or other services.



Fig. 10. Standard output for the composite PostService.

Having available all the operations in a composite service
implies that any operation can be invoked in any composed
service. In fact, adding new operations does not require any
change in the workflow defined by our connectors. Conversely,
(hierarchical) orchestration and choreography require n work-
flows for n different operations, leading to combinatorial
explosion as the number of operations increases.

For instance, adding the operation sendProduct in the
composite CustomerService does not require changing the
workflow defined by such a composite. Conversely, (hier-
archical) orchestration and choreography will require two
different workflows: one for the invocation of the operation
createCustomer and another one for the invocation of the
operation sendProduct.

Of course, our composite services can be customized to add
new operations, remove operations inherited on composition,
or both. Fig. 9 shows that we customized the top-level compos-
ite CustomerService to expose the operation createCustomer
(to the final users) rather than the operations inherited on
composition.

Total compositionality results in a service type at every
level of the hierarchy, leading to service reuse. For instance,
the composite CustomerService can be reused in multiple e-
commerce systems. In orchestration, it is possible to reuse a
workflow whereas in our approach it is possible to reuse a
service containing multiple workflows.

Invocation connectors use the Algorithms presented in Sect.
III-B so as to dynamically find the operation to invoke. There-
fore, exogenous connectors only pass control and explicitly
define the order in which services are executed, rather than
define the order in which operations are invoked. Explicit
control is important for scalability since it enables monitoring,
tracking and visualization of service interaction. It therefore
leverages the maintenance and the evolution of SOA systems.

VI. CONCLUSION AND FUTURE WORK

Total compositionality and explicit control flow are crucial
for the scalability of SOA systems. In this paper, we presented
exogenous connectors for service composition. Like orchestra-
tion, exogenous connectors define explicit control flow, but un-
like (hierarchical) orchestration and choreography, they enable
total compositionality. We were not able to get a real-world

case study consisting of many services to perform quantitative
evaluation on scalability, so we evaluated qualitatively our
proposal from the popular MusicCorp. We plan to perform
quantitative evaluation in the future.

Centralized execution of composite services is not desirable
for scalability [21]. For this reason, currently, we are inves-
tigating novel ways of achieving decentralized service com-
position. Additionally, as our approach enables composition
automation, we are working on a novel mechanism to dynam-
ically reconfigure services in the presence of changes in the
environment. We strongly believe that exogenous connectors
will play an important role in the development of large-scale
SOA systems. Indeed, we are currently in discussion with an
industrial partner on this matter.
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APPENDIX A

A service exposes a set of operations through a well-defined
WSDL interface. A service S ∈ S, where S is the type of
services, is a set of operations defined as follows:

S = {opi | i ∈ N} (1)
An orchestration or a choreography can be defined as a

function ORCH with the following type:

ORCH : OP×OP× · · · ×OP→WF (2)
where OP is the type of operations in the invoked services
and WF is the type of workflows for invoking a set of such
operations.

A workflow is a sequence of invocations of service oper-
ations whose permutation is defined by the designer of the
orchestration. A workflow is then defined as follows:

wf = 〈inv(opi) | i ∈ N〉 (3)

where inv(opi) is an invocation to the operation opi.

A conversion from a workflow type WF into a service
type S (with one operation for invoking the workflow) can
be defined as a function CONV with the following type:

CONV : WF→ S where |S| = 1 (4)
A hierarchical orchestration is defined by concatenating

workflow sequences. It can therefore be defined as a function
HORC as follows:

HORC(wf1, wf2, . . . , wfn) = wf_
1 wf_

2 · · ·_ wfn (5)

Our notion of total compositionality is defined as a function
COMP with the following type:

COMP : S× S× · · · × S→ S (6)

APPENDIX B

Although an orchestration can be hierarchical, it is not
totally compositional since there is not a service type at every
level of the hierarchy as in our approach (see Fig. 2 in Sec.
III). Consider the formal definitions presented in Appendix
A and four services: S1 = {op11, op12}, S2 = {op21, op22},
S3 = {op31, op32} and S4 = {op41, op42}. Fig. 11 illustrates a
hierarchical orchestration wf1234 constructed by the concate-
nation of the sub-workflows wf12 and wf34:

HORCH(wf12, wf34) = wf12
_wf34 = wf1234 (7)

Fig. 11. Hierarchical orchestration.

The workflows wf12 and wf34 are sequences of type WF
resulting from the functions:

ORCH(op11 ∈ S1, op21 ∈ S2)

= 〈inv(op11 ∈ S1), inv(op21 ∈ S2)〉 = wf12 (8)

ORCH(op31 ∈ S3, op41 ∈ S4)

= 〈inv(op31 ∈ S3), inv(op41 ∈ S4)〉 = wf34 (9)

Fig. 11 shows that in hierarchical orchestration, even if
workflows can be converted into services (providing one
operation for invoking the workflow) by applying the function
CONV , there is not a service type at every level of the
hierarchy.
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Abstract—Current software platforms for service composition
are based on orchestration, choreography or hierarchical or-
chestration. However, such approaches for service composition
only support partial compositionality; thereby, increasing the
complexity of SOA development. In this paper, we propose
DX-MAN, a platform that supports total compositionality. We
describe the main concepts of DX-MAN with the help of a case
study based on the popular MusicCorp.

Index Terms—service composition, platform, orchestration,
choreography, scalability, microservices, exogenous connectors

I. INTRODUCTION

Service-Oriented Architectures (SOA) are popular in the
software industry because they enable high modularity. Many
software platforms for service composition have been proposed.
However, such platforms only provide support for partial
compositionality, since they are based on orchestration [1],
choreography [2], [3] or hierarchical orchestration [4], [5],
[6]. Partial compositionality [7] requires software developers
to design individual workflows for the invocation of service
operations, leading to combinatorial explosion and, therefore,
increasing the complexity of SOA system development.

Total compositionality [7] means that two or more services
can be composed into a new (composite) service of the same
type, that preserves all the operations provided by the composed
services. It implies a hierarchical composition structure but not
the other way round. Total compositionality is crucial for the
scalability of SOA systems since it only requires the design
of one workflow for the invocation of any operation in any
composed service.

In this paper, we present DX-MAN, a platform for total
compositionality based on the hierarchical model we presented
in [7], where services and exogenous connectors are first-class
entities. Exogenous connectors are architectural elements that
mediate the interaction between services. They originate control
and coordinate the execution of an SOA system by passing only
control; to this end, they encapsulate a network communication
mechanism in general and control in particular.

The rest of the paper is organized as follows. Section II
presents an overview of the proposed platform. Section III
discusses the strengths of the proposed platform and presents
the concluding remarks.

II. PLATFORM OVERVIEW

DX-MAN is a platform that delivers the necessary pro-
gramming abstractions and the runtime environment to design,
deploy and execute SOA systems. DX-MAN relies on the
notion of service template and service instance. A service
template provides the skeleton of a service design, whereas a
service instance is the result of a service template deployment.

In this section, we describe the main concepts of DX-
MAN with the help of a case study based on the popular
MusicCorp [8]. The objective of this case study is the creation
of new customers which get a record in a loyalty points bank
and receive a welcome pack/email. Fig. 1 shows the service
composition and the data flow of our case study. For further
details about the model and the case study, please refer to [7].

Fig. 1. Service composition and data flow of our case study.

A. Platform Architecture

We implemented DX-MAN in Java due to the popularity of
this programming language. A central service repository was
also implemented to publish and retrieve service templates so
as to support reuse. Data is managed by MozartSpaces 2.3
[9],1 a popular data space that offers extensive support. Figure
2 illustrates the architecture of DX-MAN.

1The central service repository and the data space can reside at any network
address.
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DX-MAN API hides the complexity of the platform and offers
the constructs to design and deploy services, and execute SOA
systems. DX-MAN Core is divided into three modules: (a)
Repository Management provides the functionality to publish
and retrieve services from the central service repository; (b)
Data Space Management provides the functionality to perform
operations in the data space such as reading and writing; and
(c) Deployment Management offers the functionality to deploy
services. Network Management contains the communication
mechanisms to perform operations on the network such as
passing control between connectors and connecting to the
central repository.

A node is a logical entity within a network that uses DX-
MAN. It can host any number of service instances in its Java
Virtual Machine (JVM). DX-MAN requires every node to have
support for Java Runtime Environment (JRE) 1.8. A node can
play the role of provider, consumer, or both. On the one hand,
a provider node publishes service templates in the central
repository for further reuse. On the other hand, a consumer
node retrieves templates from the central repository, in order
to design composite service templates.

Provider nodes are required to set a deployment directive in
service templates. A downloadable directive indicates that the
service template must be deployed in the Java Virtual Machine
(JVM) of consumer nodes. A non-downloadable directive states
that the service template is always deployed in the JVM of
the respective service provider.

A complete life cycle for SOA development should consist
of two life cycles: a service life cycle and a system life cycle.
The service life cycle comprises two phases: (1) design and
(2) deployment. During the phase (1), a node designs service
templates. For the phase (2), deployment directives drive the
deployment of service templates in the JVM of the respective
nodes.

The system life-cycle consists of three phases: (1) design,
(2) deployment and (3) execution. During the phase (1), a
node designs a system template (which has the form of a
composite service template). System templates are deployed in
the phase (2) by using a bottom-up approach: atomic services
are deployed first and the top-level composite is deployed at
the end. Finally, systems are executed in the phase (3).

Figure 3 shows a BPMN diagram that depicts the overall
process for service design and reuse in DX-MAN. Designing
an atomic service template comprises the following steps: (1)
implementation of the computation unit, (2) creation of the
atomic service template, and (3) publication of the atomic
service template in the central repository. The step (3) is carried
out only if the node is a provider node.

Service composition requires (1) the retrieval of service
templates from the central repository for the composed services;
(2) the customization of the retrieved service templates;
(3) the creation of the composite service template; (4) the
customization of operations and data flow for the composite
service; and (5) the publication of the composite service
template in the central repository. It is important to mention that
composite service templates can be designed without reusing
templates from the central repository. The step (1) is carried
out only if the node is a consumer node and the step (5) is
performed only if the node is a provider node. Steps (2) and



(4) are optional.
Next, we describe how DX-MAN maps definitions of our

model to Java language primitives. In particular, we follow a
programmer’s point of view to show how the case study is
implemented using DX-MAN API constructs.

B. Atomic Services

An atomic service is formed by connecting an invoca-
tion connector with a computation unit. A computation unit
encapsulates the implementation of some behaviour and is
not allowed to call other computation units. An invocation
connector provides access to the operations implemented in
the computation unit. A computation unit has the form of a
Java class (Fig. 4). Computation unit operations are defined
as class methods, annotated with @Operation. Operation
parameters must be annotated with @ParameterInfo, and they
must specify a property (of String type) for the parameter
name and a property (of Class type) for the parameter type.
The DXManAtomicParameterIn class is a wrapper for an input
parameter, while the DXManAtomicParameterOut class is a
wrapper for an output parameter. DXManAtomicParameterIn
and DXManAtomicParameterOut provide methods to get and
set data values, respectively. A computation unit is unaware of
how data is handled internally by DX-MAN.

1 public class EmailServiceCU {
2 ...
3 @Operation
4 public void sendWelcEmail(
5 @ParameterInfo(name="email", type=String.class)

↪→ DXManAtomicParameterIn customerEmail,
6 @ParameterInfo(name="res", type=String.class)

↪→ DXManAtomicParameterOut msgResult) {
7 ...
8 }
9 }

Fig. 4. Example of a computation unit definition.

The constructor of an atomic service template requires the
name of the service, the class of the computation unit and
the deployment directive. When an atomic service template is
created, atomic service operations are automatically extracted
from the methods annotated in the computation unit; then, the
invocation connector is automatically created and connected
to the respective computation unit.

Provider nodes publish atomic service templates in the
central repository, using the publish(ServiceTemplate) method
of the ServiceDesigner class. For instance, the template for
EmailService could be created and published with a non-
downloadable directive as follows:
serviceDesigner.publish(serviceDesigner.createAtomicServiceTemplate(

↪→ "EmailService", EmailServiceCU.class, NON_DOWNLOADABLE));

C. Composite Services

A composite service consists of a set of (atomic and/or
composite) services composed by a composition connector.
A composition connector defines explicit control flow and
coordinates the execution of n > 1 (atomic and/or composite)

services. Thus, services do not have any code for invoking
other services. Composition connectors can be defined for the
usual control structures in SOA for sequencing, branching, and
parallelism. A parallel connector executes all the composed
services in parallel, whose constructor only requires the
templates for the composed services.

A sequencer connector executes composed services in
sequential order. Its constructor receives the set of composed
service templates, whose argument order matches the execution
order.

A selector connector uses predefined conditions to choose
the composed services to be executed. Its constructor receives a
set of instances of the ConditionMapping class which associates
a condition with a service template. Conditions are specified
in the matches(ConnectorDataSpace) method of a Java class
implementing the ConnectorCondition interface (Fig. 5). The
ConnectorDataSpace class provides methods to match the value
of a connector’s input parameter with any value specified by
the designer. For instance, the matchesRegex() method requires
two arguments: the name of the connector’s input and the
regular expression to match with. Designers do not know how
data is handled internally by connectors.

1 public class ConditionEmailGuard implements ConnectorCondition {
2 @Override
3 public boolean matches(ConnectorDataSpace cds) {
4 return cds.matchesRegex("email", getEmailPattern());
5 }
6 ...
7 }

Fig. 5. Example of a connector’s condition definition.

Adaptation connectors provide complementary control struc-
tures in SOA such as looping and guarding. They do not
compose services as they only operate, if a predefined condition
is true, over an individual service. Any number of adaptation
connectors can be connected to any composed service. For
instance, our case study requires a guard adapter to deny the
invocation of EmailService, if the customer email is invalid.
Fig. 5 shows the definition of the condition for this adapter.

Figure 6 shows an example of the design of a compos-
ite service template. The retrieveFromRemoteRepository(int)
method, provided by the ServiceDesigner class, is used by
consumer nodes to retrieve service templates from the central
repository (lines 1-2). This method only requires the id of the
service template to be retrieved. Retrieved service templates
can be customized, e.g., by changing the service name (line
3), selecting the operations to be used or both.

The constructor of a composite service template requires
the service name, the template for the composition connector,
the deployment directive, and the set of composed services
(line 9). When a composite service template is created, a
composite service interface is automatically constructed from
the interfaces of the composed services. Hence, a composite
has available all the operations of the composed services.

We use data channels to define data flow which is orthogonal
to control flow. A data channel connects two endpoints: an



1 CompositeServiceTemplate postService = (CompositeServiceTemplate)
↪→ serviceDesigner.retrieveFromRemoteRepository(4);

2 AtomicServiceTemplate emailService = (AtomicServiceTemplate)
↪→ serviceDesigner.retrieveFromRemoteRepository(3);

3 emailService.getInfo().setServiceName("EmailService");
4
5 GuardAdapterTemplate gua1 = new GuardAdapterTemplate(ConditionEmailGuard.

↪→ class);
6 gua1.addInput(new DXManParameterIn("email", String.class, 0));
7 emailService.addAdapter(0, gua1);
8
9 CompositeServiceTemplate senderService = serviceDesigner.

↪→ createCompositeServiceTemplate("SenderService", new
↪→ SequencerConnectorTemplate(postServiceTemplate,
↪→ emailServiceTemplate), DOWNLOADABLE, postServiceTemplate,
↪→ emailServiceTemplate);

10
11 serviceDesigner.createDataChannel(senderService, sendWelcomeEmail,

↪→ senderServiceTemplate, "sendWelcomeEmail", "email",
↪→ emailServiceTemplate, gua1, "email");

12
13 serviceDesigner.publish(senderService);

Fig. 6. Example of a design process for a composite service template.

origin parameter from with a destination parameter to. Data
channels are automatically created when a composite service
template is created. After composition, composite service
operations can be customized to add new data channels or
remove the existing ones (line 11).

Like atomic service templates, composite service tem-
plates are published in the central repository using the pub-
lish(ServiceTemplate) method of the ServiceDesigner class (line
13).

D. System Design, Deployment and Execution

Our approach for service composition enables hierarchical
construction of SOA systems. Therefore, there is a service at
every level of the hierarchy and there is always one connector
at the top-level that initiates the execution. The top-level
composite represents a system per se.

The SystemDesigner class provides the means to create and
deploy system templates. A system template does not require
a deployment directive since it is always deployed in the JVM
of the provider node. The deployment of a system template
results in a system instance available to final users. In our case
study, CustomerService is created and deployed as follows:

systemDesigner.deploySystem(systemDesigner.createSystemTemplate(
↪→ "CustomerService", new SequencerConnectorTemplate(
↪→ loyaltyPointsBankTemplate, senderServiceTemplate),
↪→ loyaltyPointsBankTemplate, senderServiceTemplate));

The RemoteSystem class allows final users to interact with
the system, e.g., by invoking operations or reading output
values.

III. DISCUSSION AND CONCLUDING REMARKS

In this paper, we presented a platform that supports total com-
positionality in SOA. Current platforms for service composition
are only focused on partial composition, where the designer
needs to create multiple workflows for the invocation of service
operations, leading to combinatorial explosion. In contrast, in
DX-MAN, designers only need to design one workflow for

the invocation of services (not for the invocation of individual
operations). We described the main concepts of DX-MAN with
the help of a case study based on the popular MusicCorp.

DX-MAN separates data, control and computation, in order
to encourage the maintenance, reuse and evolution of SOA.
In particular, such a separation of concerns makes it easy to
reason about data flow, control flow and behaviour separately.

DX-MAN is based on exogenous connectors which coor-
dinate services from outside, so services do not have code
to interact one another directly. Thus, DX-MAN allows the
development of encapsulated services. This helps to avoid
rigidity so if the designer changes a service, other services are
not changed.

Moreover, services do not know the location of other services.
This is important for SOA as service instances can be anywhere
and their locations can even dynamically change.

An important advantage of DX-MAN is its hierarchical
nature to construct systems, resulting in well-structured code
for the final system, which is easy to understand and therefore
maintain. Services can be as simple as possible and their size
can be small (e.g., a microservice) or big (e.g., a composite
service composing plenty of services). A bottom-up approach
should make services more tractable and, hence, practicable to
reason about services and their composition separately.

Model-Driven Engineering (MDE) is gaining popularity in
software system development. For this reason, we are currently
working on MDE techniques for DX-MAN. Additionally, we
would like to migrate our platform to the Cloud and evaluate
it in a real-world application. In fact, we are currently in
discussion with an industrial partner on this matter.

ACKNOWLEDGMENT

The first author would like to thank CONACyT for the
financial support to carry out his research.

REFERENCES

[1] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
“Web services composition: A decade’s overview,” Information Sciences,
vol. 280, pp. 218–238, Oct. 2014.

[2] N. Taušan, J. Markkula, P. Kuvaja, and M. Oivo, “Choreography in the
embedded systems domain: A systematic literature review,” Information
and Software Technology, Jun. 2017.

[3] S. Keller, M. Tivoli, M. Autili, and C. Thomas, “CHOReVOLUTION:
Dynamic and Secure Choreographies of Services,” CHOReOS, White
paper, Mar. 2017.

[4] W. Jaradat, A. Dearle, and A. Barker, “Towards an autonomous decentral-
ized orchestration system,” Concurrency Computat.: Pract. Exper., vol. 28,
no. 11, pp. 3164–3179, Aug. 2016.

[5] G. Chafle, S. Chandra, and V. Mann, “Decentralized Orchestration of
Composite Web Services,” in Proceedings of the 13th International WWW
Conference, 2004, pp. 134–143.

[6] W. M. P. van der Aalst, L. Aldred, M. Dumas, and A. H. M. ter
Hofstede, “Design and Implementation of the YAWL System,” in Advanced
Information Systems Engineering. Springer, Berlin, Heidelberg, Jun. 2004,
pp. 142–159.

[7] D. Arellanes and K.-K. Lau, “Exogenous Connectors for Hierarchical
Service Composition,” in Proceedings of the 10th IEEE International
Conference on Service Oriented Computing and Applications (SOCA
2017). Kanazawa, Japan: IEEE Computer Society, 2017.

[8] S. Newman, Building Microservices, 1st ed. Beijing Sebastopol, CA:
O’Reilly Media, Feb. 2015.

[9] E. Kuehn, “MozartSpaces,” http://www.mozartspaces.org, 2017.



CHAPTER 4. COMMENTED COLLECTION OF ORIGINAL PUBLICATIONS 50

4.3 Algebraic Service Composition for User-Centric IoT
Applications

Damian Arellanes and Kung-Kiu Lau

In Internet of Things – ICIOT 2018.

Published by Springer,

Volume 10972 of Lecture Notes in Computer Science,

pages 56-69,

ISBN 978-3-319-94370-1,

2018.

Impact Indicators:
• Impact factor (2018): 1.71,

• Second most cited article amongst 14 publications in the proceedings (as of 2019),

• Best Paper Award by Springer and the Services Conference Federation.

The final authenticated version [AL18a] is available online at https://doi.org/10.
1007/978-3-319-94370-1_5.

Summary: This paper introduces workflow variability semantics into the DX-MAN
model by defining composition operators as variation points. It particularly presents
the definition of abstract workflow tree and concrete workflow tree. The evaluation is
done using a case study in the domain of IoT end-user applications.

Comments on authorship: I proposed the main idea of the paper, extended the model
semantics, validated the new semantics, conducted a qualitative evaluation, analysed
results, investigated related work, provided and edited all graphics, participated in the
entire writing process and addressed the reviewer’s comments. My supervisor, Kung-
Kiu Lau, also contributed to the idea, proofread the paper and approved the model
extension. He also guided the whole research process.

Key contributions: Contribution 4.1 (see Section 1.5).



CHAPTER 4. COMMENTED COLLECTION OF ORIGINAL PUBLICATIONS

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer
International Publishing AG, Internet of Things – ICIOT 2018 by Dimitrios Geor-
gakopoulos and Liang-Jie Zhang c© 2018.



Algebraic Service Composition for User-Centric
IoT Applications

Damian Arellanes and Kung-Kiu Lau

School of Computer Science
The University of Manchester

Manchester M13 9PL, United Kingdom
{damian.arellanesmolina, kung-kiu.lau}@manchester.ac.uk

Abstract. The Internet of Things (IoT) requires a shift in our way of
building applications, as it is aimed at providing many services to so-
ciety in general. Non-developer people require increasingly complex IoT
applications and support for their ever changing run-time requirements.
Although service composition allows the combination of functionality
into more complex behaviours, current approaches provide support for
dealing with one IoT scenario at a time, as they allow the definition
of only one workflow. In this paper, we present DX-MAN, an algebraic
model for static service composition that allows the definition of com-
posite services that encompass multiple workflows for run-time scenarios.
We evaluate our proposal on an example in the domain of smart homes.
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1 Introduction

The Internet of Things (IoT) promises a new era in which every physical world
object and all living entities will be interconnected through innovative dis-
tributed services. Thus, the scale of IoT applications will go beyond human
mind expectations.

IoT applications are mainly aimed at providing value to society in general.
People with no development expertise are able to control, manage and customize
their own applications [6, 11]. For this reason, IoT requires a shift in our way of
building applications: a developer must be able to create a generic application
that encompasses multiple scenarios, in order to accommodate as much as pos-
sible the run-time user requirements. Thus, users will be able to autonomously
choose a behaviour among the alternative ones.

Although some scenarios are simple, many others require the combination
of a huge number of services. Hence, service composition is crucial for building
complex IoT applications. However, designing a generic composite that accom-
modates multiple IoT scenarios is not trivial, since user requirements may vary
from one scenario to another. Moreover, the dynamism of IoT applications causes
an increase in the number of possible scenarios as the number of services grows.



Current composition approaches do not fulfill the demands of IoT applica-
tions that require user-centric compositions of a huge number of services. This
is because their semantics allows the definition of only one workflow at a time.
Thus, tackling a new scenario would require an entirely new workflow or the
modification of an existing one. This paper proposes DX-MAN, an algebraic
model for static IoT service composition, which enables the development of com-
posite services that encompass many workflows so as to accommodate multiple
run-time scenarios.

The rest of the paper is structured as follows. Sec. 2 presents the related work.
Sec. 3 presents a motivating example. Sec. 4 describes our model for algebraic
IoT service composition. Sec. 5 presents examples to show the feasibility of our
model. Sec. 6 presents a discussion of our results as well as challenges related to
this research. Finally, Sec. 7 presents the conclusions and the future work.

2 Related Work

Current composition approaches include orchestration, nested orchestrations,
choreography, data flows and nested data flows.

Orchestration [13, 22] and choreography [8, 26, 27] have been used for many
years in Service Oriented Architecture (SOA) and are now gaining attention for
IoT applications. Orchestration defines a central coordinator for the invocation of
operations in services. In order to eliminate the performance bottleneck caused
by the central coordinator or to support multiple administrative domains, a
number of sub-workflows can be defined in nested orchestrations [7, 16]. On the
other hand, a choreography realizes a workflow through the collaborative and
decentralized exchange of messages between the services involved. Regardless
of the underlying mechanics, (nested) orchestration and choreography allow the
definition of only one workflow at a time.

A data-driven workflow, or data flow, allows the combination of data streams
from different IoT sources. It is basically a graph where nodes represent com-
putation and edges represent data paths: a node receives data, then performs
some computation and finally passes data on. Although data flows are increas-
ingly popular for IoT applications thanks to the emergence of mashups [5, 14,
24], they allow the creation of one workflow at a time; and this is also true in
nested data flows [12].

Like orchestration, data flows are considered as exogenous composition mech-
anisms because a workflow is defined with no knowledge of the services involved
[18]. Reo [19, 23] is a declarative language for data flows, which also has the
notion of exogenous connectors. Unlike DX-MAN, the composition of two Reo
connectors yields a more complex connector, but not a service. Of course, a Reo
connector can be transformed into a service, but this would require an extra step
as it is not part of Reo semantics. More importantly, Reo allows the creation of
one workflow at a time, like other data flow approaches.

Automatic service composition [1, 9, 10, 22] consists of discovering, selecting
and combining services at run-time, in order to construct a workflow that fulfills



a given specification [17, 25, 28]. It does not provide new composition seman-
tics, but it is built on top of existing ones: data flows [9], orchestration [22],
choreography [1], or any combination thereof [10]. Therefore, automatic service
composition also allows the definition of only one workflow at a time.

Other approaches [11, 15, 29] do not provide any composition constructs, be-
cause they are only frameworks or software tools for end-user development. Some
of them provide support to define only one straightforward workflow at a time,
typically a sequential one.

3 Motivating Example

To motivate our approach, this section introduces a running example. The ex-
ample is in the domain of smart homes and is based on the case study presented
in [22]. It consists of two independent services shown in Fig. 1: (i) a Windows
service for opening and closing windows and (ii) a Climate service to turn de-
humidifiers on and off. For simplicity, we only show two operations per service.
The distribution of services over IoT nodes is out of the scope of this paper.

open

close

Windows Climate

dehumidi�erOn

dehumidi�erOff

Fig. 1. Services involved in our motivating example.

Imagine a user requires different workflows at run-time depending on climatic
conditions. Automatic service composition is the best approach currently avail-
able to generate workflows on the fly. However, it allows the definition of only
one workflow at a time, since it is built on top of existing composition semantics.

For example, on a sunny day the user may want to open the windows and
turn the dehumidifier off. The workflow depicted in Fig. 2 is generated by an
automatic composition mechanism so as to accommodate this user requirement.
Suppose it suddenly starts raining so the user decides to close the windows and
turn the dehumidifier on. Thus, the automatic composition mechanism would
need the generation of the entirely new workflow shown in Fig. 3.

Fig. 2. Workflow for a sunny day.

Of course, the user can express all his needs in a single step. The workflow
generated by the automatic composition mechanism for this scenario is shown in



Fig. 3. Workflow for a rainy day.

Fig. 4, and it includes the scenarios depicted in Figs. 2 and 3. If the user changes
his mind again, a new workflow would be needed.

Fig. 4. Workflow for a sunny and rainy day.

It might seem that nested workflows are an alternative solution to this prob-
lem, as shown in Fig. 5. However, their composition semantics also allow the
definition of only one workflow at a time. Thus, individual nested workflows are
required whenever user requirements change.

Fig. 5. Nested workflows for a sunny and rainy day.

4 DX-MAN

We propose DX-MAN (Distributed X-MAN) [3] to mitigate the impact of change
of run-time user requirements. It is a multi-level service composition model [4]
inspired by algebra and the X-MAN component model [20, 21], where services
and exogenous connectors are first-class entities. Fig. 6 illustrates the DX-MAN
constructs which we further describe in this section.

A DX-MAN service is a distributed software unit that exposes a set of oper-
ations through a well-defined interface. It can be deployed in any IoT node such
as a Cloud, an edge device or a sensor. Distribution semantics are out of the
scope of this paper, but we refer the reader to another paper on that matter [3].

An atomic service is the most primitive kind of DX-MAN service. It is formed
by connecting an invocation connector with a computation unit (see Fig. 6).
The invocation connector provides access to the operations implemented in the
computation unit, and the computation unit is not allowed to call other compu-
tation units. The atomic service interface has all the operations implemented in



(a) Atomic
    Service

(b) Composition
      Connector

(c) Composite
     Service

Fig. 6. DX-MAN constructs.

the computation unit. Formally, an atomic service AS ∈ S, where S is the type
of services, is a set of operations defined as follows:

AS = {opi | i ∈ N} (1)

Exogenous connectors are architectural elements that define explicit control
flow and encapsulate a network communication mechanism, in order to coordi-
nate the execution of an IoT application from outside services. So, services are
unaware they are part of a larger piece of behaviour.

Our notion of algebraic composition is inspired by algebra where functions are
composed hierarchically into a new function of the same type, using the operator
◦. The resulting function can be further composed with other functions, yielding
a more complex one.

Algebraic service composition means that a composition connector is used as
an operator (◦) to hierarchically compose > 1 services, atomic or composite,
into a (composite) service. As it is constructed from sub-service interfaces, the
composite interface has all the sub-service operations. Like an algebraic function,
a composite service is a generalization of a particular problem because it implic-
itly contains multiple workflows whose formation is constrained by the composi-
tion connector being used. Formally, a composite service CS ∈ S, where S is the
type of services, is a set of services defined as follows:

CS = {Si | i ∈ N ∧ S ∈ S} (2)

DX-MAN provides composition connectors for sequencing, branching and
parallelism. A sequencer connector (SEQ) allows the invocation of sub-service
operations in a user-defined order. A sub-service operation can be associated
with ≥ 0 orders. Sub-service operations with no given order are never invoked,
and when no sub-service operation has an order assigned, an empty workflow
is thrown at run-time. Any sub-service operation can be invoked any number
of times within a workflow. Thus, a sequencer connector defines a composite
service that contains an infinite number of sequential workflows. Fig. 7 shows an
example of a composite service constrained by a sequencer connector.



Fig. 7. Sequencer connector.

A selector (SEL) connector chooses the sub-service operations to be invoked,
according to user-defined conditions which are evaluated concurrently. A sub-
service operation can be associated with exactly zero or one condition. Sub-
service operations with no condition associated are never invoked. When no
sub-service operation has a condition associated or all conditions hold false, an
empty workflow is thrown at run-time. A selector connector defines a composite

service that contains 2|
⋃|CS|

i=1 Si| workflows. For example, Fig. 8 shows a composite
service that contains 32 possible branching workflows as there are five sub-service
operations. We do not show all possible workflows because of space constraints.

Fig. 8. Selector connector.

A parallel connector (PAR) allows the parallel invocation of sub-service oper-
ations. A sub-service operation can be invoked multiple times in parallel within
a workflow; to do so, the user needs to specify the number of jobs for each sub-
service operation. When no sub-service operation has jobs assigned, an empty
workflow is thrown at run-time. A parallel connector defines a composite ser-



vice that contains infinite parallel workflows. Fig. 9 shows a composite service
constrained by a parallel connector.

Fig. 9. Parallel connector.

Although they do not compose services, adapters can also constrain workflows
by applying additional control structures over an individual service. A looping
adapter can be used to iterate a number of times over a sub-workflow, while a
user-defined condition holds true. A guard adapter invokes a sub-workflow only
if a user-defined condition is true.

Selection trees are abstract templates that allow the selection of workflows
at run-time. They are implicitly created from a composite service during design-
time. Figs. 7, 8 and 9 show examples of selection trees for a sequencer connector,
selector connector and parallel connector, respectively. In the next section, we
present examples that show how to choose workflows using selection trees.

5 Examples

This section presents two examples of using DX-MAN for user-centric IoT ap-
plications. The first example describes how a one-level composite service accom-
modates the run-time user requirements described in our motivating example
(see Sec. 3). The second example describes how a two-level composite service
enables more complex workflows by hierarchically composing services. For both
examples, we distinguish between developers and users. Developers design, de-
ploy and execute DX-MAN services, while users choose the workflow they need
at run-time. To do so, we developed a platform prototype [2].1 Composite ser-
vices and selection tree instances are defined using JavaScript Object Notation
(JSON) documents. Due to space constraints and clarity, we omit the JSON
documents used for the examples. Instead, we show a graphical representation
of composite services and selection trees.

1 https://gitlab.cs.man.ac.uk/mbaxrda2/DX-MAN



5.1 One-level Composition

At design-time, the developer uses a sequencer connector SEQ0 to compose
the services Windows and Climate into a composite service C0 which contains
infinite sequential workflows (see Fig. 10). At run-time, the user only chooses
the workflow he needs from the composite C0.

Atomic 
Service

Composite
Service

Explicit 
Control 
Flow

Composition
Connector

Invocation
Connector

Operation

Fig. 10. DX-MAN architecture for the scenarios of our motivating example.

For example, on a sunny day the user chooses the workflow depicted in Fig.
2 in Sec. 3, by assigning execution order as shown in Fig. 11. Suddenly, it starts
raining so the user chooses the workflow illustrated in Fig. 3 in Sec. 3, by assign-
ing execution order as shown in Fig. 12. Thus, there is clearly no need of creating
an individual workflow or a new composite service whenever user requirements
change, but only defining an instance of the respective selection tree.

Fig. 11. Choosing a workflow for a sunny day.

As another example, on a cold day the user may want to only close the
windows. To do so, the user assigns the execution order shown in Fig. 13. Again,
without the need of creating an individual workflow or a new composite service.



Fig. 12. Choosing a workflow for a rainy day.

Fig. 13. Choosing a workflow for a cold day.

5.2 Two-level Composition

In the previous subsection, we presented a one-level composition as a solution for
our motivating example. Nevertheless, DX-MAN allows more complex workflows
by hierarchically composing services into multi-level structures.
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Fig. 14. Two-level DX-MAN architecture.



Suppose there is an atomic service energy for turning lights on and off. The
developer uses a sequencer SEQ1 to compose the existing composite C0 and the
atomic service energy into a new composite C1. He also adds a guard adapter
to invoke C0 if a user-defined condition holds true. Fig. 14 shows the resulting
two-level DX-MAN composition, and Fig. 15 shows the respective selection tree.

open
[order]

close
[order]

dehumidi�erOn
[order]

dehumidi�erO�
[order]

lightsOn
[order]

lightsO�
[order]

SEQ1

GUA0

[condition][order]

Fig. 15. Resulting tree from the two-level DX-MAN architecture.

Unlike nested workflows, a DX-MAN composite service enables an entirely
new world of alternative workflows as shown in Fig. 14. For example, the user
may want the following workflow before sleeping: turn the lights off and, if it all
the lights were successfully turned off, close the windows and turn the dehumid-
ifier off. To choose that workflow from C1, the user assigns the execution order
shown in Fig. 16. A condition is represented as a JSON document and specifies
the name of the parameter, the operator (only ”==” and ”!=” are supported at
this stage) and the value to compare with. For example, the condition for GUA0
would be {“parameterName”:“lightsStatus”,“operator”:“==”,“value”:“off”}.

open close
[0]

dehumidi�erOn dehumidi�erO�
[1]

lightsOn lightsO�
[0]

SEQ1

GUA0

[all lights o�?] =

Fig. 16. Choosing a workflow before sleeping.

6 Discussion

We presented a preliminary version of DX-MAN in another paper [3]. In this
paper, we present additional semantics that allows the selection of workflows at



run-time. We also present a comparison between DX-MAN and current compo-
sition approaches in the context of user-centric IoT applications.

Developers can use current composition semantics (e.g., orchestration or
choreography) to define a workflow that accommodates as many run-time sce-
narios as possible. However, it is impossible for them to predict all possibilities
during the design-phase and, even if they try, the resulting workflow would po-
tentially require a lot of computing resources, because it becomes larger, more
complex and cumbersome as the number of possible scenarios increases. This is
in fact highly likely in IoT applications where the number of available services
is always growing.

Although automatic service composition mechanisms could mitigate the ever
changing run-time user requirements, their overhead increases exponentially as
the number of available services grows [9]. Thus, they are only suitable for a small
number of services and straightforward workflows. A large number of services
would require a user to wait hours (or even days) before getting a responsive
application. For that reason, current automatic composition mechanisms are not
yet ready to tackle the imminent scale of user-centric IoT applications.

Even though it is focused on static composition, DX-MAN provides semantics
to enable multiple workflows at run-time. In some cases, it may be necessary to
change a DX-MAN composition at run-time so as to support even more scenar-
ios. This can be done using automatic composition or dynamic reconfiguration
techniques on top of DX-MAN semantics.

In contrast to other composition approaches, DX-MAN does not entail much
composition overhead, since there is no need to deploy individual workflows,
but only a composite service from which a workflow is chosen (not created) at
run-time. In fact, IFTTT or any similar tool can be used on top of DX-MAN to
choose a workflow, according to a set of user-defined rules.

At this point, the reader may notice that there are clearly many challenges
for future work. We discuss some of them below.

Automatic service composition. We believe that our work opens new opportu-
nities for automatic service composition, as this technique can be applied on
top of DX-MAN semantics. Services (with all their implicit workflows) can be
composed to find more possible workflows at run-time, rather than attempting
to construct only one workflow at a time. We are particularly interested in de-
centralized approaches for automatic service composition, since decentralization
is crucial to unleash the full potential of IoT.

Self-adaptive behaviour. Self-adaptive mechanisms can built on top of DX-MAN
to autonomically choose a workflow out of the alternative ones, e.g., based on
QoS requirements. A DX-MAN composite service can mutate so as to accom-
modate changes in the context. However, changing a composition at run-time is
not trivial, specially when the response time is critical for the user.

Workflow validation at run-time. As a sequencer connector currently allows the
invocation of any operation in any order, there is a need for avoiding invalid



sequences (e.g., opening a window three consecutive times). At this stage, it is
up to the user to decide which workflows are valid.

Concurrency. DX-MAN only provides support for basic concurrency in paral-
lel invocations. However, many IoT scenarios require active services that can
be operating on their own (e.g., using a scheduler). Extending DX-MAN with
concurrent capabilities requires further investigation.

Data flows at run-time. In DX-MAN, data flow is orthogonal to control flow.
Current DX-MAN semantics only allow one data flow for every possible workflow
within a composite service. For that reason, at this stage DX-MAN can only be
used in scenarios where data flow is unimportant, e.g., actuator triggering. In
more complex IoT scenarios, different data flows per workflow will be required.
Nevertheless, determining data flows at run-time according to user requirements
is a challenging task.

7 Conclusions and Future Work

Users may want to customize their own IoT applications. However, current com-
position approaches allow the definition of only one workflow at a time. This is
not desirable for IoT applications where run-time user requirements are always
changing. Although automatic composition is a promising technique to tackle
this problem, it is still based on existing composition semantics, thus allowing
the definition of only one workflow at a time. For that reason, we need to ac-
commodate run-time user requirements as much as possible during the design
phase. In this paper, we presented DX-MAN as a solution for this issue.

The algebraic nature of DX-MAN is suitable to mitigate the impact of change
in run-time user requirements. We showed with a small example how DX-MAN
allows the definition of (general) composite services that contain multiple work-
flows. Users only choose the workflow they need out of the alternative ones,
rather than resort to the cumbersome and inefficient task of creating individual
workflows at run-time.

In the short term, we plan to extend the DX-MAN semantics, in order to
enhance the flexibility of composite services. Additionally, as workflows are cho-
sen using JSON documents at this stage, we would like to allow the selection of
workflows in a more interactive way (e.g., using a visual tool or voice commands).
We are in fact currently working on a visual Web editor to fill this gap.

We believe that DX-MAN opens new research directions to tackle the chal-
lenges that user-centric IoT applications pose. Given the novelty of DX-MAN, in
what creative ways can you define composite services during the design-phase,
in order to accommodate as much as possible run-time user requirements?
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Abstract—Autonomic IoT systems require variable behaviour
at runtime to adapt to different system contexts. Building suitable
models that span both design-time and runtime is thus essential
for such systems. However, existing approaches separate the
variability model from the behavioural model, leading to syn-
chronization issues such as the need for dynamic reconfiguration
and dependency management. Some approaches define a fixed
number of behaviour variants and are therefore unsuitable for
highly variable contexts. This paper extends the semantics of
the DX-MAN service model so as to combine variability with
behaviour. The model allows the design of composite services
that define an infinite number of workflow variants which can
be chosen at runtime without any reconfiguration mechanism.
We describe the autonomic capabilities of our model by using a
case study in the domain of smart homes.

Index Terms—Internet of Things, autonomic systems, DX-
MAN, exogenous connectors, algebraic service composition, work-
flow variability, models@runtime, smart homes, self-adaptive

I. INTRODUCTION

The Internet of Things is an emerging paradigm that
envisions the interconnection of everything through novel
distributed services which are combined into complex work-
flows using service composition mechanisms. Workflows
represent IoT systems composed of billions of services with
an overwhelming number of interactions. Thus, it becomes
infeasible to manually manage such systems as the scale and
complexity increases.

Autonomicity is a crucial desideratum for the management of
complex large-scale IoT systems operating in highly dynamic
environments. It is a property that allows adapting behaviour
at runtime to different contexts with minimal or no human
intervention. Autonomicity thus requires workflow variability
for the definition of alternative system behaviours.

Although relatively trivial in static IoT systems, changing
behaviour at runtime in highly variable environments is a
complex and challenging task. For that reason, variability-
based autonomicity has been an active research topic for
software engineering in the last decade [1], [2]. Although
there are many proposals for managing variability, they fail at
incorporating variability in behavioural elements (i.e., in the
solution space) while avoiding the cumbersome time-consuming
task of dynamic reconfiguration [1], [3].

This paper extends the semantics of the DX-MAN ser-
vice model [4], [5], [6] with autonomicity capabilities for
IoT systems. The semantics allows adapting workflows at
runtime to different contexts without requiring any dynamic
reconfiguration mechanism. Our contribution is thus two-fold:

(i) a model that combines variability with behaviour in the
solution space, while providing an infinite number of workflow
variants for composite IoT services; and (ii) an approach that
avoids dynamic reconfiguration (by using non-deployable and
executable only workflows).

The rest of the paper is structured as follows. Sect. II
describes the main constructs of the DX-MAN model. Sect. III
presents the mechanism to realize workflow variability. Sect.
IV describes the autonomicity dimension of the model. Sect.
V presents a case study to show autonomicity in a case study.
Sect. VI describes the related work. Finally, Sect. VII presents
the conclusions and the future work.

II. DX-MAN MODEL

DX-MAN is an algebraic model for IoT systems where
services and exogenous connectors are first-class entities. An
exogenous connector is a deployable entity that executes
multiple workflows with explicit control flow. A service S
is a stateless distributed software unit with a well defined
interface, which can be either atomic (A) or composite (C):

S := A|C (1)

A service defines a workflow space W which is a non-empty
(finite or infinite) set, where each w ∈W is a workflow variant
that represents an alternative service behaviour. The workflow
space constitutes the service interface, and is semantically
equivalent to a service S:

S ≡W = {w1, w2, . . .} (2)

A. Atomic Services
An atomic service A is a tuple 〈IC,O〉 consisting of an

invocation connector IC and a non-empty finite set O of j
primitive operations (Fig. 1). It is formed by connecting an
invocation connector with a computation unit.

Fig. 1. A DX-MAN atomic service defines j workflows: |W | = j.

A computation unit is not allowed to call other computation
units, and is the place where j service operations are imple-
mented using well-known technologies such as REST. To satisfy



an external request, an invocation connector is responsible for
executing a workflow in W .

Fig. 1 shows that an atomic service Sa ∈ A defines an atomic
workflow space Wa s.t. |Wa| = j and each wi∈[1,j] ∈ Wa is
a workflow invoking an operation opi∈[1,j] ∈ O. The atomic
workflow space Wa is the interface of Sa.

B. Algebraic Composition

Our notion of algebraic service composition is inspired by
algebra where functions are hierarchically composed into a
new function of the same type. The resulting function can be
further composed with other functions, yielding a more complex
one. Algebraic service composition is then the operation by
which a composition connector composes k services into a
more complex service. The result is a (hierarchical) composite
service whose interface is constructed from the sub-service
interfaces. Formally, a composite service is a tuple 〈CC,W〉
consisting of:
• a composition connector CC that invokes multiple work-

flows defined by the composite service, and
• a non-empty finite W set which is a family of non-empty

(finite of infinite) sets of sub-workflow spaces s.t. each
Wi ∈ W, i = 1, . . . , k is a workflow space of either an
atomic sub-service or a composite sub-service.

A composite service is a variation point which defines a
new non-empty (finite or infinite) workflow space W using
the sub-workflow spaces W via algebraic references (Fig. 2).
W serves as the composite service interface, and is available
to more complex composites.
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Fig. 2. Algebraic Composition for a Smart Home.

Fig. 2 depicts a two-level DX-MAN composition for a smart
home with four atomic services (i.e., WashingServ, Oven, Ro-
tatingServ and FrontWheel) and three composite services (i.e.,
SpinComposite, VacuumRobot and SmartHome). The services
are described in Sect. III. For the sake of clarity, we omit the
internal structure of SpinComposite, but we show its interface:
the composite workflow space Wspin. The interfaces of Wash-
ingServ, Oven, RotatingServ and FrontWheel are the atomic

workflow spaces Wwa = {wclothes, wdishes}, Wov = {wcook},
Wrt = {wright, wleft} and Wwh = {wgo}, respectively. The
services RotatingServ, FrontWheel and SpinComposite are
composed into VacuumRobot (using the composition connector
SEQrobot, see Fig. 3). Thus, the interfaces Wrt, Wwh and
Wspin are available in VacuumRobot which, in turn, defines the
composite workflow space Wrobot. Then, WashingServ, Oven
and VacuumRobot are composed into the top-level composite
SmartHome (using the composition connector PARhome, see
Fig. 6). So, SmartHome has available the interfaces Wwa, Wov

and Wrobot, and yields the composite workflow space Whome.

C. Workflow Selection
A composition connector CC is a variability operator that

defines the alternative behaviours of a composite service. It is
a function that defines a workflow space W , given a family of
sub-workflow spaces W:

CC :W 7→W (3)

A composition connector has access to atomic sub-workflow
spaces, but not to composite sub-workflow spaces. This is
because a composite sub-service is a black box whose behaviour
is unknown. Hence, a composition connector operates on n
elements to define sequential, branching or parallel workflows
for a composite c ∈ C. The total number of elements n is the
sum of the cardinality of atomic sub-workflow spaces and the
number of composite sub-services:

n =

|Wc|∑

i=1

{
|W i

c | sic ∈ A
1 sic ∈ C

(4)

where Wc ∈ W is the set of sub-workflow spaces of the
composite c, n ≥ |Wc| and W i

c ∈ Wc is the workflow space
of a sub-service Sic.

At design-time, an abstract workflow tree is automatically
created for a composite service, as a result of composition. It
represents the hierarchical control flow structure of a composite
service, where n leaves are atomic workflows, composite
workflow spaces or any combination thereof (e.g., Fig. 3).
The leaves are also referred to as the elements of a workflow
tree. The edges represent customizable control flow parameters
(e.g., execution order or conditions) which are determined
by the composition connector being used. In our current
implementation, abstract workflow trees are JSON objects.

A concrete workflow tree enables the selection of a workflow
variant at runtime. It particularly sets specific values for the
customizable control flow parameters of an abstract workflow
tree, in order to select the elements (i.e., atomic workflows
or composite workflow spaces) to include in a workflow out
of n possibilities (e.g., Fig. 4). In our current implementation,
concrete workflow trees are also JSON objects.

III. COMPOSITION CONNECTORS AS VARIABILITY
OPERATORS

This section describes some of the composition connectors
currently supported by DX-MAN, namely sequencer, paral-
lelizer and exclusive selector. Although the inclusive selector is
also supported, we do not describe it due to space constraints.



A. Sequencer

A sequencer connector SEQ uses the Kleene star operation
to allow the repetition of n elements, resulting in infinite
sequences. It then defines an infinite workflow space for
a composite service s.t. each wi ∈ W, i = 1, . . . ,∞ is a
sequential workflow. A sequencer is a function defined as:

SEQ :W 7→W (5)

where |W | =∞.
1) Example: Consider a vacuum robot that cleans a room

in a smart home using a composite service VacuumRobot. It
relies on two atomic services and one composite service to
navigate efficiently, as shown by Fig. 3. The atomic service
RotatingServ provides two operations for turning the robot to
the left and right, respectively. The atomic service FrontWheel
offers the operation go to move the robot one unit forward.
There is also a SpinComposite service that enables the robot to
spin 360◦, in order to clean the dirtiest areas of the room. For
clarity, we do not show the internal structure of SpinComposite.
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Fig. 3. A sequencer defines∞ workflows for a composite service: |W | =∞.
In this example, there are ∞ sequential workflows for Vacuum Robot.

The sequencer connector SEQrobot composes the services
RotatingService, FrontWheel and SpinComposite into Vacuum-
Robot, resulting in the infinite workflow space Wrobot. Fig.
3 illustrates a few workflow variants for VacuumRobot. For
instance, the variant wrobot4 indicates that the atomic workflow
wleft is executed before the composite workflow space Wspin

which, in turn, is executed before the atomic workflow wgo.
Note that Wspin cannot be accessed by the VacuumRobot since
the SpinComposite sub-service is a black box entity which can
take any possible behaviour. Instead, only atomic workflow
spaces (i.e., Wrt and Wwh) can be accessed.

2) Workflow Selection: An abstract workflow tree of a
sequencer requires the specification of the execution order
for n elements. An execution order is a non-negative integer
that reflects the position of an element in a workflow. As a
sequencer allows repetition, an element requires an order list
[order1, order2, . . .], as shown by Figs. 4 and 5. Elements with
no order lists are not included in a workflow and, to ensure
consistent sequences, an order cannot appear in multiple lists.

Fig. 4 shows an example of a concrete workflow tree for
choosing the sequential workflow wrobot3 for the composite
VacuumRobot. The element wright is left out as it does not
have any order list. Fig. 5 illustrates another example for
the selection of the sequential workflow wrobot1 which now
excludes the composite workflow space Wspin.

=
[1,3]

wright wleft wgo Wspin

[0] [2]

Fig. 4. Concrete workflow tree for choosing the sequential workflow wrobot3

for the V acuumRobot composite.

=
SEQrobot

wright wleft wgo
[2] [1][0]

[0]

[1]

[2]

Fig. 5. Concrete workflow tree for choosing the sequential workflow wrobot1

for the V acuumRobot composite.

B. Parallelizer

A parallelizer connector PAR allows the execution of
multiple elements in parallel. As it supports element repetition,
it defines∞ parallel workflows for a composite service s.t. each
wi ∈W, i = 1, . . . ,∞ is a workflow executing all the elements
in parallel. Formally, a parallelizer is a function defined as:

PAR :W 7→W (6)

where |W | =∞.
1) Example: Consider the composition depicted in Fig. 6

where SmartHome is the top-level composite which is able to do
the chores for a user. The atomic service WashingServ provides
the operations washClothes and washDishes for washing clothes
and washing dishes, respectively. The atomic service Oven
offers the operation cookMeals for cooking breakfast, lunch and
dinner in a specific day. The composite service VacuumRobot,
previously presented in Fig. 3, is also available for the smart
home. For clarity concerns, we omit the internal structure of
VacuumRobot and we only show the respective interface.

A parallelizer connector PARhome composes WashingServ,
Oven and VacuumRobot into SmartHome, resulting in the



workflow space Whome of infinite parallel workflows. Some
workflow variants are displayed in Fig. 6. For instance, the
variant whome2 executes the atomic workflows wclothes and
wcook in parallel. whome4 is another variant that leverages the
support for repetition so as to execute the atomic workflow
wcook in three different tasks. This is useful for cooking three
meals for three different people simultaneously.
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Fig. 6. A parallelizer defines∞ workflows for a composite service: |W | =∞.
In this example, there are ∞ parallel workflows for SmartHome.

2) Workflow Selection: The abstract workflow tree of a
parallelizer allows the selection of elements to include in
a parallel workflow, and there are n elements that can be
selected with repetition allowed. Each element requires the
specification of a natural number that represents the number of
tasks for that particular element, and elements with no tasks
are excluded from the workflow being constructed. A task
basically represents the number of times an element is repeated
in a parallel workflow. So, at runtime it is an invocation thread.

Fig. 7 shows a concrete workflow tree for choosing the
variant whome5. It defines three tasks for the atomic workflow
wcook, one task for the atomic workflow wclothes and another
one for the atomic workflow wdishes. This means that the smart
home washes dishes, prepares three meals and washes clothes
at the same time. The composite workflow space Wrobot is
excluded from whome5. Fig. 8 shows another concrete workflow
tree for choosing whome3 which only includes the composite
workflow space Wrobot and the atomic workflow wclothes.

C. Exclusive Selector

An exclusive selector XSEL defines a workflow space with
2n − 1 exclusive branching workflows for a composite service.

=wclothes wdishes wcook Wrobot

|1| |1| |3|

Fig. 7. Concrete workflow tree for choosing the parallel workflow whome5

for the SmartHome composite.

=wclothes wdishes wcook Wrobot

|1| |1|

Fig. 8. Concrete workflow tree for choosing the parallel workflow whome3

for the SmartHome composite.

Each workflow wi ∈W, i = 1, . . . , (2n − 1) contains at least
one element out of n possibilities, and chooses a single element
to be executed. An exclusive selector is a function defined as:

XSEL :W 7→W (7)

where |W | = 2n − 1.
1) Example: Consider a speaker controlled by a composite

service Player for playing audio in a room. It has an atomic
service Music that provides two operations for playing Jazz
and playing pop music, respectively. There is also an atomic
service News for reading the most recent news, and a composite
service WeatherReport for listening to the weather forecast.
For clarity, we omit the internal structure of WeatherReport.

Fig. 9 shows that the exclusive selector XSELplay composes
the services Music, News and WeatherReport into Player. The
composition process results in the workflow space Wplay of
24 − 1 = 15 exclusive branching workflows, as there are four
elements available: the atomic workflows wjazz , wpop and
wnews, and the composite workflow space Wweather. Fig. 9
illustrates some workflow variants for the composite Player.
For instance, the workflow wplay15 may execute wjazz , wpop
or Wweather. Another variant is wplay6 which chooses to play
either jazz or pop.

2) Workflow Selection: The abstract workflow tree of an
exclusive selector chooses the elements to include in a workflow
out of n possibilities. To do so, a binary tag must be specified
for each element, so elements tagged with One are included,
whilst elements tagged with Zero are not included. A single
condition must be specified for the entire branch because an
exclusive selector applies 1 condition to multiple elements,
thereby choosing only one element at a time. Thus, the
maximum number of possible executions is the same number
of elements included in the workflow, plus an empty execution.
The empty execution means that no element is executed
when the condition holds false at runtime. In our current
implementation, we use Java interfaces for defining conditions.

Fig. 10 shows a concrete workflow tree for choosing the
variant wplay15 which excludes the atomic workflow wnews.
It applies a single condition to wjazz , wpop and Wweather for
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Fig. 9. An exclusive selector defines 2n − 1 workflows for a composite
service: |W | = 2n − 1. In this example, there are 24 − 1 = 15 exclusive
branching workflows for Player.

playing Jazz at nights, pop music on afternoons or the weather
forecast in the morning. wplay15 has four possible executions.

wjazz wpop wnews

Fig. 10. Concrete workflow tree for choosing the exclusive branching workflow
wplay15 for the Player composite.

Fig. 11 illustrates another concrete workflow tree for choos-
ing the workflow variant wplay3. It has a condition for playing
pop music if there are multiple users present, or listening to
the news when there is only one user. As it uses an if-else
condition, wplay3 enables only two possible executions.

wjazz wpop wnews

Fig. 11. Concrete workflow tree for choosing the exclusive branching workflow
wplay3 for the Player composite.

IV. EMERGENT BEHAVIOUR OF DX-MAN COMPOSITIONS
USING FEEDBACK CONTROL LOOPS

This section describes the mechanism that enables an
autonomous selection of workflow variants at runtime in
composite services.

In DX-MAN, workflow spaces represent the adaptation space
of a composite service, since they provide a wide range of
workflow variants, each representing a different behaviour.
Unlike existing approaches, DX-MAN does not require to link
the variability model with the behavioural model, as those
dimensions are mixed in the semantics of a composite service.

The selection of workflow variants (i.e., changing behaviour)
takes place at runtime whenever the context changes. This is
done by building the concrete workflow tree that best adapts
to the current context. For this, we use Monitoring, Analysis,
Planning, Execution and Knowledge (MAPE-K) [7] which
endow composite services with autonomicity. MAPE-K is a
feedback control loop consisting of multiple sensors, a monitor,
an analyzer, a planner, an executor, an effector and a knowledge
base. Fig. 12 shows that a MAPE-K loop manages a composite
service and collects information from the external context (e.g.,
the surrounding environment or user preferences). Remarkably,
autonomicity is an orthogonal dimension to control, data and
computation in the DX-MAN model.

Sensors E�ector

Monitor

Analyzer Planner

Executor
Knowledge

Base

MAPE-KExternal
Context

Managed Element

Composition
Connector
Composite
Service

Fig. 12. MAPE-K for DX-MAN.

The MAPE-K components are able to read and update the
knowledge base which stores relevant information for realizing
autonomic behaviour. By default, the knowledge base stores
the abstract workflow tree for the managed composite service.

The monitor uses sensor data to build a context model for the
external environment, which is used by the analyzer to decide
if a new behaviour is required. If so, the planner determines
the best workflow variant for the current context state, resulting
in a plan that is passed to the executor which transforms it
into a concrete workflow tree matching the structure of the
abstract workflow tree. Finally, the executor uses the effector
to change the behaviour of the managed composite service, by
executing the chosen concrete workflow tree. In our current
implementation, the context model, the context state, plans
and workflow trees are JSON documents. We do not show the
source code due to space constraints, but JSON samples are
available at https://gitlab.cs.man.ac.uk/mbaxrda2/dxman.

At runtime, control blocks when it reaches a composition
connector. Once a MAPE-K determines the “best” workflow
for a managed composite service, the executor resumes the
workflow execution by passing a concrete workflow tree to the
connector of the managed composite.



As every composite service is managed by a different MAPE-
K loop, any composite at any level in the hierarchy is able to
change its behaviour at runtime independently. This inevitably
requires ensuring consistency for the current workflow execu-
tion. Fortunately, dynamic workflow deployment is not required
since DX-MAN workflows are executable only. Whenever a
new workflow is required, the effector kills the thread of the
current workflow execution, thereby instantly stopping the sub-
workflows being executed by the managed composite. A new
thread is then created for the execution of the new workflow.

Workflow selection may potentially happen simultaneously at
multiple levels in the hierarchy. So, continuously changing sub-
workflows leads to an emergent behaviour of the whole system.
MAPE-K loops are continuously operating, even though control
flow has not yet reached the managed composition connector.
However, they can only change the composite service behaviour,
by executing a concrete workflow tree, when control flow has
passed through or is blocked in the managed connector.

A running IoT system is practically a complex workflow
consisting of sub-workflows s.t. each sub-workflow represents
a composite service behaviour. This is precisely due to the
hierarchical structure of a DX-MAN composition. By contrast,
MAPE-K loops are not structured hierarchically as they
never interact. Instead, they only select a workflow for the
managed composite service (at any level in the hierarchy)
and they execute new workflows (when control is blocked in
the managed composition connector) or replace an existing
workflow with a “better one” (when control has already passed
through).

V. CASE STUDY: SMART HOME

This section presents a case study in the domain of end-user
smart homes where the external context (e.g., user presence)
is always changing and users are always willing a quick
workflow selection. So, existing approaches for variability-
based autonomicity (see Sec. VI) are not suitable for smart
homes. This is because those approaches require time for
changing behaviour due to dynamic reconfiguration and/or
provide a limited number of variants which may not be suitable
for some contexts. We leverage the capabilities of DX-MAN
to avoid dynamic reconfiguration and provide a wide range of
workflow variants. The DX-MAN composition for our case
study is basically the composite service SmartHome described
in Sect. II and depicted in Fig. 2. Although we endow every
composite service with its own MAPE-K loop, this section just
focuses on the autonomicity of VacuumRobot and SmartHome.

A. Autonomic Vacuum Robot Composite

The goal of the VacuumRobot composite (Fig. 3) is to clean
a room as efficiently as possible by continuously changing
the robot trajectory. As it operates on a dynamic environment
where people is always moving, the robot changes trajectory
whenever an obstacle is detected. For that, a MAPE-K loop
chooses the most efficient trajectory (i.e., the best sequential
workflow) that cleans every accessible areas of the room while
avoiding collisions.

The MAPE-K is equipped with three range sensors that
perceive the external environment of the vacuum robot. The
infrared proximity sensor is used for detecting obstacles while
the robot moves around. A cliff sensor is important to avoid
driving over cliffs (e.g., stairwells or ledges) and a dirt sensor
detects the dirtiness level on the current position of the robot.

The MAPE-K knowledge contains information about the
surrounding map, in addition to the abstract workflow selection
tree of VacuumRobot. The map contains information about
obstacles and dirtiness levels in the room which are updated
by the monitor to improve future navigation, and is queried
when a new trajectory is required. We assume that the dirtiness
levels are determined by any existing approach (e.g., Poisson
processes [8]). We also assume that the map is bidimensional
where each position is a disk shape fitting the robot size, as
shown in [9]. In particular, a disk can be either an obstacle or
a free space with a (high or normal) dirtiness level.

[1,4]
wright wleft wgo Wspin

[0,2,5] [3]

Fig. 13. Possible behaviours for the VacuumRobot composite.

The analyzer determines if there is an obstacle in the current
robot position, and discovers new areas to cover. The planner
is notified when the analyzer detects an obstacle, and uses scan
matching online cell decomposition [10] for finding the best
trajectory. To ensure a harder cleaning, we modified such an
approach so as to enable trajectories where the robot spins on
the dirtiest areas of the room. This mechanism is out of the
scope of this paper.

The executor transforms the best trajectory into a sequence
of actions (i.e., the best sequential workflow variant) the robot
needs to carry out for the current context. For this, it uses
the abstract workflow tree to build a concrete workflow tree,
and then triggers the effector. Finally, the effector executes the
variant by passing the concrete workflow tree to the sequencer
SEQrobot. The current execution (if any) is overridden (i.e.,
stopped and replaced) by the new workflow variant. Fig. 13



shows two possible behaviours for the VacuumRobot composite
in two different contexts. Due to space constraints, the contexts
are fragments of the map presented in [9].

B. Autonomic Manager for the Smart Home Composite

The SmartHome composite does chores in parallel for a
user, while minimizing energy consumption and maximizing
tidiness. Its behaviour changes once a day and depends on
user preferences, changes in the external environment, and non-
functional properties of SmartHome elements. Table I shows
the annotated non-functional properties for wclothes, wdishes,
wcook and Wrobot. The userPresence property takes a binary
value to indicate whether the element should be executed when
the user is at home (i.e., One) or away (i.e., Zero). The energy
property defines the average discrete amount of energy (in Watts
per hour) required for the execution of an element. The tidiness
property determines the discrete level of tidiness resulting from
the execution of a specific element. The sum of all tidiness
values must be equal to One. It is also important to note that
the non-functional properties we assume can be much more
complex in other case studies.

Element UserPresence(u) Energy(e) Tidiness(t)

wclothes 0 500.0 0.25

wdishes 0 350.0 0.25

wcook 1 1300.0 0.10

Wrobot 0 150.0 0.40

TABLE I
NON-FUNCTIONAL PROPERTIES FOR THE ELEMENTS OF SmartHome.

The userPresence values depend on user-defined rules which
indicate to hoover and wash when the user is away, in order
to avoid accidents and noise disturbances. Thus, only wcook
has a userpresence of 1.

A workflow variant wi ∈ Whome includes v elements s.t.
v ≤ n, and its properties are computed using Equations 8,
9 and 10. The userPresence u(wi) is an average s.t. each
uxi , x = 1, . . . , v is the userPresence value of an element
x of wi. The energy consumption e(wi) is a sum s.t. each
exi , x = 1, . . . , v is the energy consumption of an element
x of wi. Similarly, the level of tidiness t(wi) is a sum s.t.
each txi , x = 1, . . . , v is the tidiness value of an element x of
wi. Thus, the workflow variant wi with all the elements of
SmartHome (i.e., v = n), provides the highest tidiness and the
highest energy consumption.

u(wi) =

v∑
x=1

uxi

v
(8)

e(wi) =
v∑

x=1

exi (9)

t(wi) =
v∑

x=1

txi (10)

The external context φ changes daily and is modeled by
setting the user presence u(φ), the current energy cost c(φ)

(in dollars per Watt-hour) and a threshold τ(φ) which defines
the maximum amount (in dollars) the user is willing to spend
for energy (in a given day). We particularly define utility
functions to express the quantitative level of satisfaction of
workflow variants for the current context [11]. Overall, the
objective is to minimize energy cost and maximize tidiness.
The utility functions range from [0,1] where 0 reflects the
worst satisfability and 1 means the opposite.

Equation 11 is the utility function f1 that computes the
suitability of a workflow variant wi ∈ Whome for the user
presence. Equation 11 describes a piecewise utility function f2
that determines how well wi minimizes energy costs. Finally,
Equation 13 is the utility function f3 that computes the
contribution to tidiness of wi.

f1(wi, φ) = 1− | u(φ)− u(wi) | (11)

f2(wi, φ) =

{
1− e(wi)·c(φ)

τ(φ) e(wi) · c(φ) < τ(φ)

0 e(wi) · c(φ) ≥ τ(φ)
(12)

f3(wi) = t(wi) (13)

Equation 14 computes the overall utility U(wi, φ) of a
workflow variant wi ∈ Whome for the current context φ.
The weights ω1, ω2 and ω3 define the preference of taking
into account user presence, the priority of considering the
energy cost and the preference of having a tidy environment,
respectively. They are continuous values in the range [0, 1] s.t. a
higher value indicates a higher preference. For our experiments,
ω1 = ω2 = ω3 = 1.

U(wi, φ) =
ω1 · f1(wi, φ) + ω2 · f2(wi, φ) + ω3 · f3(wi)

ω1 + ω2 + ω3
(14)

The behaviour of the SmartHome composite is controlled by
a MAPE-K loop which has three sensors collecting information
from the external context φ, namely user presence, current
energy costs (from the energy supplier) and a threshold value
(continuously changed by the user). In addition to the abstract
workflow tree of SmartHome, the knowledge base includes the
aforementioned utility functions, as well as context values and
selected workflows from previous days. It also contains the
values of the non-functional properties presented in Table I.

The monitor is executed once a day, and builds a relationship
between context properties and sensor values. Some examples
of context models are presented in Table II. The analyzer
receives a context model as an event, and triggers an Event-
Condition-Action (ECA) rule. The rule decides a new plan is
required if the current context values are different from the
previous day; otherwise, it executes the plan from the previous
day and no planning phase is performed.

As the size of Whome is infinite (Fig. 6), evaluating all
workflow variants is infeasible. For that reason, we propose
a planner using a metaheuristic approach which finds the
most suitable workflow for a specific context. For clarity, we
reduce the space search by omitting element repetition for every
wi ∈Whome. So, elements of selected workflow variants have



Day ( ) UserPresence(u ) EnergyCost(e ) Threshold(τ )

0 0.00014 0.2

1 0.00007 0.6

1 0.00012 0.3

0 0.00013 0.5

ϕ ϕ

1

2

3

4

ϕϕ

TABLE II
POSSIBLE CONTEXT MODELS.

only one task. As SmartHome has four elements (i.e., wclothes,
wdishes, wcook and Wrobot), there would be 24 − 1 = 15
workflow variants in Whome. Although |Whome| is relatively
small, we use a genetic algorithm to show what a planner
would do for larger workflow spaces.

A chromosome represents a workflow variant with four
boolean genes.1 Fig. 14 shows that the order of genes is manda-
tory as each gene represents an element of the SmartHome
composite, where a gene Zero means that the element is
not selected, whilst a gene One entails that the element has
one task. For instance, the chromosome 0101 represents a
workflow variant for executing wdishes and Wrobot in parallel.
A population is thus a set of workflow variants representing
possible solutions for the current context φ. Each variant is
evaluated by the utility function presented in Equation 14.

wclothes wdishes wcook Wrobot

|1|

0 1 0 1

|1|

Day ( ) Concrete Work�ow Tree

1

2

ϕ Chromosome Behaviour

1 1 1 1

Fig. 14. Possible behaviours for the SmartHome composite.

After two workflow variants are selected in a generation,
a one-point crossover operator is used. The crossover point
is randomly selected and replaces the gene of one variant
with the gene of another one. The result is two children
representing two new workflow variants for the next generation.
To increase diversity, we introduce mutation by randomly
selecting a gene and flipping it from zero to one, or viceversa.
For our implementation, we use the NSGA-II algorithm and
the MOEA framework. Our source code is available at https:
//gitlab.cs.man.ac.uk/mbaxrda2/dxman. As this is a relatively
small problem, the parameters of the genetic algorithm are
as follows: population size is 8, crossover probability is 0.5,
mutation probability is 0.2 and number of iterations is 20.

The result of the planner is a chromosome representing the
optimal parallel workflow for the current context. The executor
then creates a concrete workflow tree that fits the plan. Fig. 14

1For infinite workflow spaces, we could consider a chromosome where each
gene is a non-negative integer in [0,∞].

shows the behaviours of SmartHome for adapting to the context
of days 1 and 2 (described in Table II). We only show two
behaviours due to space constraints. To change the behaviour
of the SmartHome composite, the effector passes the respective
concrete workflow tree to the parallelizer PARhome at runtime.

VI. RELATED WORK

The related work is classified into two categories con-
cerning workflow variability: solution space variability and
Models@Runtime. We omit approaches using variability at the
planning-level (e.g., [12]) as they do not propose any model
constructs for supporting workflow variability, but they are
built on top of existing component models with reconfiguration
capabilities (e.g., Fractal [13]).

A. Solution Space Variability

The solution space captures variability at the level of
composition constructs of either component models or process
languages. In particular, components models define variation
points using parametric variability or enumerative variabil-
ity. Approaches using parametric variability [14], [15], [16]
manually define a fixed number of behaviour variants at the
implementation-level during design-time. Hence, there is only
one workflow with multiple branching structures. Furthermore,
dynamic reconfiguration is needed to change the composition
structure at runtime.

Only FX-MAN [17] enumerates all possible variants in the
solution space at design-time. However, it does not support
service composition, requires variation generators on top of
compositions, and does not addresses variability of control flow
(i.e., workflow variability) and workflow selection at runtime.

Approaches extending Process Modeling Languages allow
the definition of control flow constructs (e.g., activities or
gateways) as variation points whose variants are realized via
model transformations [2]. Most of the approaches [18], [19],
[20], [21] support control flow variability only at conceptual
level as they operate on non-executable models. Only few
approaches [22], [23] support control flow variability via exe-
cutable models (e.g., YAWL or BPEL). The main drawback is
that they operate on a single flat workflow which is customized
by adding, removing or replacing business process fragments
via reconfiguration rules. At runtime, workflows are customized
using process flexibility (i.e., dynamic reconfiguration) [24].

Other approaches [25] extend business processes with
support for parametric variability. However, they also require
dynamic binding at runtime and the number of variants are
limited as they are manually fixed at design-time.

B. Models@Runtime

Traditional Software Product Lines (SPL) [26] enable the
modeling of families of related products (i.e., workflows).
As variability is separated from the behavioural model, SPL
requires linking a non-executable variability model with an
executable software architecture. To do so, a developer needs
to implement the product in such a way that the software



architecture matches the selected features. So, SPL naturally
lacks mechanisms for changing behaviour at runtime.

Dynamic Software Product Lines (DSPL) [27] change
behaviour at runtime whenever the context changes, by using
models@runtime [28] to causally connect a variability model
(typically a feature model [29] or an orthogonal variability
model [30]) with a behavioural model (typically architectural
units). To change behaviour, they bind variation points at
runtime by selecting (i.e., activating or deactivating) features
that best adapt to the current context. Thus, a set of features
represents a behaviour variant, which is transformed into a
software architecture using a transformation mechanism [29],
[31]. Undoubtedly, such a mechanism increases the overhead
for changing behaviour at runtime. Furthermore, DSPL requires
dynamic reconfiguration of the running composition, as they
also separate variability from behaviour.

Dynamic reconfiguration includes code substitution (e.g.,
parametrization or pre-processor directives) [32], [33], dy-
namic aspect weaving [34], [29], [35], [36], [1], [36], en-
abling/disabling services and connectors [37], [3], and compo-
nent substitution [38], [39].

C. Discussion

Parametric variability is only suitable when all variants can
be defined and implemented in advance. However, IoT systems
require plenty of different alternative behaviours for adapting
to the ever changing context, even though they operate under
closed environments. For that reason, parametric variability is
inconvenient for highly dynamic IoT environments.

Remarkably, DX-MAN does not require the manual defi-
nition of alternative behaviours since an infinite number of
workflow variants simultaneously exist at the conceptual level
of a composite service. As it is infeasible to implement
and deploy infinite workflow variants, workflows are non-
deployable and executable only. Exogenous connectors are
the actual deployable entities (cf., [4]) which coordinate the
execution of multiple workflow variants. Thus, our approach
does not operate on a single flat workflow, but on a multi-level
composite where there is a workflow space (with multiple
workflows) at every level of the hierarchy.

Constraints are important to filter out the workflows that
a designer considers invalid under a closed environment.
Hence, DX-MAN supports the definition of constraints in
a similar fashion to feature models, with the difference that
constraints are directly applicable to system’s behaviour. DX-
MAN currently supports topological sorting (for sequencers)
and logical constraints (for parallelizers). We do not explain
them due to space constraints.

Models@runtime separate variability and behaviour to
allow an independent reasoning of these concerns. However,
as scale increases and dependencies become overwhelming,
the relationship between features and architectural artefacts
becomes unmanageable. Hence, models@runtime face several
problems when coping with dependencies. Moreover, the
separation between variability and behavior requires dynamic
reconfiguration to maintain a causal relationship between both

dimensions. Dynamic reconfiguration is undesirable for highly
dynamic IoT environments, since it takes time to decide the
actions to be done, performing those actions, ensuring state
consistency, checking safeness and redeploying the running
composition. Remarkably, DX-MAN does not require any
means to connect variability with behaviour as those dimensions
are mixed in the definition of composite services, thereby
avoiding the need of dynamic reconfiguration.

We previously presented a preliminary version of DX-
MAN (cf. [5]). In this paper we described new semantics
for supporting variability using workflow spaces. We also
presented detailed examples to explain autonomicity, and a new
composition connector called exclusive selector. Furthermore,
we extended DX-MAN with capabilities for changing behaviour
at runtime using MAPE-K loops.

A MAPE-K loop controls the behaviour of a composite
service and is defined according to the expected goal of the
managed composite. We particularly focus on the executor
component which do not perform dynamic reconfiguration, but
only execute a concrete workflow tree (i.e., a workflow variant)
for adapting to different contexts.

Although our examples show autonomicity only in the
context of IoT, DX-MAN can be used for other domains such
as robotics, unmanned space or e-commerce. It is important
to mention that we emphasize on the semantics of our
model, rather than focusing on a particular implementation.
Nevertheless, an implementation of DX-MAN is available at
https://gitlab.cs.man.ac.uk/mbaxrda2/dxman.

VII. CONCLUSIONS AND FUTURE WORK

This paper extended the semantics of the DX-MAN model
by mixing variability with behaviour in composite services. In
particular, composition connectors are variability operators that
define composite workflow spaces containing an infinite number
of workflow variants which represent alternative composite
service behaviours. Thus, composite services define an infinite
number of Turing machines at once in the design phase.

A MAPE-K manages a composite service behaviour and
selects the workflow variant that best adapts to the current
context. As workflows are non-deployable and executable
only, the executor changes a composite service behaviour
by executing the selected variant instead of dynamically
reconfiguring the whole workflow. The variant is a concrete
workflow tree built at runtime from an abstract workflow tree
(defined at design-time). Composition connectors are the actual
deployable entities which coordinate the execution of multiple
workflows, thereby reusing the same deployment configuration
for multiple executions.

We demonstrated the autonomic capabilities of DX-MAN
using a case study in the domain of smart homes. Our results
indicate that DX-MAN is a promising model for autonomic
IoT systems. Nevertheless, there are some open issues.

DX-MAN currently enables control flow variability, making
it suitable for actuating operations that do not require any
data, e.g., switching the lights on. We plan to investigate novel



ways of incorporating data flow variability by leveraging the
separation of autonomicity, control, data and computation.

DX-MAN is suitable for closed environments only where
the designer understands the context in which the system
is deployed. We are currently investigating novel ways to
dynamically evolve a DX-MAN composition, so as to enable
the emergence of new workflow spaces at runtime. Evolution
is indeed another important characteristic of autonomic IoT
systems, in addition to workflow variability.
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Abstract—With the advent of the Internet of Things (IoT), scal-
ability becomes a significant concern due to the huge amounts of
data generated in IoT systems. A centralized data exchange is not
desirable as it leads to a single performance bottleneck. Although
a distributed data exchange removes the central bottleneck, it
has network performance issues as data passes among multiple
coordinators. A decentralized approach is the only solution that
fully enables the realization of efficient IoT systems, since there
is no single performance bottleneck and network overhead is
minimized. In this paper, we present an approach that leverages
the semantics of DX-MAN for realizing decentralized data flows
in IoT systems. The algebraic semantics of such a model allows
a well-defined structure of data flows which is easily analyzed
by an algorithm that forms a direct relationship between data
consumers and data producers. For the analysis, the algorithm
takes advantage of the fact that DX-MAN separates control
flow and data flow. Thus, our approach prevents passing data
alongside control among multiple coordinators, so data is only
read and written on a decentralized data space. We validate
our approach using smart contracts on the Blockchain, and
conducted experiments to quantitatively evaluate scalability. The
results show that our approach scales well with the size of IoT
systems.

Index Terms—Internet of Things, decentralized data flows,
Blockchain, DX-MAN, exogenous connectors, scalability, sepa-
ration between control and data, algebraic service composition

I. INTRODUCTION

The Internet of Things (IoT) envisions a world where
everything will be interconnected through distributed services.
As new challenges are forthcoming, this paradigm requires a
shift in our way of building software systems. With the rapid
advancement in hardware, the number of connected things is
increasing considerably, to the extent that scalability becomes
a significant concern due to the huge amounts of data involved
in IoT systems. Thus, IoT services must exchange data over
the Internet efficiently.

Although a centralized data exchange approach has been
successful in enterprise systems, it will easily cause a bottleneck
in IoT systems which potentially generate a huge amount
of data continuously. To avoid the bottleneck, a distributed
approach can be used to distribute the load of data over multiple
coordinators. However, this would introduce unnecessary
network overhead as data is passed among many coordinators.

A decentralized data exchange approach is the most efficient
solution to tackle the imminent scale of IoT systems, as it

achieves better response time and throughput by minimizing
network hops [1], [2], [3], [4], [5], [6], [7]. However, exchang-
ing data among loosely-coupled IoT services is challenging,
especially in resource-constrained environments where things
have poor network connection and low disk space.

Moreover, constructing data dependency graphs is not trivial
when control flow and data flow are tightly coupled. The
separation between control and data is necessary because
it allows a separate reasoning, monitoring, maintenance and
evolution of these concerns [8]. Consequently, an efficient data
exchange approach can be done without considering control
flow, thereby reducing the messages sent over the Internet.

This paper proposes an approach that leverages the semantics
of DX-MAN [9], [10] for the realization of decentralized
data flows in IoT systems. The algebraic semantics of such a
model allows a well-defined structure of data flows which is
easily analyzed by an algorithm that forms a direct relationship
between data consumers and data producers. For the analysis,
the algorithm particularly takes advantage of the fact that DX-
MAN separates control flow and data flow.

The rest of the paper is organized as follows. Sect. II
introduces the semantics of the DX-MAN model. Sect. III
describes DX-MAN data flows and Sect. IV presents the
algorithm that analyzes such data flows. Sect. V presents the
implementation of our approach. Sect. VI outlines a quantitative
evaluation of our approach. Finally, we present the related work
in Sect. VII and conclusions in Sect. VIII.

II. DX-MAN MODEL

DX-MAN is an algebraic model for IoT systems where
services and exogenous connectors are first-class entities. An
exogenous connector is a variability operator that defines
multiple workflows with explicit control flow, while a DX-
MAN service is a distributed software unit that exposes a set
of operations through a well-defined interface.

An atomic service provides a set of operations and it
is formed by connecting an invocation connector with a
computation unit. A computation unit represents an actual
service implementation (e.g., a RESTful Microservice or a
WS-* service) and it is not allowed to call other computation
units. As a consequence of the algebraic semantics, the interface
of an atomic service has all the operations in the computation
unit, as shown by the red arrows in Fig. 1(a). An invocation



connector defines the most primitive workflow which is the
invocation of one operation in the computation unit.

Atomic 
service
Composite
service

Composition Connector Adaptation
Connector

Invocation Connector

Computation
Unit

(a) Atomic
 Service

(b) Composition
 Connector

(c) Composite
 Service

Fig. 1. DX-MAN Model.
Our notion of algebraic service composition is inspired by

algebra where functions are hierarchically composed into a
new function of the same type. The resulting function can be
further composed with other functions so as to yield a more
complex one. Algebraic service composition is the operation
by which a composition connector is used as an operator
to compose multiple services, resulting in a (hierarchical)
composite service whose interface has all the sub-service
operations. Thus, a top-level composite will always contain the
operations of all the atomic services (Fig. 1(c)). In particular,
there are composition connectors for sequencing, branching and
parallelism. A sequencer connector enables ∞ workflows for
the sequential invocation of sub-service operations. A selector
connector defines 2n − 1 branching workflows and chooses
the sub-service operations to invoke, such that n is the number
of operations in the composite service interface. A parallel
connector defines ∞ parallel workflows and executes sub-
service operations in parallel according to user-defined tasks.

Fig. 1(d) shows that an adapter can be connected with only
one exogenous connector. A looping adapter iterates over a
sub-workflow while a condition holds true, and a guard adapter
invokes a sub-workflow whenever a condition holds true. There
are also adapters for sequencing, branching and parallelism
which act over the operations of an individual atomic service.

Fig. 1(e) shows that data, control and computation are orthog-
onal dimensions in DX-MAN. Exogenous connectors enable
the separation between control flow and computation, since
they decouple service implementations from the (hierarchical)
composition structure. Unlike existing composition approaches,
data flow never follows control flow as exogenous connectors
only pass control to coordinate workflow executions. For further
details about the control flow dimension, we refer the reader
to our previous papers [9], [10].

III. DATA CONNECTORS

A DX-MAN operation is a set of input parameters and output
parameters. An input parameter defines the required data to
perform a computation, while an output parameter is the data
resulting from a specific computation. Although exogenous
connectors do not provide any operation (because they do
not perform any computation), some of them require data.
In particular, selector connectors, selector adapters, looping
adapters and guard adapters require input values to evaluate
boolean conditions. Exogenous connectors do not have any
parameters by default, but designers manually define parameters

for a chosen workflow. Workflow selection is out of the scope
of this paper, but we refer the reader to our previous paper on
workflow variability [10].

In addition to the operations created on algebraic composi-
tion, custom operations can be defined in composite services.
This is particularly useful when designers want to create a
unified composite service interface, in order to hide operations
created during algebraic composition.

A data connector defines an explicit data flow by connecting
a source parameter with a destination parameter. Fig. 2 shows
that an algebraic data connector is automatically created during
composition and is available for all the workflows defined by
a composite service. In particular, an algebraic data connector
connects two parameters vertically, i.e., bottom-up for outputs
and top-down for inputs. Fig. 3 shows the data connection
rules for our approach, where we can see that algebraic data
connectors can be defined in four different ways only.

Fig. 2. Algebraic data channels.
Fig. 2 shows that composite services encapsulate data flows

to ensure reusability. So, composite services are (black boxes)
unaware of data flows of other composites. Hence, there are
no data connections between parameters in different composite
services, but only data connectors within a composite.

A custom data connector is manually created for only one
workflow, which connects two parameters either vertically or
horizontally. Fig. 3 shows that designers can define custom
data connectors in 16 different ways.

Currently, DX-MAN supports custom data connectors for
the most common data patterns, namely sequencing and map-
reduce. For the sequencing pattern, the parameters of two
different operations are horizontally connected. Fig. 4 shows
an example of this pattern, where operation OpB requires data
from operation OpA. In particular, a custom data connector
links the output A0 with the input B0, while another custom
data connector connects the output A1 with the input B1. To
improve readability, we omit algebraic data connectors.

Fig. 4. An example of two sequential data flows.

A data processor is particularly useful when data pre-
processing needs to be done before executing an operation. It
waits until all input values have been received, then performs
some computation and returns transformed data in the form of
outputs. A mapper executes a user-defined function on each
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input value received and, similarly, a reducer takes the result
from a mapper and executes a user-defined reduce function
on inputs. A reducer can also be used in isolation to perform
straightforward computation such as combining data into a list.
Fig. 5 shows an example of the map-reduce pattern, where
operation opB requires the pre-processing of data generated by
operation opA. In particular, two custom data connectors link
the input A0 and the output A1 with the inputs of the mapper.
The output of the mapper is connected to the input of the
reducer and, similarly, the output of the reducer is connected
to the input B0. Note that A0 can only be connected from the
composite service operation, according to Fig. 3.

Fig. 5. An example of the map-reduce pattern.
In some workflows, algebraic data connectors may not be

needed. For that reason, such connectors can be removed
manually at the discretion of the designer. For example, in Fig.
5 all algebraic connectors were removed because data is only
needed for the realization of the map-reduce pattern.

IV. ANALYSIS OF DATA CONNECTORS

Algebraic service composition and the separation of concerns
are key enablers of decentralized data flows. In particular,
exogenous connectors provide a hierarchical control flow
structure that is completely separated from the data flow
structure enabled by data connectors. Thus, the data connections
in a composite service form a well-structured data dependency
graph that is easily analyzed at deployment-time by means
of Algorithm 1. To understand this algorithm, some formal
definitions are necessary.

Let D be the data type, PD the processor parameter type, OD
the operation parameter type and CD the type of exogenous
connector inputs, such that PD,OD,CD ⊆ D. A data connector
is then a tuple of type DC : D×D that connects a source ∈ D
parameter with a destination ∈ D parameter.

Reader parameters are the entities that directly consume data
produced by writer parameters. Ir is the set of inputs that read
data during a workflow execution, namely the inputs of atomic
service operations, the inputs of exogenous connectors and the

Algorithm 1 Algorithm for the analysis of data connectors
1: procedure ANALYZE(dc,R,W ) . The types of R and W

are defined in the text below, and dc ∈ DC
2: Xw ← ∅ . Xw = {x | x ∈ D}
3: Yr ← ∅ . Yr = {y | y ∈ D}
4: if Π1(dc) /∈ PD ∧Π1(dc) ∈ dom(R) then
5: Xw ← R(Π1(dc))
6: else
7: Xw ← {Π1(dc)})
8: if Π2(dc) /∈ PD ∧Π2(dc) ∈ dom(W ) then
9: Yr ←W (Π2(dc))

10: for each y ∈ Yr do
11: R⊕ {y 7→ R(y)− {Π2(dc)} ∪Xw}
12: else
13: Yr ← {Π2(dc)})
14: R⊕ {Π2(dc) 7→ R(Π2(dc)) ∪Xw}
15: for each x ∈ Xw do
16: W ⊕ {x 7→W (x) ∪ Yr}

inputs of data processors. Or is the set of operation outputs in
the top-level composite, useful for reading data resulting from
a workflow execution. The set Iw represents the required data
for a workflow execution, which are the inputs of operations in
the top-level composite. Ow is the set of outputs that write data
during a workflow execution, namely the outputs of atomic
service operations and the outputs of data processors.

Basically, Algorithm 1 analyzes data connectors for all
composite services, using a bottom-up approach. The goal
of this algorithm is to create a relationship between reader
parameters and writer parameters, while ignoring those pa-
rameters that do not need to manipulate data. To do so,
Algorithm 1 receives a data connector dc ∈ DC as an input,
and uses R ∈ ((Ir ∪ Or) 7→ {w | w ⊂ Iw ∪ Ow}) for
mapping a reader parameter to a set of writer parameters
and W ∈ ((Iw ∪ Ow) 7→ {r | r ⊂ Ir ∪ Or}) for mapping a
writer parameter to a set of reader parameters.

Algorithm 1 creates two empty sets Xw and Yr for analyzing
the endpoints of a data connector dc. Xw is the set of
parameters connected to the source parameter Π1(dc) iff
Π1(dc) is not a data processor parameter and has incoming data
connectors; otherwise, Xw only contains Π1(dc). Similarly,
if the destination parameter Π2(dc) is not a data processor
parameter and Π2(dc) has outgoing data connectors, then Yr is



the set of parameters connected from Π2(dc) and Xw (without
Π2(dc)) is added into the writers of each element y ∈ Yr;
otherwise, Yr only contains Π2(dc) and Xw is added into the
writers of Π2(dc). Finally, the set Yr is added into the readers
of each element x ∈ Xw. The result of the algorithm is thus a
mapping of reader parameters to writer parameters.

V. IMPLEMENTATION

We implemented our approach on top of the DX-MAN
Platform [11], and we used the Blockchain as the underlying
data space for persisting parameter values, and for leveraging
the capabilities provided by these decentralized platforms, such
as performance, security and auditability. Furthermore, using
the Blockchain ensures that every service is the owner of its own
data, while data provenance is provided to discover data flows
(i.e., how data is moved between services) or how parameters
change over time. In particular, we defined three smart contracts
using Hyperledger Composer 0.20.0 for executing transactions
on Hyperledger Fabric 1.2. We do not show the source code
due to space constraints, but it is available at https://gitlab.cs.
man.ac.uk/mbaxrda2/dxman/tree/development.

The DX-MAN platform provides an API to support the
three phases of a DX-MAN system lifecycle: design-time,
deployment-time and run-time. Composite service templates
only contain algebraic data connectors, as they represent a
general design with multiple workflows. Using API constructs,
a designer chooses a workflow and defines custom data
connectors (and perhaps data processors) for each composite
service involved. Similarly, data processor functions are defined
by designers using API constructs.

At deployment-time, Algorithm 1 analyzes data connectors
(defined at design-time), in order to construct a Java HashMap
for readers where the keys are reader parameter UUIDs and
the values are lists of writer parameter UUIDs. After getting
the map for a given workflow, reader parameters (with their
respective list of writers) are stored as assets in the Blockchain
by means of the transaction CreateParameters.

At run-time, exogenous connectors coordinate a workflow
execution by passing control via CoAP messages. When control
reaches an invocation connector, the five steps illustrated in Fig.
6 are performed. Although the rest of exogenous connectors
behave similarly, they only perform the first two steps. First,
the invocation connector uses the transaction readParameters
to read input values from the Blockchain. For each input, the
Blockchain reads values directly from the writers list. As there
might be multiple writer parameters, this transaction returns
a list of the most recent values that were updated during the
workflow execution. Hence, a timestamp is set whenever a
parameter value is updated. Output values are written onto the
data space as soon as they are available, even before control
reaches data consumers. Thus, having concurrent connectors
(e.g., a parallel connector) may lead to synchronization issues
during workflow execution. To solve this, control flow blocks
in the invocation connector until all input values are read.

Once all inputs are ready, the invocation connector executes
the implementation of an operation by passing the respective

Inv. Conn Operation 
Impl

1
Read Input Values

Input Values

Invoke

Output 
Values

Write Output 
Values

Data
Space

3

42
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Fig. 6. Steps for the invocation of an operation implementation.

input values. Then, the operation performs some computation
and returns a result in the form of outputs. Finally, the invoca-
tion connector writes the output values onto the Blockchain
using the transaction updateParameters.

An UpdateParameterEvent is published whenever a parame-
ter value is updated. At deployment-time, the DX-MAN plat-
form subscribes data processor instances to the events produced
by the respective writer parameters. Thus, a data processor
instance waits until it receives all events, before performing its
respective designer-defined computation. Although our current
implementation supports only mappers and reducers, further
data processors can be introduced using the semantics presented
in Sect. III, e.g., a shuffler can be added to sort data by key.

Our approach enables transparent data exchange as data
routing is embodied in the Blockchain. Thus, reader parameters
are not aware where the data comes from, and writer parameters
do not know who reads the data they produce. Furthermore, the
map generated by Algorithm 1 avoids the inefficient approach
of passing values through data connectors during workflow
execution. Thus, exogenous connectors and data processors
read data directly from parameters which only write values
onto the Blockchain. Undoubtedly, this enables a transparent
decentralized data exchange.

VI. EVALUATION

In this section, we present a comparative evaluation between
distributed data flows and decentralized data flows for a DX-
MAN composition. In the former approach, data is passed
over the network through data connectors, whereas the second
approach is our proposal. Our evaluation intends to answer
two major research questions: (A) Does the approach scale
with the number of data connectors? and (B) Under which
conditions is decentralized data exchange beneficial?

As a DX-MAN composition has a multi-level hierarchical
structure, an algebraic data connector passes a data value
vertically in a bottom-up way (for inputs) or in a top-down
fashion (for outputs) while a custom data connector passes
values horizontally or vertically. For our evaluation, we only
consider vertical routing through algebraic data connectors.
Mp = {λj |λj ∈ R} is the set of network message costs

for vertically routing the value of a parameter p, where λj is
the cost of passing a value for p through an algebraic data
connector j. Likewise, Γp and ωp are the costs of reading and
writing a value for p on the data space, respectively.

Equations 1 and 2 calculate the total message cost of routing
a value p using a distributed approach s.t. αp is for input values
and βp is for output values. Remarkably, as the decentralized
approach does not pass values through data connectors, its
total message cost of routing the value of p is Γp for inputs,
and ωp for outputs.



αp(Γp,Mp) = Γp +

|Mp|−1∑

j=0

(λj ∈Mp) (1)

βp(ωp,Mp) = ωp +

|Mp|−1∑

j=0

(λj ∈Mp) (2)

Fig. 7 depicts the DX-MAN composition that we consider for
our evaluation, which has three levels, three atomic services
and two composite services. The composites ServiceD and
ServiceE have three and five data connectors, respectively. Fig.
7 shows that a data connector has a cost λj∈[0,7] of passing a
value over the network. Then, the vertical routing sets for the
parameters are MA0 = {λ3}, MA1 = {λ4}, MB0 = {λ0, λ5},
MB1 = {λ1, λ6} and MC0 = {λ2, λ7}.

i A0

opA

A1o

ServiceA

i B0

opB

B1o

ServiceB

i C0

opC

ServiceC

Fig. 7. DX-MAN composition for the evaluation of our approach.
For clarity, we assume that the DX-MAN composition

interacts with an external application via a shared data space. So,
we can ignore the cost of passing data between the application
and the composition. The costs of reading the inputs A0, B0
and C0 are ΓA0, ΓB0 and ΓC0, respectively, and the costs of
writing the outputs A1 and B1 are ωA1 and ωB1, respectively.

Suppose that a specific workflow requires the invocation
of the operations opA and opC. Using a distributed exchange
would require passing and reading values for two inputs, and
returning and writing one output value. Therefore, the total
message cost would be αA0 + βA1 + αC0 = λ3 + λ4 + λ2 +
λ7 + ΓA0 + ωA1 + ΓC0. Remarkably, the total message cost
using the decentralized exchange would be ΓA0 + ωA1 + ΓC0.

A. RQ1: Does the approach scale with the number of data
connectors?

We conducted an experiment that dynamically increases
the number of data connectors of the DX-MAN composition
depicted in Fig. 7. The experiment is carried out in 100000
steps with ΓA0 = ωA1 = ΓB0 = ωB1 = ΓC0 = 1.

For each step of the experiment, we add a new parameter
in a random atomic operation. As a consequence of algebraic
composition, another parameter is added in the respective com-
posite operation and a data connector links these parameters.

In this experiment, we compare the cost of the distributed
exchange vs. the cost of the decentralized exchange. Rather than
computing the costs for the invocation of specific operations,
we compute the total costs for the DX-MAN composition using

ΓA0 +ωA1 + ΓB0 +ωB1 + ΓC0 +
7∑
j=0

λj . Fig. 8 shows that the

costs grow linearly with the number of data connectors, and
that the decentralized approach outperforms its counterpart by
reducing costs by a factor of 2.67 in average.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0  20000  40000  60000  80000  100000

To
ta

l 
C

o
st

 o
f 

M
e
ss

a
g

e
s

Number of Data Connectors

Distributed Data Flow
Decentralized Data Flow

Fig. 8. Impact of increasing the number of data connectors in a DX-MAN
composition.

B. RQ2: Under which conditions is decentralized data ex-
change beneficial?

We conducted an experiment of 100000 steps to see the
benefit of the decentralized approach as the number of levels
of the composition increases. We particularly consider the total
costs for the input A0 and we assume that ΓA0 = 1. At each

step, the number of levels is increased by 1 and
|MA0|−1∑
j=0

λj

by 0.0004. Thus, increasing the sum of vertical costs means

that

|MA0|−1∑
j=0

λj

|MA0| = 1 and increasing the number of levels by 1
means that |MA0| is also increased by 1. The improvement
rate of the decentralized data exchange is 1− ΓA0

(ΓA0+
|MA0|−1∑

j=0
λj)

.

Fig. 9 shows the results of this experiment, where it is clear
that the benefit of the decentralized approach becomes more
evident as the number of levels of the composition increases.
This is because the number of data connectors increases with
the number of levels and so the cost of the distributed approach.
The only way a distributed approach would outperform the
decentralized one is when the cost of performing operations on
the data space is more expensive than the total cost of passing
values vertically. In particular, for our experiment the DX-MAN

composition would get a benefit only if ΓA0 <
|MA0|−1∑
j=0

λj .
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VII. RELATED WORK

This section presents the related work on decentralized data
flows in service-oriented systems. We classified our findings
into three categories, depending on the composition semantics
the approaches are built on: orchestration (with central control
flows and decentralized data flows), decentralized orchestration,
data flows and choreographies.

Orchestration approaches [12], [1] partially separate data
from control so as to enable P2P data exchanges. To do so,
an orchestrator coordinates the exchanges by passing data
references alongside control. Thus, extra network traffic is
introduced as data references (and acknowledge messages) are
transferred over the network. These approaches are typically
based on proxies that keep data, thus causing an issue for
things with low disk space. By contrast, DX-MAN does not
require any coordinator for data exchange, and exogenous
connectors do not store data. Besides, exogenous connectors do
not exchange references, thanks to the separation of concerns.

Only few approaches discuss data decentralization using the
semantics of decentralized orchestration [5], [7]. [13] stores
data and control in distributed tuple spaces which may become
a bottleneck in IoT environments continuously generating huge
amounts of data. [3] stores references instead of values, but
references are still needed because data is mixed with control.
Moreover, [3] requires the maintenance of tuple spaces (for
passing references), and databases (for storing data). In DX-
MAN, references and values coexist in the same data space.

Although exogenous data flows [14] allocate flows over
different things, there is a master engine that coordinates data
exchange for slave engines. Hence, this approach introduces
extra network hops as data is passed among multiple engines.
Service Invocation Triggers [2] use endogenous data flows to
exchange data directly, but they rely on workflows that do not
contain loops and conditionals. This limitation arises from the
fact that it is not trivial to analyze data dependencies when
control is mixed with data. In general, endogenous data flows
[15], [16] do not support explicit control flow which is a crucial
requirement for the scalability of IoT systems [8].

A choreography describes interactions among participants
using decentralized message exchanges (a.k.a. conversations).
Workflow participants [17] pass data among multiple engines
leading to network degradation. Although services may ex-
change data directly by message passing, they are not reusable
because data and control are mixed [8]. [4] uses peers to
separate control from computation; however, peers pass data
alongside control according to predefined conversations, leading
to the issues discussed in [6]. Although [18] proposes the
separation of control and data for choreographies, it uses a
middleware which may potentially become a central bottleneck.

VIII. CONCLUSIONS

In this paper, we presented an approach on top of DX-
MAN for decentralized data flows in IoT systems. At design-
time, the algebraic semantics of DX-MAN enables a well-
defined structure of data connections. As data connections are
not mixed with control flow structures, an algorithm easily

analyzes data connections at deployment-time. The result is
a mapping between reader parameters and writer parameters,
which prevents passing values through data connectors. In our
current implementation, the Blockchain embodies this mapping
to manage data values at run-time.

DX-MAN is a service model that separates data flow, control
flow and computation, for a separate reasoning, monitoring,
maintenance and evolution of such concerns. Separating data
and control particularly prevents exogenous connectors from
passing data alongside control, and allows the use of different
technologies to handle data flows and control flows separately.

Our experiments confirm that our approach scales well with
the number of data connectors and with the number of levels of
a DX-MAN composition. They also suggest that our approach
provides the best performance when the cost of performing
operations on the data space is less than the total cost of
passing data over the network. Thus, our approach is extremely
beneficial for IoT systems consisting of plenty of services.
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Abstract—Scalability is an important concern for Internet of
Things (IoT) applications since the amount of service interac-
tions may become overwhelming, due to the huge number of
interconnected nodes. In this paper, we present an IoT scenario
for real-time Electrocardiogram (ECG) monitoring, in order to
analyze how well different kinds of service interactions can fulfill
the scalability requirements of IoT applications.

Index Terms—Internet of Things (IoT), service interactions,
scalability, Internet of Services (IoS)

I. INTRODUCTION

The Internet of Things (IoT) promises a new era in which
not only people interact through Internet, but so do things.
Currently, the number of connected devices worldwide is about
17 billion, and it is estimated that this number will grow by
a factor of 1.82 in the next three years [1]. For this reason,
scalability in terms of the size of IoT applications, rather than
vertical or horizontal scalability [2], is an important concern.

For this kind of scalability, four crucial desiderata has been
identified: explicit control flow [3], separation between control
and computation [4], decentralization [5] and location trans-
parency [6]. In this paper, we analyze how well different kinds
of service interactions can fulfill these scalability requirements.

Service interactions play a central role in the Internet of
Services (IoS) [7] which will be a key enabler of the IoT
goals. IoT services interact in different ways to achieve a
common goal in a specific application. Despite an increasing
number of proposed network protocols for IoT, there is a lack
of understanding about which service interactions best fulfill
the scalability requirements of IoT applications.

The rest of the paper is structured as follows. Sect. II
presents an IoT scenario for real-time Electrocardiogram (ECG)
monitoring. Sect. III describes our classification of service
interactions. Sect. IV presents the results of our analysis. Sect.
V presents a discussion of our results. Finally, Sect. VI presents
the conclusions and the future work.

II. IOT SCENARIO: ELECTROCARDIOGRAM MONITORING
NETWORK (EMONET)

This section introduces a running example for the rest of the
paper. The example is an IoT scenario for real-time Electro-
cardiogram (ECG) monitoring: Electrocardiogram Monitoring
Network (EMoNet). EMoNet is a network deployed in a smart
city, consisting of patients with cardiac diseases, plenty of

ambulances moving around the city, patients’ smartwatches
and wearable ECG sensors. Fig. 1 depicts the workflow of
EMoNet which corresponds to a timing task triggered every 3
minutes for a particular patient. It basically consists of pulling
and analyzing ECG data, and requesting the nearest ambulance
if the patient has heart attack signs.

Fig. 1. EMoNet workflow.

The EMoNet workflow involves four independent IoT nodes
shown in Fig. 2: a wearable ECG sensor installed on a patient’s
chest, the patient’s smartwatch, a healthcare cloud and an
ambulance.

 

Fig. 2. Nodes and services involved in the EMoNet workflow.

The wearable ECG sensor provides the Heart Rate History
service as an interface for the records of the electrical activity
of a patient’s heart. The smartwatch provides the ECG Analysis
service that determines if a patient is showing signs of a heart
attack. A healthcare cloud provides the Emergency service
to find the nearest ambulance and request it immediately.
Ambulances provide the Assistance service to attend to those
patients in need on-site. For simplicity, we assume that these
services dispatch many requests concurrently. In the next
section, we will describe different ways to realize the EMoNet
workflow using these services.

III. SERVICE INTERACTION SCHEMAS

IoT services provide low-level functionality implemented in
nodes [8]. Resource-constrained nodes (e.g., a pulse sensor)
provide fine-grained services for basic functionality (e.g.,
fetching sensor data). Non resource-constrained nodes (e.g., a
smart TV) may offer coarse-grained services in addition.



IoT services interact via a network in order to realize
complex functionality. Services can interact by message passing,
event exchanges, or any combination thereof. In order to
determine what kind of interactions best fulfills the scalability
requirements of IoT, we have classified service interactions
into four schemas: (i) direct service interactions, (ii) indirect
service interactions, (iii) exogenous service interactions and
(iv) event-driven service interactions.

Schemas (i), (ii) and (iii) are based on message-passing,
where there are two roles: service sender and service receiver.
A service sender accesses functionality offered by a service
receiver, by passing a message (expressing control) via the
network. Schema (iv) is based on events so a service registers
itself with events that will be produced by another service(s).
In this section, we describe these four schemas in more detail.

Microservice Architecture [9] has gained considerable at-
tention in the last few years, and is becoming increasingly
important and popular for the development of IoT applications
[10]. Every Microservice Architecture is a Service-Oriented
Architecture (SOA), but not the other way round [11]. Hence,
the service interaction schemas presented in this section can
be used interchangeably in both Microservices and traditional
SOA services.

A. Direct Service Interactions

The direct service interaction schema consist of sending
a message (e.g., a XML-based document or a JSON-based
document) from a sender to a receiver with no mediator
between them [12], [13]. The sender interacts with the receiver
using Remote Procedure Calls (RPC) [14] or REST API
calls over HTTP [15]. RPC is akin to method invocations in
traditional Object-Oriented programming languages, the main
difference being that the invoked procedures may reside at
different network addresses. REST does not require to know
procedure names in advance, but only the location of external
resources that can be manipulated using HTTP methods. Direct
interactions are typically done using the request-response
pattern [16].

Fig. 3 illustrates direct interactions for the EMoNet workflow.
ECG Analysis triggers the control flow periodically by passing
control to Heart Rate History so as to get the last sensor
reading. Then, Heart Rate History returns the control to ECG
Analysis. If there are signs of a heart attack, ECG Analysis
passes control to the Emergency service which forwards control
to the Assistance service of the nearest ambulance. Control is
returned to ECG Analysis, after passing through the Emergency
service. Fig. 3 shows that data flow follows control flow, and
control and data are always originated in service computation.

Although they look old-fashioned, direct interactions are
being used in emerging technologies (including IoT). For
example, a Microservice choreography [17] describes direct
interactions which are typically done using RESTful APIs [18].
REST has also been fostered by the Web of Things [8] for
direct interactions among IoT services via the Web. Moreover,
recent server-less programming frameworks for IoT [19] enable
Java RPC for direct service interactions.

Explicit
Control
Flow

Control
Origin

Control
Return

Data
Flow

 

Fig. 3. Direct service interactions for the EMoNet workflow.

B. Indirect Service Interactions

The indirect interaction schema consists of using a service
bus to broker sender requests, locate an appropriate receiver,
transmit requests, and send responses back to senders. Since
it passes messages between senders and receivers, a service
bus can be thought of as a universal connector that provides a
level of indirection between services [20], [21].

Fig. 4 illustrates indirect interactions for the EMoNet work-
flow, where ECG Analysis triggers control flow periodically.
EMoNet services register their interfaces with a service bus that
forwards control (and data) originated by ECG Analysis and
Emergency, and sends back control (and data) from Heart Rate
History, Assistance and Emergency, respectively. A glance
at Fig. 4, reveals that even though a service bus provides
indirection between senders and receivers, control and data are
originated in service computation, and data follows control.

Control
Routing

Fig. 4. Indirect service interactions for the EMoNet workflow.

Although the Enterprise Service Bus (ESB) [20] has been
used for over a decade for enterprise SOA applications, the
Microservice Architecture community has recently expressed
their interest of using a lighter bus (known as Gateway) for
indirect Microservice interactions [22], [23]. An IoT application
can use a Gateway, an ESB or both [24].

C. Event-Driven Service Interactions

The event-driven interaction schema is based on the publish-
subscribe pattern [16] so there are two roles: producer (i.e.,
service sender) and consumer (i.e., service receiver). Producers
trigger events (perhaps carrying data) which are then stored
in a queue. Consumers can subscribe to the events they are
interested in, retrieve those events from the queue and react



accordingly. As events are dequeued in FIFO mode, there
is no guarantee that responses from consumers are delivered
to producers, so event-driven interactions usually follow the
principle fire and forget [25], [26], [27].

Event-driven interactions can be done with or without a
service bus. P2P event-driven interactions enable every service
to be responsible of its own queue, so events are exchanged with
no mediator. ZeroMQ is the most popular library to realize
this interaction schema.1 Fig. 5(a) shows P2P event-driven
interactions for the EMoNet workflow.

(a) P2P  
event-driven 
interactions

(b) Broker-based 
event-driven 
interactions

Fig. 5. Event-driven service interactions for the EMoNet workflow.

ECG Analysis periodically gets the last sensor readings by
consuming events produced by Heart Rate History. If it detects
a heart attack, ECG Analysis announces an emergency situation
by producing an event for Emergency. After determining
the nearest ambulance, Emergency produces an event that is
consumed only by the Assistance service of that ambulance.
Finally, Assistance produces an event for ECG Analysis to
indicate the status of the current emergency.

Broker-based event-driven interactions use an event bus to
manage event queues for a particular IoT application. An event
bus is generally implemented using a messaging protocol such
as the Advanced Message Queuing Protocol (AMQP) or the
Message Queue Telemetry Transport (MQTT). RabbitMQ is
the most popular implementation of the AMQP protocol.2 The
EMoNet services shown in Fig. 5(b) interact in the same way
as the ones shown in Fig. 5(a), with the fundamental difference
that events are now stored in the queue of an event bus.

1http://zeromq.org/
2https://www.rabbitmq.com/

Event-driven interactions are preferred to direct interactions
for implementing Microservice choreographies [9], [23], [11].
Microservices use the strategy smart endpoints and dumb pipes
[9] to define event-driven interactions in endpoints.

There is an increasing trend to use event-driven interactions
for the exchange of data between IoT applications [25], [26].
In fact, the author in [28] found that a vast majority of current
IoT platforms provide support for the event-driven interaction
schema. In particular, broker-based event driven interactions
are gaining considerable attention since MQTT was particularly
designed for resource-constrained nodes [29], [30].

D. Exogenous Service Interactions

The exogenous service interaction schema enables a co-
ordinator to define interactions (in the form of a workflow)
over mutually anonymous services or other coordinators. Thus,
control is always originated in coordinators and services do
not interact with each other [31], [32].

Exogenous interactions can be done in one or multiple levels.
One-level exogenous interactions are realized by orchestration
[33], [34], where the coordinator is a workflow engine running
in a specialized server. Fig. 6(a) shows one-level interactions
for the EMoNet workflow.

EMoNet Workflow Engine is the coordinator for all the
involved services. It passes control to Heart Rate History
and ECG Analysis sequentially, in order to pull and analyze
the last sensor readings. Then, according to the results of the
analysis, the coordinator decides if there are signs of a heart
attack. If so, the coordinator passes control to Emergency and
Assistance, in that order. A glance at Fig. 6(a), reveals that
control is always originated in the coordinator, and services are
only concerned with returning control and data after performing
some computation.

Multi-level exogenous interactions are done by hierarchical
orchestration [35], [36] or exogenous connectors [37], [38],
[39]. In this schema, multiple coordinators create a hierarchy
of service interactions. Unlike, one-level exogenous interac-
tions, in this schema control flows over multiple distributed
coordinators.

Hierarchical orchestration [36] has multiple workflow en-
gines, each of them responsible for the interaction of services
or other workflow engines. In other words, it allows nesting a
workflow within another workflow. Fig. 6(b) depicts a two-level
hierarchical orchestration for the EMoNet services. EMoNet
Workflow Engine coordinates the execution of coordinators
Monitoring Workflow Engine and Decision-Making Workflow
Engine. First, EMoNet Workflow Engine passes control to
Monitoring Workflow Engine which is responsible for the inter-
actions of the services Heart Rate History and ECG Analysis.
Once control is returned from Monitoring Workflow Engine to
EMoNet Workflow Engine, the latter passes control to Decision-
Making Workflow Engine. If Decision-Making Workflow Engine
determines that there are signs of a heart attack, it passes control
to Emergency and Assistance sequentially. Finally, the control
flow ends when the Decision Making Workflow Engine returns
control to EMoNet Workflow Engine. Fig. 6(b) shows that a



Fig. 6. Exogenous service interactions for the EMoNet workflow.

coordinator is able to pass and receive control and data to and
from other coordinators.

Exogenous connectors are lightweight distributed coordi-
nators that define micro-workflows. Fig. 6(c) illustrates how
exogenous connectors coordinate service interactions for the
EMoNet workflow. The control flow is the same as the one
depicted in Fig. 6(b) for hierarchical orchestration. Unlike
hierarchical orchestration, where control can be passed from a
coordinator to a service, in exogenous connectors control is
only passed between cooordinators (as data is an orthogonal
dimension). Furthermore, the composition of two services
results in a composite service (not a workflow) that preserves

all the operations from the sub-services. Another difference is
that coordinators do not need any specialized server as they can
run in any IoT node (including resource-constrained nodes). For
the EMoNet workflow, Heart Rate History and ECG Analysis
are composed into Monitoring Composite which is deployed
in a smart t-shirt; similarly, Emergency and Assistance are
composed into Decision-Making Composite which is deployed
in the Google Cloud. Exogenous connectors allow composite
services to be further composed into even bigger services. For
example, the Monitoring Composite and the Decision-Making
Composite are composed into the EMoNet composite which is
deployed in the patient’s mobile device.

Due to the popularity of one-level exogenous interactions
in SOA, in the last years we have seen the emergence of
software platforms to support such a schema, e.g., Intel IoT
SOL (Service Orchestration Layer) [40]. To the best of our
knowledge, there are currently no IoT platforms for multi-level
exogenous interactions.

IV. EVALUATION AND RESULTS

This section presents the results of a qualitative evaluation
of our service interaction schemas. A tick mark indicates that
a specific interaction schema fulfills the requirement being
analyzed, while a cross mark means the opposite. NA means
that the analysis is not applicable for a particular interaction
schema. In order to determine which schema best fulfills the
scalability requirements of IoT applications, we specifically
investigate the following research questions:

• RQ1: Which schemas allow the visualization of control
flow?

• RQ2: Which schemas allow a separate reasoning between
control and computation?

• RQ3: Which schemas allow decentralized interactions?
• RQ4: Which schemas enable services that are unaware

of the location of other services?

A. RQ1: Explicit Control Flow vs Implicit Control Flow

Control flow can be explicit or implicit. Explicit control flow
is visible as an entity defines the order in which individual
services are executed. Conversely, implicit control flow is
opaque since it is not defined anywhere, but it is implicit in
the interactions of the participant services. Table I shows that
event-driven interactions do not support visible control flow as
it is implicit in the collaborative exchange of events (see Fig. 5)
[17], [27]. In both direct interactions and indirect interactions,
services are the entities who control the application flow, e.g.,
ECG Analysis defines a guard to execute Emergency when
a heart attack is detected (see Figs. 3 and 4). In exogenous
interactions, coordinators define control, e.g., EMoNet Workflow
Engine defines control structures to realize one-level exogenous
interactions for the EMoNet workflow (see Fig. 6(a)).

The amount of service interactions in IoT applications may
become overwhelming due to the huge number of nodes
involved. Since it is not visible, implicit control flow limits
the scalability of IoT applications as the number of services
grows and the complexity of service interactions increases.



TABLE I
EXPLICIT CONTROL FLOW IN SERVICE INTERACTION SCHEMAS.

 
Direct interactions

Indirect interactions

Event-driven interactions

Exogenous interactions

P2P

Broker-based

One-level

Multi-level

Explicit control �ow

Implicit control flow has been an issue for software com-
panies over many years and it is undoubtedly a barrier for
IoT. For instance, Netflix has recently expressed that implicit
control flow limits the scalability of distributed applications,
as they found that process flows are spread across multiple
applications and it is difficult to monitor workflow processes.
As an attempt to visualize control flow, Netflix recently moved
from event-driven interactions to exogenous interactions [3].

Visualizing control flow (e.g., to find execution paths) in
event-driven interactions is challenging because it is necessary
to look at logs to understand the correlation between events [41].
This evidently makes it hard to monitor workflow execution,
debug code and modify application workflow. For instance, in
the event-based EMoNet workflow it is hard to know which is
the most popular ambulance, since there are many ambulances
involved. Explicit control flow helps to mitigate this problem
so a graphical user interface [3], [42] can be used to display a
visual representation of the blueprint with the paths the control
has taken during the execution of EMoNet.

In general, explicit control flow is crucial to facilitate the
monitoring, maintenance and evolution of IoT applications
[23], [3], [27].

B. RQ2: Separation between control and computation

IoT is characterized by heterogeneity in several forms,
e.g., different vendors, different hardware and a wide variety
of programming languages. For this reason, control and
computation should be orthogonal dimensions in every IoT
application, in order to enable a flexible integration of services
in a heterogeneous environment [43], [44], [45], [4].

Computation is the low-level functionality of an IoT node
(provided by a service), and control defines the logic to
realize service interactions. The separate reasoning of these
concerns enables application developers to focus on the IoT
application logic, whilst IoT service developers can focus on the
development of efficient service functionality. This separation
not only results in reduced time to market, but also reduced
software production and maintenance costs.

In both direct interactions and indirect interactions, a sender
and a receiver are tightly coupled in terms of control, since
control is always originated in the sender’s computation. For
example, in the EMoNet workflow done by either indirect
interactions or direct interactions, ECG Analysis is responsible
for the conditional control structure that passes control to
Emergency when a heart attack is detected (see Figs. 3 and 4).

Services mixing control with computation are not reusable,
as control flow may vary from one application to another.
Suppose we want EMoNet to execute a planning phase after the
analysis phase, in order to predict heart diseases and determine
heart attacks in real-time. To do so, the HPC Computing node,
providing the ECG Planning service, is introduced. In the
EMoNet workflow done by either direct interactions or indirect
interactions, both ECG Analysis and ECG Planning must be
changed to accommodate the new requirement. In particular, the
conditional control structure is removed from ECG Analysis and
added into ECG Planning which is now responsible for passing
control to Emergency (when a heart attack is detected). For
that reason, ECG Analysis is not reused in the new application.

Our analysis of the separation between control and computa-
tion is not applicable for event-driven interactions, since control
flow is implicit in this schema. Nevertheless, in event-driven
interactions, events are originated in service computation (see
Fig. 5). For example, Emergency and ECG Planning would
require changes in their computation so as to accommodate the
planning phase. In particular, ECG Planning needs to consume
the events produced by ECG Analysis, while Emergency needs
to consume the events produced by ECG Planning. For that
reason, Emergency is not reused in the new application.

Table II shows that only exogenous interactions separate
control from computation, as control is always originated
in the coordinator(s) (see Fig. 6). In contrast to the rest of
the schemas, exogenous interactions do not require changing
any service to support the planning phase, but only changing
the application logic defined in the coordinator(s). Thus, as
business requirements change, developers can manage changes
in the application logic without taking care of IoT service
functionality [43].

TABLE II
SEPARATION BETWEEN CONTROL AND COMPUTATION IN SERVICE

INTERACTION SCHEMAS.

 
Direct interactions

Indirect interactions

Event-driven interactions

Exogenous interactions

P2P

Broker-based

One-level

Multi-level

Separation between
control and 
computation

N/A

N/A

When events or control are originated in service computation,
an application workflow is embedded in the code of plenty of
services. This is in fact one of the reasons for which Netflix
stop using event-driven interactions. Exogenous interactions
is the only schema that enables the development of workflow-
agnostic services, as a consequence of the separation between
control and computation. For that reason, Netflix preferred the
use of exogenous interactions to event-driven interactions.

C. RQ3: Decentralized Service Interactions

Service interactions can be centralized or decentralized.
Centralized service interactions means that control, events (or
even data) pass through a single central entity. By contrast,



decentralized service interactions means that control, events (or
even data) are passed in a P2P fashion as workflow (expressed
by control or events) is distributed over two or more entities.

Table III shows that indirect interactions, one-level exoge-
nous interactions (i.e., orchestration) and broker-based event-
driven interactions are centralized schemas. Indirect interactions
require a service bus for passing control and data between
services (see Fig. 4). Broker-based event-driven interactions
use an event bus to handle events (see Fig. 5(b)). In one-level
exogenous interactions, a central engine defines a workflow
for passing control (and frequently data) between services (see
Fig. 6(a)).

TABLE III
DECENTRALIZATION IN SERVICE INTERACTION SCHEMAS.

 
Direct interactions

Indirect interactions

Event-driven interactions

Exogenous interactions

P2P

Broker-based

One-level

Multi-level

Decentralization

Even though a centralized approach facilitates the design
and maintenance of an IoT application, it possesses several
drawbacks that have been recognized by many researchers [35],
[4], [46], [36]. For example, in Fig. 6(a) the data generated by
Wearable ECG Sensor (which is important for ECG Analysis)
will be routed through EMoNet Workflow Engine, even if this
data is unimportant to that coordinator. In general, a centralized
approach requires an extra network hop for service interactions.

Furthermore, IoT nodes usually generate a huge amount
of data. Hence, a central entity may potentially become a
performance bottleneck since all the communication will pass
through it; thereby, leading to high consumption of network
bandwidth, and therefore, unnecessary network traffic. A central
entity can also become a single point of failure and attack,
thereby impacting the availability of an IoT application.

No single organization should govern an entire workflow or
data, as an IoT application may cross administrative domains
and organizations may want control over their own part. For
example, EMoNet could cross two administrative domains: a
data analytics company that processes sensor data and a health
telemetry company that monitors patients’ heart rate.

According to [5], IoT nodes must possess the ability to
interact among themselves with no mediator between them.
Decentralized service interactions are more complex than their
counterpart, but they bring up increased scalability, availability
and reliability for an IoT application by:

• Improving concurrency, load balancing and fault-tolerance
due to the use of multiple loci of control or multiple event
handlers.

• Bringing performance enhacements (e.g., better through-
put) for service interactions.

• Reducing network traffic and latency. as no extra hop is
required for service interactions.

Table III shows that decentralization is present in direct in-
teractions, multi-level exogenous interactions (i.e., hierarchical

orchestration and exogenous connectors) and P2P event-driven
interactions. Direct interactions do not require any mediator
for passing control between services (see Fig. 3). In multi-level
exogenous interactions, coordinators are the only entities that
pass control to services or other coordinators (see Figs. 6(b)
and 6(c)). Similarly, P2P event-driven interactions do not rely
on a bus for event management, as every service is responsible
of its own queue (see Fig. 5(b)).

D. RQ4: Location Transparency

IoT is highly dynamic due to the intermittent connection
and spontaneous failures of IoT nodes, resulting in nodes (and
ergo services) frequently changing locations over time. For that
reason, churn is one of the main challenges of IoT applications
as they usually operate in a dynamic and uncertain environment
[6], [47]. For example, the Wearable ECG Sensor is a resource
constrained-node that can run out of battery with the subsequent
disconnection from the network. Similarly, an Ambulance may
experience frequent disconnections due to its high mobility.

Service location transparency is crucial to mitigate churn
in IoT applications, as it enables services to be unaware of
the physical location of other services. Table IV shows that
indirect interactions, broker-based event-driven interactions
and exogenous interactions provide location transparency. In
indirect interactions, the service bus is the only entity aware of
services’ locations. In broker-based event-driven interactions,
publishers and subscribers do not know the location of one
another, but they only know what events to produce and
consume, respectively. In exogenous interactions, coordinators
encapsulate services’ locations as they are responsible for
service interactions.

TABLE IV
LOCATION TRANSPARENCY IN SERVICE INTERACTION SCHEMAS.

Direct interactions

Indirect interactions

Event-driven interactions

Exogenous interactions

P2P

Broker-based

One-level

Multi-level

Location
transparency

Direct interactions and P2P event-driven interactions do
not support location transparency, as they require senders to
know the location of receivers a priori. The main problem
of these schemas is that senders need to be changed every
time the receivers’ location change. Although this issue can
be solved using a service discovery mechanism (e.g., querying
a service registry) [8], it would require an extra network hop.
In fact, centralized interaction schemas enclose a discovery
component in the middleman [48]. Assuming there is no
discovery mechanism for the EMoNet workflow based on
direct interactions or P2P event-driven interactions, Emergency
must be updated every time an Ambulance changes location.
This is a frightening situation for EMoNet because there is a
huge number of ambulances constantly changing locations.



TABLE V
ANALYSIS OF SERVICE INTERACTION SCHEMAS.

Explicit control �ow

Separation between control and computation

Decentralized control �ow

Service location transparency

Direct interactions Indirect interactions Event-driven interactions Exogenous interactions

P2P Broker-based One-level Multi-level

NA NA

V. DISCUSSION

Table V summarizes the results of our qualitative evaluation.
It particularly shows how well service interaction schemas fulfill
the scalability requirements of IoT applications: explicit control
flow, separation between control and computation, decentralized
interactions, and service location transparency.

Direct interactions and indirect interactions cover 50% of
the requirements, respectively. Event-driven interactions is the
worst schema since it only meets 25% of those requirements
in both P2P and broker-based. Lacking only decentralization,
one-level exogenous interactions cover 75% of the desiderata.
Multi-level exogenous interactions is the only schema that
fulfills all the scalability requirements of IoT applications.

In some scenarios, it could be useful to combine interaction
schemas. For example, in order to provide asynchronous
interactions in EMoNet, services can combine event-driven
interactions with direct interactions. ECG Analysis can interact
via an event bus with both Heart Rate History and Emergency,
whilst Emergency can use direct interactions to request the
Assistance service of the nearest ambulance.

A service bus can be [21]: (i) distributed, (ii) with technical
intelligence or (iii) with business intelligence. Options (i) and
(ii) are used only for data and control routing, whilst (iii) can
be used to define coordination logic in addition [22]. Even
though it is typically used only for straightforward workflows,
(iii) is a special case of one-level exogenous interactions.

Although the Microservices community recommends the
avoidance of (iii) as they do not want business logic embedded
in a service bus [22], there is an increasing tendency to use
exogenous interactions for Microservices in traditional SOA
applications [34], [3]. By contrast, in the context of IoT, event-
driven interactions are currently more popular. However, given
the advantages of exogenous interactions, as evidenced by
their increasing adoption in traditional SOA applications, we
envision that exogenous interactions will increase in popularity
in Microservice-based IoT applications in the next years.

A Distributed Service Bus (DSB) [49] is often seen as a
decentralized approach due to the existence of a federation
of brokers. However, it consists solely of a distribution of
middleware components over different nodes. According to our
view of decentralization presented in Sec. IV-C, the existence
of an intermediary (or intermediaries) for service interactions
leads to a centralized approach. As we noted in Sec. IV-C, a
purely decentralized approach removes the need of a middleman
(or middlemen) which, among other issues, introduces an extra
network hop for service interactions.

In order to achieve decentralization, the Microservices
community fosters direct interactions between Microservices.
Nevertheless, direct interactions impact performance because a
connection must be open for the entire duration of an interac-
tion, and a Microservice participant needs a reference (i.e., a
client library) for every Microservice it communicates directly
with. Maintaining references to other Microservices is costly.
Furthermore, a HTTP connection may become a bottleneck,
especially for long running Microservices. This is undoubtedly
a problem for resource-constrained IoT nodes which do not
have communication and storage capabilities to support long-
running transactions or to store multiple references. To solve
this issue, the Internet Engineering Task Force (IETF) has
developed the Constrained Application Protocol (CoAP) [50].
CoAP has been proved to be a simpler and more cost-efficient
alternative to HTTP/REST in several IoT scenarios involving
resource-constrained nodes [51]. Nevertheless, CoAP does not
support the separation between control and computation.

The separation between control and data is also crucial for
the scalability of IoT applications. It means that data is never
passed alongside control, thereby allowing a separate reasoning
between data flow and control flow, which could result in
the development of an efficient data exchange approach. For
instance, a P2P data exchange can be used to reduce the number
of network hops, thereby avoiding network congestion as shown
by [46]. The separation between control and data also enables
the reuse of data flow without the need of modifying control
flow. Hence, data flow and control flow can evolve separately.
Exogenous connectors in multi-level exogenous interactions
provide semantics for the separation between control and
data. Although data typically follows control in orchestration
approaches, the separation between control and data has already
been done in such approaches [46], [52]. For the EMoNet
workflow based on exogenous interactions, we assumed that
there is no separation between control and data.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we classified and analyzed service interactions
into four schemas, namely direct interactions, indirect interac-
tions, event-driven interactions and exogenous interactions.

We conducted a qualitative evaluation to determine which
interaction schema best fulfills the scalability requirements of
IoT applications: explicit control flow, decentralized interac-
tions, separation between control and computation, and service
location transparency. We showed that multi-level exogenous



interactions is the most promising schema since it meets all
the desiderata for the scalability of IoT applications.

Network performance is another aspect that needs to be
considered when tackling scalability. We would like to conduct
experiments to quantitatively evaluate the throughput of the
service interaction schemas presented in this paper.

To the best of our knowledge, there are no IoT platforms
based on multi-level exogenous interactions. As this is the
most promising schema for IoT, we hope to see its realization
in the coming years. In fact, we are currently working on the
development of such a platform.

REFERENCES

[1] “Internet of Things (IoT) connected devices installed base worldwide from
2015 to 2025 (in billions),” https://www.statista.com/statistics/471264/iot-
number-of-connected-devices-worldwide/, 2018.

[2] M. Abbott and M. Fisher, The Art of Scalability: Scalable Web
Architecture, Processes, and Organizations for the Modern Enterprise,
2nd ed. Addison-Wesley, 2015.

[3] Netflix, “Conductor,” https://netflix.github.io/conductor/, 2016.
[4] D. Wutke et al., “Model and infrastructure for decentralized workflow

enactment,” in ACM Symposium on Applied Computing, 2008, pp. 90–94.
[5] S. Roy and C. Chowdhury, “Integration of Internet of Everything (IoE)

with Cloud,” Beyond the Internet of Things, vol. 24, no. 6, pp. 199–222,
2017.

[6] R. Buyya and A. Dastjerdi, Internet of Things: Principles and Paradigms.
Amsterdam Boston Heidelberg: Morgan Kaufmann, 2016.

[7] J. Soriano et al., “Internet of Services,” Evolution of Telecommunication
Services, vol. 7768, pp. 283–325, 2013.

[8] D. Guinard et al., “Interacting with the SOA-Based Internet of Things:
Discovery, Query, Selection, and On-Demand Provisioning of Web
Services,” IEEE Transactions on Services Computing, vol. 3, no. 3,
pp. 223–235, 2010.

[9] M. Fowler and J. Lewis, “Microservices: A definition of this new
architectural term,” https://martinfowler.com/articles/microservices.html,
2014.

[10] K. Khanda et al., “Microservice-Based IoT for Smart Buildings,” in 31st
Int. Conference on Advanced Information Networking and Applications
Workshop, 2017, pp. 302–308.

[11] O. Zimmermann, “Microservices tenets,” Comput Sci Res Dev, vol. 32,
no. 3, pp. 301–310, 2017.

[12] R. Dijkman and M. Dumas, “Service-oriented design: A multi-viewpoint
approach,” Int. J. Coop. Info. Syst., vol. 13, no. 04, pp. 337–368, 2004.

[13] C. Pautasso et al., “Restful Web Services vs. ”Big”’ Web Services:
Making the Right Architectural Decision,” in Proceedings of the 17th
International Conference on World Wide Web, ser. WWW ’08. New
York, NY, USA: ACM, 2008, pp. 805–814.

[14] “gRPC,” https://grpc.io/, 2018.
[15] R. Fielding, “Architectural Styles and the Design of Network-based

Software Architectures,” PhD Thesis, University of California, Irvine,
2000.

[16] A. Barros et al., “Service Interaction Patterns,” in Int. Conference on
Business Process Management, 2005, pp. 302–318.

[17] Q. Sheng et al., “Web services composition: A decade’s overview,”
Information Sciences, vol. 280, pp. 218–238, 2014.

[18] T. Ahmed and A. Srivastava, “Service Choreography: Present and Future,”
in IEEE Int. Conference on Services Computing, 2014, pp. 863–864.

[19] I. Nakagawa et al., “Dripcast - Architecture and Implementation of
Server-less Java Programming Framework for Billions of IoT Devices,”
Journal of Information Processing, vol. 23, no. 4, pp. 458–464, 2015.

[20] M. Schmidt et al., “The Enterprise Service Bus: Making service-oriented
architecture real,” IBM Systems Journal, vol. 44, no. 4, pp. 781–797,
2005.

[21] N. Josuttis, Soa in Practice: The Art of Distributed System Design.
O’Reilly Media, Inc., 2007.

[22] C. Pautasso et al., “Microservices in Practice, Part 2: Service Integration
and Sustainability,” IEEE Software, vol. 34, no. 2, pp. 97–104, 2017.

[23] S. Newman, Building Microservices, 1st ed. O’Reilly Media, 2015.
[24] L. Gong, “A software architecture for open service gateways,” IEEE

Internet Computing, vol. 5, no. 1, pp. 64–70, 2001.

[25] D. Happ and A. Wolisz, “Limitations of the Pub/Sub pattern for cloud
based IoT and their implications,” in Cloudification of the Internet of
Things, 2016, pp. 1–6.

[26] Y. Zhang et al., “Integrating Events into SOA for IoT Services,” IEEE
Communications Magazine, vol. 55, no. 9, pp. 180–186, 2017.

[27] M. Fowler, “What do you mean by ”Event-Driven”?”
https://martinfowler.com/articles/201701-event-driven.html, 2017.

[28] P. P. Ray, “A survey of IoT cloud platforms,” Future Computing and
Informatics Journal, vol. 1, no. 1, pp. 35–46, 2016.

[29] J. Soldatos et al., “OpenIoT: Open Source Internet-of-Things in the
Cloud,” in Interoperability and Open-Source Solutions for the Internet
of Things, 2015, pp. 13–25.
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ABSTRACT
The Internet of Things (IoT) is an emerging paradigmwhere practically every (physical and virtual) thing
will be interconnected through innovative distributed services. Since the number of connected things is
rapidly growing, IoT systems will require the composition of plenty of services into complex workflows.
Thus, scalability in terms of the size of IoT systems becomes a significant concern. In this paper, we
review and evaluate the fundamental semantics of existing IoT service composition mechanisms to
determine how well they fulfil the scalability requirements of IoT systems. We identify scalability
desiderata and, accordingly, our findings show that dataflows, orchestration and choreography do not
fully satisfy such desiderata, unlike a novel composition mechanism called DX-MAN.

1. Introduction
The Internet of Things (IoT) is an emerging paradigm that

promises the interconnection of (physical and virtual) things
through innovative distributed services. Like traditional en-
terprise services, IoT services interact in many different ways
via the Internet, in order to realise a global system workflow.
However, unlike traditional enterprise systems, IoT systems
will require the interaction of billions of services as the num-
ber of connected things (and therefore services) is rapidly
growing [1, 2]. Thus, scalability becomes a crucial concern.

Scalability is typically considered as a system capability
to handle increasing workloads [3, 4, 5, 6, 7, 8]. In particular,
vertical scalability [9, 10, 11] refers to the addition or removal
of computing resources in a single IoT node, while horizontal
scalability [2, 12, 13] involves the addition or removal of IoT
nodes. These kinds of scalability have been addressed by
an extensive body of research [4, 10, 11, 14, 15, 16, 17, 18,
19, 20], unlike scalability in terms of the number of services
composed in an IoT system, which we refer to as functional
scalability.

Existing service composition mechanisms were primarily
designed for the integration of static enterprise services, not
for the physical world. For that reason, they may not address
the functional scalability challenges that IoT systems pose.
Early IoT systems were deployed in closed environments,
using private Application Programming Interfaces (APIs) and
private data. However, future IoT systems will be deployed
in open environments (also known as software ecosystems
[21]) with an overwhelming number of available services, as
a result of the huge number of connected things [22]. For
that reason, billions of IoT services will be composed into
complex IoT systems [23, 24, 25, 26, 27, 28]. This raises
the challenging question of How to construct IoT systems
composed of an ultra-large number of services?

In this paper, we study the ability of service composition
∗Corresponding author.
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mechanisms to handle any number of IoT services. Our aim
is to determine which service composition mechanism best
fulfils the functional scalability requirements of IoT systems.
To answer this, we have reviewed the fundamental seman-
tics (not specific implementation technologies) of existing
composition mechanisms, and proposed an evaluation frame-
work that considers six crucial desiderata: (i) explicit control
flow [29, 30]; (ii) distributed workflows [23, 31, 32]; (iii)
location transparency [20, 33]; (iv) decentralised data flows
[23, 32, 34]; (v) separation of control, data and computation
[35, 36, 37, 38]; and (vi) workflow variability [23, 39, 40, 41].
Our evaluation framework serves as a guideline for defining
the semantics of future IoT service composition mechanisms.

The remainder of the paper is structured as follows. In
the next section, we present an overview of IoT services,
scalability and service composition. Section 3 outlines the
related work on IoT service composition mechanisms. Sec-
tion 4 introduces a motivating IoT scenario based on a smart
parking system. The scenario is then considered in Section
5 to comprehensively describe the requirements for func-
tional scalability and the rationale behind them. Section 6
analyses service composition mechanisms on the basis of
the functional scalability requirements. Section 7 presents
an evaluation that determines how well service composition
mechanisms fulfil the scalability requirements. Our findings
are then discussed in Section 8. Finally, Section 9 draws the
conclusions and presents the directions for future research.

2. Background
This section presents a background for the rest of the

paper, which includes an overview of IoT services, service
composition and scalability.
2.1. IoT Services

Kevin Ashton coined the term Internet of Things (IoT)
in a presentation made in 1999 at Procter and Gamble [42],
referring to the interconnection of everything via the Internet
for the creation of an ubiquitous computing environment [43].
As per the recommendation of ITU-T Y.4000, IoT has been
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recently redefined as “a global infrastructure for the informa-
tion society, enabling advanced services by interconnecting
(physical and virtual) things based on existing and evolving
interoperable information and communication technologies”
[44].

A thing is practically a physical or virtual construct of
the real-world, which is capable of being identified and in-
tegrated into communication networks through specific pro-
tocols. The difference between physical and virtual things
lies in their tangibility [45]. A physical thing is a tangible
object of the physical world, which is capable of being sensed,
actuated and connected, e.g., home appliances, robots, build-
ings, plants and people. Contrastingly, a virtual thing is a
non-tangible construct formed from a human idea which only
exists in the information world, e.g., Clouds and enterprises.

The broad range of available things inevitably requires
dealing with a high degree of heterogeneity in a distributed
environment. Accordingly, a Service-Oriented Architecture
(SOA) represents the best way of dealing with this issue [46].
It is a logical way of designing a software system to provide
services either to end-user applications or other services
distributed in a network, via published and discoverable in-
terfaces [47]. Thus, it is expected that physical and virtual
things will provide services to expose behaviour via interfaces
[5, 48, 49, 50, 51, 52].

According to the Oxford dictionary, the word service
can be a noun or a verb referring to the action of helping or
doing work for someone. Considering a service as a noun
allows the encapsulation of behaviour (i.e., actions) in the
form of operations described as verbs. Thus, a software
service is a distributed software component that provides
a set of operations through network-accessible endpoints
[53, 54]. In general, IoT services are virtual representations
of the behaviour of things, which can be combined with other
services into more complex behaviours to yield complex
service-oriented IoT systems [52, 55, 56, 57]. Thus, things
are integrated through the composition of the services they
provide (see Section 2.2).

Resource-constrained things (e.g., pulse sensors) typi-
cally provide fine-grained services for basic functionality
(e.g., fetching sensor data), whilst non-resource constrained
things (e.g., a Cloud) may offer coarse-grained services in
addition (e.g., services for geolocation or complex industrial
processes). Enterprise services are typically coarse-grained
as they are deployed on resource-rich infrastructures, whilst
services of physical things are often fine-grained because
they are usually deployed on resource-constrained things.

Figure 1 shows the relationship between things, services
and operations. Figure 1(a) depicts a washing machine (i.e., a
resource-constrained physical thing) that offers the Washing
and Drying fine-grained services with two operations each
(for starting and stopping the respective processes). Figure
1(b) shows a City Council Cloud (i.e., a non-resource con-
strained virtual thing) that offers the services CouncilTax and
Parking. The CouncilTax service provides the operations pay
(to pay a tax bill) and check (to query council tax informa-
tion). The Parking service offers the operations getNearest

(for getting the closest parking space from a driver’s location)
and registerDisabled (for registering an impaired driver).
Washing Machine

Thing

IoT Service

Washing

Drying

City Council Cloud

CouncilTax

Parking

start
stop

start
stop

pay

check

getNearest
registerDisabled

Operation

Figure 1: Relationship between things, IoT services and opera-
tions.

For the rest of the paper, we use the notation S.O to denote
an operation O in service S, e.g., Parking.getNearest refers
to the getNearest operation provided by the Parking service.
2.2. IoT Service Composition Revisited

An IoT service is a distributed unit of composition,
which constitutes the virtual representation of a thing’s be-
haviour, and can be either atomic or composite. An atomic
service is a well-defined and self-contained piece of be-
haviour that cannot be divided into other services [58, 59, 60].
A composite service, on the other hand, is a more com-
plex unit that provides value-added functionality and is
formed by the combination of (atomic or composite) ser-
vices [52, 55, 57, 58, 59, 61, 62]. For example, a humidity
sensing service can be combined with a temperature service
into an air conditioning composite [63].

The ability of combining services is referred to as com-
positionality and is realised by a composition mechanism
[59]. Thus, an IoT system requires a things infrastructure, the
definition of what a service is and the selection of a composi-
tion mechanism [64]. In any scenario, composition is done
regardless of both the technologies being used and the things
infrastructure. Service technologies include REST [65, 66],
WS-* [67, 68], OSGi [69, 70] and many others.1

A service composition mechanism defines a meaning-
ful interaction between services [59] by considering two
functional dimensions: control flow and data flow [71, 72].
Control flow refers to the order in which interactions oc-
cur [73, 74], whilst data flow defines how data is moved
among services [71]. In this paper, we focus on service com-
position mechanisms that define behaviour by workflows,
namely (centralised and distributed) dataflows, (centralised
and distributed) orchestration, choreography, and a novel
composition mechanism called DX-MAN. Section 6 provides
a detailed description of these mechanisms.

A workflow describes a series of discrete steps for the
realisation of a computational activity, which can be control-
driven, data-driven or hybrid [75]. In a control-driven work-
flow, steps (also known as tasks [76], actors [77], transitions
[78], procedures [79], thorns [80], activities [81] and units
[82]) are executed according to explicit control flow con-
structs that define sequencing, looping, branching or paral-
lelising. A data-driven workflow invokes steps whenever

1In RESTful services, operations are exposed as resources [65].
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data becomes available without explicitly defining any con-
trol flow constructs [83]. In a hybrid workflow, some parts
are control-driven, while others are data-driven [82]. Figure 2
illustrates a generic workflow that executes the operation op1,then decides to invoke either op2 or op3 and, finally, triggersthe operations op4 and op5 in parallel. Operation invocations
happen regardless of the workflow kind.

Figure 2: A generic workflow.

Workflows are increasingly important for IoT systems be-
cause they allow the integration of IoT services into complex
tasks that automate a specific context [84, 85, 86, 87, 88].
For example, a smart home can be automated with a work-
flow that regulates the temperature of a room according to
environmental changes. In the domain of smart agriculture, a
workflow can be defined to analyse data coming from harvest
sensors, predict diseases and react accordingly.
2.3. Scalability of IoT Systems

With the advent of hardware technologies, the number of
IoT services is rapidly growing due to the excessive increase
in the number of connected things. Currently, there are about
19 billion connected things, and it is predicted that this num-
ber will grow exponentially in the coming years [1, 2]. Thus,
unlike traditional enterprise systems, scalability becomes a
crucial concern for the full realisation of IoT systems.

Typically, scalability is the capability to handle increasing
workloads in a IoT system [3, 4, 5, 6, 7, 8]. In this case, it is a
metric that indicates how system performance improves over
time. Workloads are typically measured in terms of either
the number of requests dispatched [3] or the data streams
generated [7]. The overall goal of scalable solutions is to en-
hance the Quality of Service (QoS) for guaranteeing a certain
level of performance under the presence of high workloads,
e.g., by minimising bandwidth, energy, latency and response
time while maximising throughput. To quantitatively mea-
sure QoS, several network aspects of a service are considered
such as jitter, throughput, packet loss and availability [8].

Currently, there are two kinds of scalability: vertical and
horizontal.2 Vertical scalability (or scaling up) [9, 10, 11]
refers to the addition or removal of computing resources in a
single thing, e.g., adding more memory to increase buffer size
or addingmore processor capacity to speed up processing. On
the other hand, horizontal scalability (or scaling out) [2, 12,
13] involves the addition or removal of things in an IoT system.
Its goal is to distribute the workload over multiple things
to decrease individual loads, minimise response time and

2IoT cloud environments benefit from dynamically scaling vertically,
horizontally or both.

enhance concurrency. Figure 3 depicts the contrast between
vertical and horizontal scalability.

Thing

IoT Service

Hardware Resource

Thing Thing Thing

Thing

Service

Service

Service

a) Vertical Scalability b) Horizontal Scalability

c) Functional Scalability

Figure 3: Scalability of IoT systems.

Both vertical and horizontal scalability have been exten-
sively addressed in the literature [4, 10, 11, 14, 15, 16, 17, 18,
19, 20], unlike functional scalability which we refer to as the
capability to accommodate growth in terms of the number
of services composed in an IoT system (see Figure 3(c)). In
particular, it enables the composition of any number of ser-
vices, without severely impacting global system properties
such as performance, maintenance, evolution and monitoring.
Hence, functional scalability is crucial for dealing with IoT
systems composed of billions of services. Figure 4 shows
that it is orthogonal to vertical and horizontal scalability.

Vertical

Scalability

Horizontal Scalability

Functional

Scalability

Figure 4: Scalability dimensions.

Like the other kinds of scalability, functional scalability
requires the definition of metrics to measure the degree of sat-
isfaction for accommodating new services. In this paper, we
propose six qualitative metrics which we discuss in Section 5.
We do not claim that such metrics are complete since quanti-
tative metrics for QoS, identified for vertical and horizontal
scalability, can also be important. However, quantitative
metrics are only applicable to specific implementations. As
service composition is an abstraction rather than a concrete
implementation, we strongly argue that qualitative metrics
are the best ones to measure the degree of satisfaction of
functional scalability in service composition mechanisms.
For the rest of the paper, the terms scalability and functional
scalability are used interchangeably.
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3. Related Work
This section presents the current IoT service composi-

tion mechanisms that define behaviour by workflows, namely
(centralised and distributed) dataflows, (centralised and dis-
tributed) orchestration, choreography, and a novel compo-
sition mechanism called DX-MAN. We particularly focus
on the fundamental semantics of these mechanisms instead
of addressing specific implementation technologies. This
is because semantics constitutes general theory that defines
how to compose services conceptually rather than a con-
crete implementation (that can only be evaluated in specific
scenarios). Significantly, fundamental semantics underlies
so-called composition algorithms [8, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100, 101, 102], programming frameworks
[84, 103, 104, 105, 106, 107, 108], languages [109, 110] and
platforms [111, 112, 113, 114, 115, 116, 117], which have
been somehow confusingly included in existing “IoT service
composition” surveys [3, 5, 24, 118, 119].

It is also essential to mention that IoT service composi-
tion is just another name for traditional SOA composition
and it is done regardless of so-called service “architectures”
such as the ones defined for Microservices. Microservice
Architecture [120, 121, 122] has gained considerable atten-
tion in the last few years and is becoming increasingly im-
portant and popular for the development of IoT systems
[123, 124, 125, 126, 127]. Every Microservice Architecture
is an SOA, but not the other way round [128]. Hence, the ser-
vice composition mechanisms presented in this sub-section
can be used interchangeably in both Microservices and tra-
ditional SOA services. In fact, there are no composition
mechanisms specifically aimed for Microservices.

Dataflows, or Flow-Based Programming [129, 130, 131],
is a composition mechanism that defines implicit workflows
as directed graphs where vertices receive input data streams,
carry out some computation and pass the result to other ver-
tices via an edge for further processing [71, 132]. A cen-
tralised approach [83, 116] fully coordinates the exchange
of data streams exogenously (i.e., from outside services),
whereas a distributed one [37, 38, 133, 134] partitions a com-
plexworkflow dataflow overmultiple coordinators. Currently,
dataflows is the most popular IoT service composition mecha-
nism, so there are plenty of available technologies for defining
data-driven IoT workflows [83, 126, 135].

Orchestration defines explicit workflow control flow struc-
tures to coordinate the invocation of service operations ex-
ogenously and, like dataflows, it can be centralised or dis-
tributed. A centralised orchestration [72, 136, 137, 138] has
full control over all the services composed, whereas a dis-
tributed approach (also known as “decentralised orchestra-
tion” [139, 140, 141, 142, 143, 144, 145, 146, 147, 148])
defines sub-workflows for a collaborative exchange of work-
flow control flow over the network. Although orchestration
is not as popular as dataflows, there are some implementa-
tions available for this mechanism to support the definition
of control-driven IoT workflows [149, 150, 151].

Choreography [136, 137, 138, 152, 153] is another com-
position mechanism that defines workflow control flows for

the invocation of operations in services. Unlike orchestra-
tion, it relies on a public protocol which specifies a global
“service conversation” via decentralised interactions, and
it is modelled using a choreography modelling language
[122, 138, 153]. When a choreography is enacted, the com-
posed services exchange control according to the protocol
to realise decentralised workflows. It is because of this de-
centralised nature that there is an increasing trend of im-
plementing technologies for choreographing IoT services
[154, 155, 156]. Notably, some of these technologies (e.g.,
[155]) implement choreographies based on the data-driven
paradigm with no notion of public protocols, which do not
define any composite service but a bunch of interactions via
events or decentralised message passing. So, they do not
follow the standard definition as noted by [35].

DX-MAN [157, 158, 159] is a model that uses exogenous
composition operators [160, 161] to algebraically compose
IoT services in a hierarchical bottom-up manner. The result
of composition is not a workflow, but an IoT composite ser-
vice which is semantically equivalent to a potentially infinite
family of (explicit) workflow control flows. As DX-MAN
takes the best properties from choreography and orchestra-
tion, it enables decentralised data exchanges over the network
while decoupling services via (exogenous) workflow control
flows [162]. Currently, there is only one platform available
to support the definition of algebraic IoT systems [163].

To continue the discussion, Section 6 describes the above
composition mechanisms in detail and presents a concrete
analysis in terms of functional scalability requirements.

4. A Large-Scale IoT Scenario: Smart
Parking System (SPark)
To illustrate the context for scalability requirements, this

section presents a large-scale IoT scenario in the smart park-
ing domain. The scenario tackles a common problem of large
cities and is described as follows.

With the increase of population, large cities have had to
deal with daily traffic congestion caused by drivers actively
searching for parking spaces, especially during rush hours.
As a consequence, there are increased carbon emissions as
well as waste of commuters’ time and money [164, 165]. This
section presents a large-scale smart parking system, SPark,
for self-driving vehicles which efficiently find (and reserve)
the nearest parking space in a smart city. SPark thus helps
to improve parking space utilisation, shorten parking search
time, reduce environmental pollution, minimise parking costs
and fuel consumption, and alleviate traffic congestion [164].

SPark operates in a smart city with plenty of parking
spaces equipped with occupancy sensors whose data is man-
aged by Infostations. Although it is an urban infrastructure
device able to collect up-to-date occupancy status from all
sensors in range, an infostation only pulls data from the sen-
sors near a vehicle. Figure 4 illustrates SPark with four self-
driving cars, where a vehicle gets its location and requests a
parking space from the nearest Infostation. The InfoStation
then pulls data from the nearby sensors to determine the near-
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pullStatesSensor
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Figure 6: SPark services.

est parking space that is free. To avoid two different vehicles
chasing the same parking space, the space is reserved and
paid for in advance. Finally, the vehicle displays the desired
route and drives towards the selected parking space. Figure
5 depicts the general workflow of SPark.
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Figure 4: A smart city with SPark.
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Figure 5: SPark workflow.

To achieve its goal, SPark composes a huge amount of IoT
services distributed across a city. It is then an ultra large-scale
system [23, 24, 25, 26] because sub-systems (i.e., services)
may potentially integrate other sub-systems (i.e., services)
and so on. Figure 6 depicts the relationship between services
and sub-services in SPark. We distinguish between atomic
services and composite services. An atomic service is the
most primitive unit with no internal structure, whilst com-
posite services integrate sub-services and can be integrated
into even more complex composites.

To hide complexity and protect behaviour integrity, we as-
sume that the composite services of our example are encapsu-
lated. As IoT composite services potentially reside on differ-

ent business domains [166], SPark cannot be “decomposed”
using a top-down approach, but it should be composed in a
bottom-up fashion by reusing existing compositions [27, 31].
Figure 6 shows the resulting hierarchical service relationship.

Note that ellipses indicate that services may provide mul-
tiple operations or compose many other services. Also note
that, in practice, atomic services can be defined as compos-
ite services. For example, DrivingCtr could be a complex
service that integrates services for planning a path and con-
trolling a vehicle. As another example, the Display service
may internally use a web mapping service and a visualisa-
tion service for displaying a route. An alternative (larger)
view of SPark can be found in Appendix A. For clarity, this
section only shows a simplified version of SPark which is
incrementally described below.

The SensorNetwork composite is a wireless network that
composes a group of dedicated atomic Sensor services. It pro-
vides the SensorNetwork.pullStates operation as an interface
for collecting parking space status in parallel. The collection
is done by invoking the Sensor.pullState operations from the
sensors near the vehicle.

The CityManagement composite service composes mul-
tiple SensorNetwork composites and one atomic Booking
service. It provides the CityManagement.getParking oper-
ation for finding and reserving the best (i.e., the free and
nearest) parking space. To do so, it collects sensor states
with the SensorNetwork.pullStates operation, and then deter-
mines which parking spaces are free. Finally, it reserves the
nearest free parking space using the Booking.book operation.

The Payment composite is an online electronic payment
service that composes two payment providers: Provider1 and
Provider2. It chooses which payment method to use when
the operation Payment.pay is invoked. On the one hand,
Provider1 is an atomic service with the operations payVisa
and payMaster (for paying with Visa or Mastercard). On the
other hand, Provider2 is an atomic service with the operation
payWallet (for paying with an eWallet).

The Vehicle composite encompasses two different be-
haviours, and composes the atomic services GPS, Display
andDrivingCtr. The Vehicle.getCurrentLocation operation is
an interface for the behaviour ofGPS.getLocation, which gets
geospatial positioning information. The Vehicle.driveVehicle
operation is more complex, as it invokes Display.showMap
so as to plan, compute and visualise the route on the vehicle’s
display. Then, it executes DrivingCtr.drive to autonomously
drive the vehicle towards the desired parking space.
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SPark is the most complex composite service, since it
composes the services CityManagement, Payment and Ve-
hicle, and provides the SPark.findBestParking operation for
the encapsulation of the whole system’s behaviour. The be-
haviour is a workflow for the sequential invocation of Vehi-
cle.getCurrentLocation, CityManagement.getParking, Pay-
ment.pay and Vehicle.driveVehicle. Appendix B describes
the complete workflow of our scenario.

As the SPark workflow spans multiple administrative
domains, our motivating example requires the distribution
of services across different geographical locations. Table
1 shows a possible physical deployment configuration. In
particular, CityCouncilCloud is a virtual thing where ser-
vices CityManagement, Payment and Booking are deployed.
ParkingSpace is a physical thing whose occupancy status is
provided by the Sensor service. Infostation is a physical thing
that collects data from sensors within a wireless range, via
the SensorNetwork service. ProviderServer1 and Provider-
Server2 are physical things of different payment provider
companies, where services Provider1 and Provider2 are de-
ployed. Vehicle is a physical thing that moves around the city,
searching for a parking space, which provides the services
SPark, Vehicle, GPS, Display and DrivingCtr. Note that de-
ploying a composite service (e.g., SPark) does not necessarily
mean that the composed services should be deployed on the
same thing. This is because IoT services operate on different
administrative domains.

Thing Composite
Services

Atomic
Services

CityCouncilCloud CityManagement,
Payment

Booking

ParkingSpace Sensor

ProviderServer1 Provider1

ProviderServer2 Provider2

Vehicle GPS,Display, DrivingCtrSPark, Vehicle

Infostation SensorNetwork

Table 1
SPark service distribution.

5. Functional Scalability Requirements
This section presents the functional scalability require-

ments of IoT systems in terms of SPark. These requirements
were derived from an extensive review of the literature on
large-scale IoT systems and serve as the foundation of our
evaluation framework. The requirements are: (i) explicit con-
trol flow [29, 30]; (ii) distributed workflows [23, 31, 32]; (iii)
location transparency [20, 33]; (iv) decentralised data flows
[23, 32, 34]; (v) separation of control, data and computation
[35, 36, 37, 38]; and (vi) workflow variability [23, 39, 40, 41].
5.1. Explicit Control Flow

Control flow defines the execution order of composed ser-
vices [71], according to sequencing, branching or parallelis-
ing constructs [75]. It is explicit when there is a visible con-
struct defining control flow in a service composition, whilst it
is implicit when it needs to be inferred from the collaborative

interaction of the composed services [71, 74, 138].3 Figure
7 describes the difference between such concepts. The left
side depicts visible constructs for the sequential execution
of A.opA1 and B.opB1. Contrastingly, the right side does notshow any control flow constructs, as the workflow logic is
hardcoded in the computation of the composed services.

A.op

A

opA1

B

opB1

A1 B.opB1

A

opA1

B

opB1

Explicit Control FlowIoT Atomic Service Operation

a) Explicit Control Flow b) Implicit Control Flow

Implicit Control Flow Workflow Start Workflow Termination

Figure 7: Explicit control flow vs implicit control flow.

The number of composed services may become over-
whelmingly large because of both the huge number of things
involved and the complexity of workflow control flow. Con-
sequently, execution failures become unavoidable, more chal-
lenging to manage and may potentially unleash catastrophic
consequences (for individuals or societies) [167]. For that
reason, explicit control flow becomes crucial to tackle func-
tional scalability, since it facilitates monitoring, tracking,
verification, maintenance and evolution of large-scale IoT
composite services [29, 30, 122, 168, 169]. For instance, we
can leverage explicit control flow to detect abnormalities in
a SPark execution [170, 171, 172], or we could easily ob-
fuscate workflow control flow in order to avoid malicious
reverse-engineering [173, 174].

Imagine that SPark suddenly stops working because of
a bottleneck in some service, so developers want to analyse
the system execution flow to find out where the problem is.
For this, they can leverage explicit control flow to display a
visual representation of the execution paths that SPark has
taken [29, 74, 175, 176]. By looking at the blueprint, devel-
opers can identify the services that perform poorly and react
accordingly.

Implicit control flow has historically been a barrier for
functional scalability since it hinders control flow visual-
isation, especially when the number of services increases
[29, 30, 121, 122, 177, 178]. Although there are attempts to
visualise control flow [178, 179, 180, 181, 182], transforming
implicit control flow into an explicit one is still a challenging
task, especially when the system workflow is complex. This
issue has made software development companies stop com-
posing services with implicit control flow. Netflix [183] is
the most prominent case, which has particularly expressed its
concern for monitoring composite service executions when
control flow is implicit. To tackle this, it has recently de-
veloped Conductor [29] to move from compositions with
implicit control to compositions with explicit control.

3For example, control flow is explicit in imperative languages and
implicit in declarative ones.
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5.2. Location Transparency
Large-scale IoT systems are inherently dynamic and un-

certain due to the presence of churn in the operating envi-
ronment [20, 25, 27, 33, 184, 185, 186]. Churn means that
things (and their services) dynamically connect and discon-
nect from the network as a result of auto-scaling, software
upgrades, failures, poor connection and mobility. It is partic-
ularly evident when an IoT system uses resource-constrained
things with a poor connection [187], or when there are mobile
things involved [185, 188]. Hence, churn results in physi-
cal service locations (i.e., IP addresses) changing over time
frequently. For example, the Spark’s Sensor service is a
resource-constrained thing with limited connectivity, which
is likely to experience network disconnections. Similarly, the
service Vehicle may change its IP address because of its high
mobility. The same happens to Provider1, Provider2 and
Booking as they are deployed on the Cloud.

To deal with churn, IoT systems require location trans-
parency, in order to ensure that atomic services are unaware
of the physical location of other services [74]. Figure 8 illus-
trates this concept. In particular, the lower section shows that
the (non-static) IP address of B.opB1 is hardcoded in A.opA1.The upper section shows a scenario where there is support
for location transparency.

a) With Location Transparency

A

opA1

87.60.14.2

69.17.45.8

B

opB1

69.17.45.8

A

opA1

87.60.14.2

B

opB1

69.17.45.8

b) Without Location Transparency

IoT Atomic 
Service

Operation

Thing

Figure 8: Location Transparency.

Location transparency is typically achieved with a service
discovery mechanism that dynamically queries a central ser-
vice registry [52]. In client-side discovery, service providers
register at startup in a registry which is later queried by ser-
vice consumers. In server-side discovery, a router (e.g., a
service bus like a gateway [112]) queries the registry and
forwards requests to an available service provider on behalf
of service consumers.

A service composition with no location transparency re-
quires service consumers to know the location of service
providers in advance. For example, without any support for
location transparency, SPark would have to be updated every
time a Vehicle changes location. Nonetheless, this is worry-
ing because there is a massive number of vehicles constantly
moving around a city and, therefore, changing location. Ad-
dressing this issue with a service discoverymechanism entails
the addition of “intrusive” elements to the composition (e.g.,
a service registry or a naming service) which are not part
of the semantics of a composition mechanism. In fact, an
atomic service computation would be tightly coupled with

the “intrusive” element, since the former needs to be updated
whenever the location of the latter changes. We shall keep
this in mind in Section 6.
5.3. Distributed Workflows

IoT service composition can define a centralised or a
distributed workflow. It is centralised when a single entity
governs the entire workflow control flow. Contrastingly, it
is distributed when multiple entities collaboratively define
control flow [74]. Figure 9 illustrates the contrast between
a centralised and a distributed workflow. The upper part
shows a central composite service that defines a workflow for
the sequential invocation ofA.opA1,A.opB1,A.opC1,A.opD1and A.opE1. The lower part shows a possible distribution of
the same workflow control flow over three composite services
deployed on different things.

A.op
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B

opB1

A1 B.opB1

Figure 9: Centralised workflow vs distributed workflow.

Although a centralised workflow facilitates the design
and maintenance of an IoT system, implementing a large-
scale IoT system using such an approach is inefficient and
infeasible [133]. This is because a central entity constitutes a
single point of failure and attack, and leads to a performance
bottleneck since all control and data goes through it [27, 34,
140, 142, 144, 148, 189, 190, 191]. Moreover, a central entity
negatively impacts the availability of an IoT system.

The distributed nature of IoT requires control and data to
pass through geographically dispersed entities (potentially de-
ployed on different business domains) [32, 37, 133, 166]. For
that reason, no single domain should govern the entire com-
position workflow, since multiple domains (perhaps in the
order of millions) may want control over their own workflow
part [74, 190, 192]. For instance, the CityManagement com-
posite may potentially be controlled by the City Council, and
a payment provider company could operate the Payment com-
posite. This issue clearly implies that every administrative
domain should be able to manage their own workflow defini-
tion. Thus, a distributed workflow should be part of any IoT
service composition mechanism, since it allows interoperabil-
ity between different domains and improves load balancing,
throughput and availability of an IoT system [74, 87].
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5.4. Decentralised Data Flows
Data flow defines the way data elements are moved from

one service to another in a service composition [71]. This
process can be done in three different ways: centralised,
distributed or decentralised.

In the centralised approach [112, 136, 193, 194], a sin-
gle composite mediates the exchange of data between ser-
vices (see Figure 10(a)). Although it facilitates data man-
agement, the mediator becomes a potential bottleneck and
introduces additional network hops for data exchange, since
all data passes through it. This negatively impacts QoS by
increasing the response time, and leads to network congestion
[34, 141, 142, 190, 195], especially when there are plenty of
IoT services exchanging huge amounts of data continuously
[24, 25, 187, 190, 196].

IoT Atomic 
Service

Operation

Thing

IoT Composite 
Service (Mediator)

Data Flow

Figure 10: Data flow approaches.

To avoid a single bottleneck, the distributed approach
[133, 139, 140, 141, 142, 143, 144, 146] removes the cen-
tral composite and distributes the load of data over multiple
composites (see Figure 10(b)). Although this improves load
balancing, it introduces unnecessary network overhead as
data passes through many mediators, even if data is unim-
portant for them, i.e., the more mediators, the more network
overhead.

IoT services must exchange data as efficiently as possi-
ble (by minimising network hops), in order to avoid perfor-
mance bottlenecks, achieve better response time and improve
throughput [147]. A decentralised approach provides the
most suitable data exchange for service composition since
it requires only one network hop to pass data directly from
a service producer to a service consumer (see Figure 10(c))
[34, 117, 152, 162, 195, 197, 198, 199]. For example, the
data generated by Booking.book should be passed to Dis-
play.showMap, without passing through any other entity that
does not require the produced data (e.g., the CityManagement
composite or the Vehicle composite). In general, the amount
of data transmitted in SPark may potentially be huge due
to the large number of services involved of which sensors
generate data continuously. Therefore, SPark requires a com-
position mechanism with support for decentralised data flows
to provide an optimal QoS.

5.5. Separation of Control, Data and Computation
Large-scale IoT systems may potentially span multiple

administrative domains and exhibit a high degree of hetero-
geneity in many different forms [25, 74, 200]. For instance,
there may be different service providers (e.g., Amazon AWS
IoT and IBM Watson), a wide variety of programming lan-
guages (e.g., Swift and embedded C), multiple operating
systems (e.g., Contiki and TinyOS) and different network
communication protocols (e.g., CoAP and MQTT). For that
reason, service composition mechanisms must provide the
means to deal with such heterogeneity, in order to compose
large-scale cross-domain IoT systems. This is, in fact, one of
the major challenges for building IoT systems [200].

To enable flexible service composition in such heteroge-
neous environments, control flow, data flow and computation
should be orthogonal [35, 36, 38, 76, 144, 201, 202]. This
would enable separate reasoning of concerns so system de-
velopers can focus on IoT service composition, while service
developers focus on efficient service functionality [37, 74, 76].
Consequently, services are workflow agnostic because work-
flow control flow is never embedded in the computation of
many services. Moreover, the separation of control and com-
putation facilitates workflow monitoring [29].

Figure 11 illustrates a separation of control, data and
computation. There are two computations defined in A.opA1
and B.opB1. The control flow part defines a workflow for
the sequential invocation of A.opA1 and B.opB1, without
considering data flow and computation. The data flow part
defines intermediate processing of the output from A.opA1,
before sending it to the input of B.opB1. When control is
mixed with data, such processing represents an extra control
flow step which is intrusive to the original workflow.

Computation De nition

Control Flow De nition

Data Flow De nition

A.opA1 B.opB1

A.opA1 B.opB1
Intermediate

Data 
Processing

io

A

opA1
o

B

opB1
i

IoT Atomic 
Service

Operation

Data Flow

Control Flow

i Input

o Output

Figure 11: Separation of control, data and computation.

The separation of data flow will additionally enable sep-
arate data management for improving performance without
considering control flow [35, 162]. Similarly, control flow
can be used in isolation for defining efficient deployment
strategies that do not consider data flow. Moreover, different
technologies can be used for implementing control flow, data
flow and computation separately [35]. For instance, devel-
opers of SPark could use CoAP for passing control between
services, the Blockchain for managing data flows and em-
bedded C for implementing service computation. Providing
independent reasoning of concerns also enables a separate
validation and verification (V & V) of services.

When control is mixed with computation, a service
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provider and a service consumer are tightly coupled because
invocations are originated in the consumer’s computation.
Thus, changing workflow control flow in one service requires
further changes in the respective computation. This rigid-
ity evidently limits the scalability of IoT systems because
it is difficult to add, remove, change and replace services
(and system workflow control flow). For that reason, reusing
services is not possible at scale when control is mixed with
computation [29, 37, 71, 74, 203].

Suppose there is a branching control flow structure
in the computation of Booking.book, for invoking either
Provider1.payVisa orProvider2.payWallet. As a result, Book-
ing.book is not reusable as it is since it must be adapted to the
requirements of other systems, e.g., it must be updated when
two new payment providers come into play (e.g., Provider3
and Provider4). As another example, SPark could need the
parallel execution of Payment.Pay and Vehicle.driveVehicle,
in order to improve concurrency. In this case, the sequence
of invocations hardcoded in SPark.findBestParking must be
replaced with a parallel control flow structure.

Generally speaking, large-scale IoT systems require sepa-
rate reasoning of control, data and computation for indepen-
dent maintenance, validation, verification, reuse and evolu-
tion of those concerns. This separation of concerns could
also result in reduced time to market and reduced software
production and maintenance costs [74].
5.6. Workflow Variability

Large-scale IoT systems operate in highly dynamic envi-
ronments subjected to variability caused by external or inter-
nal factors [39, 41, 204, 205]. External factors are beyond the
scope of the system and include changes in requirements and
increasing workloads. Internal factors are associated with the
system operation and include system failures and sub-optimal
behaviours.

A service composition mechanism must support the def-
inition of alternative behaviours, in order to adapt a com-
posite to changes in both the external and the internal en-
vironment. As manually choosing alternative behaviours is
a costly and inefficient management process, when there
are many services in the composite, behaviours must be
selected autonomously (i.e., with no human intervention)
[206]. Thus, variability of behaviour is a crucial desideratum
for the realisation of large-scale autonomous IoT systems
[23, 39, 40, 41, 87, 207].

Workflow variability [157, 208] allows the definition of
alternative control flow constructs (i.e., behaviours) in a ser-
vice composition (see Figure 12), and it is particularly useful
for autonomously changing workflows at runtime. For in-
stance, the SensorNetwork composite may define variable
parallel behaviours for pulling data, depending on a vehicle’s
location. For one vehicle, it may pull data from Sensor1
and Sensor2, whilst for another one it could pull data from
Sensor10, Sensor29 and Sensor34. As another example, con-
sider multiple payment service providers that offer different
QoS (which is always fluctuating according to different work-
loads). For this, a variable branching construct can be used to

dynamically choose the Provider service with the best QoS.

Work ow 
Start

Work ow 
Termination

IoT Atomic 
Service

Operation Control 
Flow

A

opA1

B

opB1

Two Services

A.opA1 B.opB1

A.opA1

B.opB1 A.opA1

B.opB1 A.opA1 B.opB1

Figure 12: Workflow variability.

When there is a family of related compositions, a Great-
est Common Denominator [208] is a base variability model
that can be reused for defining alternative compositions (also
known as configurations). For example, suppose a SPark ve-
hicle can be either manual or self-driving. A manual vehicle
requires the services GPS and Display, whilst a self-driving
one uses the service DrivingCtr in addition. For this, the
Vehicle composite of Figure 6 would be the Greatest Com-
mon Denominator, which can be reused for defining two
alternative behaviours for two different vehicles.

Workflow variability is not only useful to accommodate
the requirements of different vehicles, but also meaningful for
different cities and users. Consider the case of Northern Ire-
land where many cities offer free on-street parking, and a few
others (e.g., Belfast, Lisburn andNewry) impose a tariff [209].
Here, some SPark workflow variants may require a Payment
composite, while others not. At the city scale, it would be-
come very difficult to define workflows from scratch since
many services would need to be changed and customised.
Users can also require different workflows according to their
needs, e.g., one user may require pre-payment, whereas an-
other one may require post-payment. However, manually
changing behaviour at runtime to accommodate different
user requirements is infeasible. Thus, workflow variability
represents a suitable solution for tackling the above scenarios.

In order to define workflow variability, a service composi-
tion mechanism must enable total compositionality by which
all behaviours (e.g., operations) from the composed services
are semantically available in a composite service [157, 159].
This concept contrasts with partial compositionality where
only named and selected behaviours are semantically pre-
served, leading to a combinatorial explosion of behaviours
as the number of services increases [159].4 Figure 13 illus-
trates the dichotomy between total and partial compositional-
ity. The lower section shows the preservation of operations
A.opA1 and B.opB2 in the composite service, for the creation
of a single workflow involving those operations. Remarkably,
the upper section depicts a composite service that preserves
all the operations from the sub-services, which means that
alternative workflows can be created. For instance, we could
define a sequential workflow for the invocation of B.opB1

4For example, there are 2k − 1 possible scenarios for pulling sensor
data, where k is the number of sensors.
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and A.opA2, or an alternative sequence for the execution of
A.opA1, B.opB2 and A.opA1. These behaviours are impossi-
ble to achieve with partial compositionality which allows the
definition of only one fixed workflow at a time.

Work ow Termination Control Flow

IoT Atomic Service Operation Preserved Operation Lost

IoT Composite Service Work ow Start * = Any Operation

A

opA2

B

opB2

opA1 opB1

A.opA1 B.opB1

Figure 13: Total compositionality vs partial compositionality.

6. Analysis of IoT Service Composition
Mechanisms
This section reviews and analyses the fundamental seman-

tics of current IoT service composition mechanisms, namely
(centralised and distributed) dataflows, (centralised and dis-
tributed) orchestration, choreography and DX-MAN. The
goal is to determine how well they fulfil the functional scal-
ability requirements of IoT systems. For this analysis, we
investigate the following research questions per mechanism:

• RQ1: Is there any architectural entity explicitly defin-
ing control flow?

• RQ2: Are atomic services location-agnostic of other
atomic services?

• RQ3: Is it possible to distribute a workflow over mul-
tiple entities?

• RQ4: Do atomic services exchange data directly?
• RQ5: Do atomic services perform computation with-

out passing any data or control to other atomic ser-
vices?

• RQ6: Is there any notion of workflow variants?
For R1-R4 and R6, we use a tick mark to indicate that a

specific mechanism fulfils the requirement being analysed,
or a cross mark to indicate the opposite. RQ5 is the only
requirement that uses a textual representation for showing

which concerns (i.e., control, data and computation) are inde-
pendent. To answer RQ6, we need to determine the composi-
tionality of a mechanism which can be either total or partial
(see Section 5.6). To do so, we investigate the following
research questions:

• RQ7: What is the resulting type from composition?
• RQ8: How many workflows does the composition

mechanism define?
6.1. Dataflows

Dataflows, or Flow-Based Programming [129, 130, 131],
is a composition mechanism that defines a workflow using
data transformations (e.g., filter, split, union and sort) as well
as exogenous data exchange between services [71, 132]. A
dataflow description is a directed graph where vertices are
asynchronous data processing units (invoking service oper-
ations), and edges are connections for passing data streams
between vertices via the network (by message passing or
events). A vertex explicitly defines input ports and output
ports. When it receives data from all inputs, it performs some
computation and writes results in output ports. The resulting
data is then moved to other vertices via an edge. This process
is illustrated in Figure 14.

Figure 14: Composition by dataflows.

Dataflows can be centralised or distributed. A centralised
dataflow [83, 116] defines a single coordinator for managing
an entire graph and exogenously invokes service operations.
A distributed dataflow [37, 38, 133, 134] partitions and dis-
tributes a complex graph over multiple coordinators that in-
teract directly by exchanging data between vertices. Figure
14(a) shows a centralised dataflow for a pipeline of services A,
B, C and D. When the coordinator Flow1 is triggered, vertex
V-A1 invokes A.opA1 and passes the result to the vertex V-B1which, in turn, executes B.opB1. Next, the result of V-B1 ispassed to the vertex V-C1 which executes C.opC1. Finally,the data of V-C1 is moved to the vertex V-D1 and then pro-
cessed byD.opD1. A distributed version of the same pipeline
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Table 2
Compositionality of dataflows.

Explicit Control Flow

Service Location Transparency

Distributed Work�ows

Decentralised Data Flows

Centralised
Data�ows

Separation of Control/Data/Computation

Work�ow Variability

Data/Computation

Distributed
Data�ows

Data/Computation

Table 3
Analysis of composition by dataflows w.r.t. the scalability desiderata.

is shown in Figure 14(b), where there is an edge between
V-B1 and V-C1 for moving data from the Flow1 composite
to the Flow2 composite.

Dataflows are increasingly popular for composing IoT
systems. In particular, they are widely used for the In-
ternet of Data (IoD) [210] which involves data collection
from multiple sources (e.g., sensors), data analysis and con-
trol of the physical world. This paradigm has been re-
ferred to as Sense-Compute-Control (SCC) [211].5 Currently,
there are many platforms for composing IoT services using
dataflows. Examples include Node-RED [83], COMPOSE
[214], Glue.Things [116], LabVIEW [135], Paraimpu [215],
Virtual Sensors [111], SpaceBrew [216], FogFlow [18], ASU
VIPLE [217], ThingNet [126], Calvin [218], IoT Services
Orchestration Layer [219], NoFlo [220] and many others
[221, 222, 223, 224].

As the Web 2.0 became more data-centric and user-
friendly [65, 71], dataflows have gained popularity for IoD
through mashups. Mashups [225] are realised by dataflows
[71, 226], and they allow the composition and visualisation
of data streams on a graphical user interface displayed on
the Web [65, 71, 227]. Examples of mashup tools include
WoTKit [228], IoTMaaS [196] and Clickscript [56].

Dataflows have been accepted as coordination languages
since a graph is defined in a coordinator that exogenously in-
vokes services according to a dataflow description [129, 130,
133]. A dataflow graph is typically created with a graphical
editor and executed by an engine (i.e., the coordinator), and
it is triggered by either timing constraints or events.

A dataflow coordinator is the only entity aware of service
locations, and provides separation between data and compu-
tation. This separation allows service developers to focus on
data stream computation while system developers wire up

5Do not confuse data analysis tools [212, 213] with dataflows. A data
analysis tool is a software that allows the collection, storing, indexing, pro-
cessing, monitoring and visualisation of data. On the other hand, dataflows
specify how data is passed between services according to a dataflow graph
specification.

vertices exogenously [133]. However, despite the aforemen-
tioned advantages, decentralised data flows are not supported
as data streams always pass through data flow coordinators.

Although passing data between vertices is explicitly de-
fined in a dataflow graph, control flow is implicit in the col-
laborative data stream exchange. This is because control flow
statements are not visible in the graph specification.

In general, a graph specification is a single flat workflow
of named and selected service operations. It might seem that
a distributed dataflow provides multiple workflows. However,
this is not true because a distributed dataflow graph is just a
single nested workflow, distributed over different coordina-
tors. Thus, dataflows only provide partial compositionality
and do not support workflow variability (see Table 2).

Table 3 summarises the results of our analysis of data
flows w.r.t. the scalability desiderata. Both centralised
dataflows and distributed dataflows have similar characteris-
tics. The only difference is that the latter provides support
for distributed workflows by partitioning a dataflow graph
over multiple coordinators.
6.2. Orchestration

Orchestration can be centralised or distributed. Cen-
tralised orchestration [72, 136, 137, 138] describes interac-
tions between services from the perspective of a central coor-
dinator (also known as orchestrator) which has control over all
parties involved. It explicitly defines workflow control flow
to coordinate the invocation of service operations, in order
to realise some complex function that cannot be achieved
by any individual service [69, 70, 229]. In a distributed
orchestration, also known as “decentralised orchestration”
[139, 140, 141, 142, 143, 144, 145, 146, 147, 148], multiple
coordinators collaboratively define workflow control flow.

An orchestration is typically defined using a workflow
language such as BPEL [70, 81, 230, 231, 232, 233, 234, 235]
or BPMN [86, 236]. The resulting workflow has tasks for
passing control among services according to explicit control
flow constructs (for sequencing, parallelising, branching and
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Table 4
Compositionality of orchestration.

Explicit Control Flow

Service Location Transparency

Distributed Work�ows

Decentralised Data Flows

Centralised
Orchestration

Separation of Control/Data/Computation

Work�ow Variability

Control/Computation

Distributed
Orchestration

Control/Computation

Table 5
Analysis of composition by orchestration w.r.t. the scalability desiderata.

looping) [71]. In distributed orchestration, the interaction
between coordinators can be done in three different ways: (i)
with an extra task [140], (ii) with two extra tasks [141, 142,
148] or (iii) without any extra task [139, 144, 145]. In (i), an
orchestration invokes the interface of another one using an
external task to the system’s workflow control flow. In (ii),
there are two different tasks for receiving and passing control
(and data) between two orchestrations. Finally, in (iii), two
orchestrations interact by moving control (and data) directly
between the tasks of the system’s workflow control flow.

An orchestration engine is responsible for executing a
workflow process by invoking service operations in a given
order. Although traditional engines can be used (e.g., Ca-
munda BPM workflow engine [86, 237], Activiti [238, 239]
and AWS Step Functions [151]), recently we have seen the
emergence of orchestration engines particularly designed for
IoT systems (e.g., PROtEUS [149] and [150]).6

Figure 15(a) illustrates a centralised orchestration for the
services A, B,C andD, where the coordinatorOrch1 defines a
“composite service” for the sequential invocation of A.opA1,
B.opB1, C.opC1 and D.opD1. Three distributed versions aredepicted in Figure 15(b). In the former, Orch1 defines a
“composite service” for the sequential execution of A.opA1and B.opB1, and then uses an extra task to pass control (and
data) to Orch2. Orch2 defines another “composite service”
to sequentially invoke C.opC1 and D.opD1. The second dis-tributed version uses two extra tasks for passing and receiving
control (and data) between Orch1 and Orch2. Finally, in the
last distributed version, control and data are passed directly
from B.opB1 to C.opC1.A glance at Figure 15 reveals that services are workflow
agnostic because an orchestrator is the only entity aware of
the location of other services. Having workflow agnostic ser-
vices implies that an orchestrator provides separation between
control flow and computation. This separation allows service

6Aworkflow engine can be deployed on either a specialised server [237]
or a service bus like a Gateway [112, 193, 194].

IoT Composite Service (Coordinator) IoT Atomic Service

Task Data Flow Explicit Control FlowOperation

a) Centralised Orchestration

b) Distributed Orchestration

Figure 15: Composition by orchestration.

developers to focus on efficient service functionality (i.e.,
computation) while system developers focus on workflow
control flow in orchestrator(s).

Although a central coordinator facilitates the manage-
ment of control flow logic, it easily becomes a performance
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Table 6
Compositionality of choreography.

bottleneck because all data passes through it [140, 142]. This
is because data follows control [71, 162]. Furthermore, the
resulting composite service is a single flat workflow, for the
invocation of named and selected operations, which must
be transformed into a service [159, 240]. For that reason,
orchestration only provides partial compositionality and does
not support workflow variability (see Table 4).

Table 5 summarises the results of our analysis of orches-
tration w.r.t. the scalability desiderata, where we can see that
centralised orchestration and distributed orchestration have
similar characteristics. The only difference is that the latter
supports distributed workflows via the partition of workflow
control flow over multiple coordinators.
6.3. Choreography

A choreography describes service interactions from a
global perspective using a public contract (also known as
protocol) [136, 137, 138, 152, 153]. The contract specifies a
“conversation” among participants via decentralised message
exchanges, which can be modelled by a global observer using
a choreography modelling language [122, 138, 153].7 An
interaction-based model allows the definition of event-driven
or request-response messages by connecting required and
provided interfaces. Examples include WS-CDL [241] and
Let’s Dance [242]. An interconnected interface model, on the
other hand, allows the specification of control flow per par-
ticipant. Examples include BPEL4Chor [240], Web Service
Choreography Interface (WSCI) [243] and BPMN [244].8

A protocol defines roles for the collaborative realisation
of a global workflow with no control over the internal details
of the participants involved [229]. A role explicitly describes
a participant workflow control flow in terms of expected and
produced messages. When a concrete service instance plays
a role, it must behave accordingly by exchanging messages
with other instances, using either direct message passing
(e.g., invoking REST APIs) or events [63, 74, 117, 122].9
This process is known as choreography enactment.

IoT is moving towards a more decentralised environ-
ment to reduce the bottleneck caused by centralised envi-
ronments. As choreographies represent a natural way of
dealing with such decentralisation, there are currently some
platforms for composing IoT services by choreographies, e.g.,

7A Microservice architecture prefers choreography over orchestration
to support decentralised workflows [122].

8The choice of the contract depends on the type of participants involved
which can be either atomic services or orchestrations.

9Service participants are tightly coupled in terms of dependencies. In
choreographies based on direct message-passing, services hardcode invoca-
tion calls in service computation. In event-driven choreographies, services
are tightly coupled because senders and receivers agree a topic queue in
advance [245].

CHOReVOLUTION [154], ChorSystem [246], Actorsphere
[156], BeC3 [117] and TraDE [35].

Figure 16 illustrates a sequential choreography for the
services A, B, C and D, where a protocol (defined with stan-
dard BPMN 2.0 notation [236]) specifies that B.opB1 expectsa message from A.opA1, C.opC1 a message from B.opB1 and
D.opD1 a message from C.opC1. When the choreography is
enacted, there is a chain reaction that starts with the invoca-
tion of A.opA1 and finishes with the execution of D.opD1.

Data Flow Explicit Control Flow

IoT Composite Service IoT Atomic Service Operation

B

Figure 16: Composition by choreography.

Figure 16 shows that workflow control flow is explicitly
defined in the protocol. During enactment, control is passed
alongside data in every invocation, so services need to be
aware of the location of other services. Of course, a service
registry can be used, but this entails adding an “intrusive”
element external to the composition (see Section 5.2).

Like orchestration, the resulting composition is a flat
workflow for the invocation of selected and named operations
(specified in the protocol). If the resulting workflow needs to
be further composed, a choreography needs to be transformed
into a service [159, 240]. For that reason, a choreography
is partially compositional and workflow variability is not
supported (see Table 6). Table 7 summarises the results of
our analysis of choreography w.r.t. the scalability desiderata.

None

Explicit Control Flow

Service Location Transparency

Distributed Work�ows

Decentralised Data Flows

Choreography

Separation of Control/Data/Computation

Work�ow Variability

Table 7
Analysis of composition by choreography w.r.t. the scalability
desiderata.
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6.4. DX-MAN
DX-MAN [157, 158, 159] is an algebraic model where

IoT services and service composition operators are first-class
semantic entities. A service is a stateless distributed unit of
composition which can be either atomic or composite, and its
semantics is a workflow space (i.e., a family of workflow vari-
ants). A composition operator defines variable control flows
between families of workflow variants (see Figure 17(b)).

Algebraic
Reference

Atomic 
service

Composite
Service

Atomic
Work�ow 
Space

Operation

Composite
Work�ow 
Space

Computation
Unit

(a) Atomic 
      Service

Figure 17: DX-MAN model.

An atomic service is formed by connecting an invocation
connector with a computation unit (see Figure 17(a)). It is a
finite workflow space whose elements invoke a different oper-
ation implemented in the computation unit via an invocation
connector. As a computation unit is semantically identical
to a traditional SOA service (because it is a set of opera-
tions), DX-MAN atomic services and SOA atomic services
are semantically different (cf. Section 2.1).

A composite service connects a composition operator
with multiple (atomic or composite) sub-services (see Fig-
ure 17(c)), which is equivalent to connecting a composition
operator with multiple sub-workflow spaces. The result is a
composite workflow space whose workflow variants invoke
elements of atomic sub-workflow spaces and/or entire com-
posite sub-workflow spaces, according to the control flow
definition of the composition operator being used. There
are composition operators for sequencing (i.e., sequencer),
branching (i.e., inclusive selector and exclusive selector) and
parallelism (i.e., paralleliser). Figure 18 shows that the se-
quencer and paralleliser operators define infinite workflow
variants, whilst the branching operators define 2n−1 variants
s.t. n is the total number of atomic sub-service operations
plus the number of composite sub-workflow spaces. For
further details on this matter, see [157].

Number of
Work�ows

Composition
Operator

XSEL

Figure 18: DX-MAN composition operators.

In addition to composition operators, DX-MAN provides
special transformation operators (called adapters) for sequenc-
ing, branching, parallelising, looping and guarding over in-
dividual workflow spaces. Hence, DX-MAN is Turing com-
plete [247]. Currently, there is only one platform that im-
plements the DX-MAN model [163], and it is available at
https://github.com/damianarellanes/dxman.

In DX-MAN, a composition is done incrementally in a
bottom-up fashion. So, a hierarchical connection structure
of operators sits on top of atomic services. Figure 19(a)
shows a DX-MAN composition that involves four atomic
services and three composite services. The first step is to
model the atomic services A, B, C and D with the invocation
connectors IA, IB , IC and ID. This process results in the
atomic workflow spacesWA,WB ,WC andWD, respectively.In the next hierarchy level, we create the composite services
E and F. To do so, we use the composition operator SEQEto define a composite workflow spaceWE from the atomic
sub-workflow spacesWA andWB . Likewise, we define thecomposite workflow space WF using the operator SEQFwhich operates on the atomic sub-workflow spaces WC and
WD . Finally, we create the top-level composite serviceG. For
this, we use the composition operator SEQG which defines
the composite workflow space WG fromWE and WF .

A

WA=
{wA1,{

E

WE

WA

WB

Figure 19: Composition by DX-MAN.

Note that workflow spaces from sub-services are available
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Table 8
Compositionality of DX-MAN.

in the next hierarchy level thanks to the algebraic semantics of
the model. Consequently, the result of algebraic composition
is not a single workflow, but a (potentially infinite) workflow
space (i.e., a service) of workflow variants. Thus, DX-MAN
supports total compositionality (see Table 8).

When a composition is done, an abstract workflow tree
is automatically derived, which represents the hierarchical
control flow structure of the composite (see Figure 19(b)). To
select a particular variant, a concrete workflow tree must be
created, which is just a projection function over a composite
workflow space. See [157, 158] for further details.

Figure 19(b) shows the abstract workflow tree of our ex-
ample from which we can choose infinite sequential workflow
variants (see Figure 19(c)). One case is depicted in Figure 20,
where a concrete workflow tree is created for the sequential
execution ofA.opA1, B.opB1, C.opC1 andD.opD1. Figure 21shows another variant where a different concrete workflow
tree is defined to invoke A.opA1 and D.opD1 sequentially.

IB

SEQE

IC

SEQE

SEQG

A

E

Figure 20: A workflow variant derived from Figure 19 for
sequentially executing A.opA1, B.opB1, C.opC1 and D.opD1.

Note that a DX-MAN composition has composition oper-
ators for the coordination of workflow control flow only. This
is because data flow and control flow are modelled separately
for each workflow variant. The paper [162] describes further
details on how to define data flows per variant.

A glance at Figures 20 and 21 reveals that data, control
and computation are independent concerns. Thus, data is ex-
changed in a P2P fashion between atomic services, while com-
position operators coordinate workflow execution by passing
control only. The coordination can be done in a distributed

IB

SEQE

IC

SEQE

SEQG

A

E

Figure 21: A workflow variant derived from Figure 19 for
sequentially executing D.opD1 and A.opA1.

way since composition operators can be deployed on different
things [159]. As coordination happens from outside services,
computation units do not interact with one another, which
results in independent distributed computations.

When an invocation connector receives control, it reads
data from a decentralised data space (i.e., the Blockchain in
the current implementation), invokes a service operation and
writes results in the space. For that reason, only invocation
connectors know the location of the connected computation
units (i.e., service implementations). Furthermore, as in-
vocation connectors perform operations on the data space,
composition operators never exchange data during workflow
execution. This (transparent) decentralised data exchange is
achieved by the separation of control and data [162].

Table 9 summarises the results of our analysis of DX-
MAN w.r.t. the scalability desiderata.

Explicit Control Flow

Service Location Transparency

Distributed Work�ows

Decentralised Data Flows

DX-MAN

Separation of Control/Data/Computation

Work�ow Variability

Control/Data/
Computation

Table 9
Analysis of composition by DX-MAN w.r.t. the scalability
desiderata.
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Table 10
Compositionality of IoT composition mechanisms.

Explicit Control Flow

Service Location Transparency

Distributed Work�ows

Decentralised Data Flows

Centralised
Data�ows

Separation of Control/Data/Computation

Work�ow Variability

Data/Computation

Distributed
Data�ows

Data/Computation

Centralised
Orchestration

Control/Computation

Distributed
Orchestration

Control/Computation

Choreography

None

DX-MAN

Control/Data/
Computation

Table 11
Analysis of scalability desiderata of IoT composition mechanisms.

7. Evaluation
This section presents an evaluation of service composi-

tion mechanisms w.r.t. compositionality and the functional
scalability requirements of IoT systems.

Table 10 summarises the analysis on compositionality
presented in Section 6 to answer the research questions RQ7
and RQ8. It shows that DX-MAN is the only mechanism that
enables total compositionality since algebraic composition
yields a service with a potentially infinite number of workflow
variants. The other mechanisms define only one workflow at
a time as the composition result is not a service, but a single
flat workflow that invokes selected and named operations.

Research questions RQ1-RQ6 have also been studied in
Section 6. They enable us to analyse how well service compo-
sition mechanisms fulfil the scalability requirements: (i) ex-
plicit control flow; (ii) location transparency; (iii) distributed
workflows; (iv) decentralised data flows; (v) separation of
control, data and computation; and (vi) workflow variability.

Requirements (i), (ii), (iii), (iv) and (vi) are binary be-
cause they can be either supported (i.e., a tick mark) or not
supported (i.e., a cross mark). Accordingly, we use Equation
1 to determine the satisfaction degree of binary requirements
for a specific composition mechanism,

rb(b) =
b
5

(1)

where rb is the satisfaction degree of binary requirements
and b is the number of supported binary requirements by the
mechanism s.t. b ∈ (ℕ ∩ [0, 5]) and rb ∈ (ℚ ∩ [0, 1]).

The requirement (v) is quinary since it admits 23 − 3
possible results: None, Control/Data, Control/Computation,

Data/Computation and Control/Data/Computation. This is
because (v) considers three different concerns (i.e., control,
data and computation) and discards options involving only
one concern. When (v) is None, the requirement support
becomes zero. Accordingly, Equation 2 determines the de-
gree of separation of concerns for a specific composition
mechanism,

rc(c) =
c
3

(2)
where rc is the degree of separation of concerns and c is the
number of independent concerns supported by themechanism
s.t. c ∈ (ℕ ∩ {0, 2, 3}) and rc ∈ (ℚ ∩ [0, 1]).

To determine the satisfaction degree of a composition
mechanism w.r.t. scalability desiderata, Equations 1 and 2
are used in Equation 3. The result is a percentage that takes
into account five binary requirements and one quinary re-
quirement. A higher percentage means a higher satisfaction.

s(rb, rc) = (rb ×
5
6
+ rc ×

1
6
) × 100 (3)

where s is the overall satisfaction degree w.r.t. all scalability
requirements s.t. s ∈ [0, 100].

Table 11 summarises our analysis of scalability desiderata
and Table 12 shows the respective satisfaction degrees. Our
interpretation of the results is presented below.

Centralised dataflows is the worst mechanism because
it supports only one binary requirement (i.e., location trans-
parency) and separates two concerns (i.e., data and compu-
tation). This means that the satisfaction degree of binary
requirements is 0.20, while the satisfaction degree of separa-
tion of concerns is 0.66. Thus, the overall satisfaction degree
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 Centralised
Orchestration

44.44%0.40

 Distributed
Orchestration

61.11%0.60

 Centralised
Data�ows

27.78%0.20

 Distributed
Data�ows

44.44%0.40

 Choreography 0.00 50.00%0.60

 DX-MAN 1.00 100.00%1.00

r
b

r
c s

0.66

0.66

0.66

0.66

 2

 3

 1

 2

03

 35

b c

2

2

2

2

Table 12
Satisfaction degree of IoT composition mechanisms w.r.t. scal-
abiility desiderata.

of centralised dataflows is 27.78%. Distributed dataflows pro-
vide distributed workflows in addition. Consequently, it pos-
sesses a (higher) satisfaction degree of binary requirements
equal to 0.40 and, therefore, a (higher) overall satisfaction
degree of 44.44%.

Although centralised orchestration has the same satis-
faction degree as distributed dataflows, it supports different
binary requirements (i.e., explicit control flow and location
transparency) and separates different concerns (i.e., control
and computation). Distributed orchestration is similar, yet
different. It offers distributed workflows in addition for a
(higher) satisfaction of binary requirements of 0.60 and, there-
fore, a (higher) overall satisfaction degree of 61.11%.

Choreography covers three binary requirements (i.e., ex-
plicit control flow, distributed workflows and decentralised
data flows) and does not provide any separation of concerns
since control and data are mixed in service computation. This
means that the satisfaction degree of binary requirements is
0.60, with a null separation of concerns. Overall, choreogra-
phy fulfils scalability requirements to a degree of 50%.

DX-MAN is the only mechanism that fulfils all binary
requirements and provides the separation of control, data and
computation. It is also the only one that supports workflow
variability because of total compositionality (see Table 10).
Accordingly, the satisfaction degrees of binary requirements
and the separation of concerns are both 1. Thus, DX-MAN
best fulfils the desiderata with a satisfaction degree of 100%.

8. Discussion
This section discusses the results presented in Section

7 and covers additional issues concerning compositionality,
scalability requirements and the relationship between them.

Our results show that explicit control flow is supported
by the majority of the mechanisms. In particular, orchestra-
tion defines control flow in orchestrators, choreography in a
protocol and DX-MAN in composition operators. Dataflows
is the only one that does no support such a requirement.

Workflow distribution is also meet by the majority of
the mechanisms, except centralised dataflows and centralised
orchestration where a coordinator fully governs a workflow.

Almost all composition mechanisms use a coordinator to
exogenously define workflow(s) and, therefore, ensuring the

separation of at least two concerns. In particular, orchestra-
tion and DX-MAN separate control and computation, while
dataflows orthogonalises data and computation. Such separa-
tion enables location transparency as only coordinators are
aware of atomic service locations. Choreography is the only
mechanism without any support for location transparency,
since control and data are mixed with computation.

There is a special choreography implementation based
on the data-driven paradigm in which some computation
is triggered once input data becomes available [199]. As a
protocol must explicitly define workflow control flow, the
analysis presented in Section 6 is also applicable.

Generally speaking, avoiding coordinators allows chore-
ography styles to support decentralised data flows. So, there
is a trade-off between coordination and decentralised data
flows. DX-MAN obviates this problem by separating data in
addition to control and computation. This separation enables
the realisation of decentralised data flows, without consider-
ing neither control nor computation. So, data never passes
through composition operators (i.e., coordinators) [162].

Some orchestration approaches [34, 146, 195, 198] par-
tially separate control from data algorithmically. To achieve
this, coordinators pass data references alongside control,
rather than exchanging data values. However, analysing data
dependencies to extract references is a challenging task be-
cause data and control are still semantically entangled.

For orchestration and dataflows, a coordinator is com-
monly referred to as a composite service. However, it is just
a composition of specific operations (i.e., a workflow) that
must be transformed into a service, rather than a composi-
tion of entire services (with all their provided operations).
Only DX-MAN achieves an actual composition of services
(not operations) as it defines a composite service without
any transformation step while preserving all service opera-
tions from which multiple workflow variants can be derived.
Thus, algebraic composition equates to total compositionality
which, in turn, implies workflow variability. A DX-MAN
composite service is in fact semantically equivalent to a (po-
tentially infinite) set of orchestrations. This is because each
element in a composite workflow space is a different compo-
sition workflow as regarded by existing mechanisms. For any
existing composition mechanism to be equivalent to a com-
posite workflow space, it would require to include all possible
combinations of execution paths in the workflow definition,
leading to a combinatorial explosion problem. While it is
true a configurable workflow [208] can deal with this issue, it
does not define multiple workflows at a time but just a single
workflow that can be manually configured.

In this paper, we analyse the fundamental semantics of
current service composition mechanisms that allow the defi-
nition of IoT workflows. However, other mechanisms must be
considered even if they do not allow the explicit definition of
behaviour, e.g., port connections [248] and ensemble-based
composition [249]. Moreover, we did not analyse service in-
teractions where there is no definition of composite services
such as direct message passing [250], broker-based interac-
tions [112] and event-driven interactions [251]. For this, we
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refer the reader to another paper [74].
Different composition mechanisms can coexist in the

same system. For example, it is possible to build a system
where some services are composed using orchestration while
others are composed by choreography [155, 252]. Our inten-
tion is not to analyse the combination of different composition
mechanisms, but to analyse them individually. Clearly, our
analysis results apply to such a combination.

9. Conclusions
Functional scalability becomes a crucial concern for IoT

systems as the number of available services increases. For
that reason, we need to look back at the foundations of service
composition in order to tackle this challenging problem. In
this paper, we analysed the semantics of current IoT service
composition mechanisms, using an evaluation framework
that considers six functional scalability requirements: (i) ex-
plicit control flow; (ii) distributed workflows; (iii) location
transparency; (iv) decentralised data flows; (v) separation of
control, data and computation; and (vi) workflow variability.
Our results suggest that DX-MAN is the composition mecha-
nism that best fulfils the functional scalability requirements
of IoT systems. This is not surprising since such a model was
designed with scalability desiderata in mind.

It is important to note that, except DX-MAN, there are no
new composition mechanisms developed in the last decade.
This crisis is a worrying situation that must be prioritised
and remedied because of the inherent scale that IoT systems
pose. Only DX-MAN was designed with this in mind, but
we expect further developments on this in the coming years.

We do not claim that the scalability requirements we anal-
yse here are complete, as other characteristics must also be
considered. Nevertheless, we believe our evaluation frame-
work has included the most critical ones and provides a useful
starting point for further extensions that consider other func-
tional scalability desiderata such as dynamic reconfiguration,
the number of messages exchanged and the support for im-
plicit/explicit data flows. The framework can thus be refined
by other researchers when conducting further studies on IoT
service composition mechanisms.

Appendix A
A larger view of SPark is shown in Figure A.1, where

there are new composite services representing Private Park-
ings of a smart city. Also, the Display service has been
converted into a composite that uses the atomic services
WebMap and Visual. There is also a new composite service
called PathPlanning that composes multiple TrafficMonitor
composites and multiple atomic People services. In particu-
lar, a TrafficMonitor composite has multiple atomic services
that represent congestion sensors and cameras (distributed
across a city). Furthermore, the Vehicle composite has been
endowed with multiple atomicChargSt services (for charging
the battery of a self-driving vehicle). Finally, the DrivingCtr
service has been converted into a composite service with the
atomic services Brake and Steering.

It is important to note that the larger view shown in Figure
A.1 can be expanded into an even larger composition which
may become infeasible to depict in a single document.
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Figure A.1: A larger view of SPark services.
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Vehicle.getCurrentLocation GPS.getLocation CityManagement.getParking SensorNetwork.pullStates

Sensor1.pullState

Sensor2.pullState

SensorN.pullState

Figure B.1: SPark workflow control flow.

Appendix B
Figure B.1 illustrates the complete workflow of

SPark which starts with the on-demand execution of
SPark.findBestParking. Next, the SPark composite gets
the current vehicle’s location by invoking the opera-
tion Vehicle.getCurrentLocation which, in turn, invokes
GPS.getLocation. Then, it invokes the CityManage-
ment.getParking operation which internally executes the
SensorNetwork.pullStates operation from the nearest In-
foStation. In particular, SensorNetwork.pullStates pulls
the states (in parallel) from the sensors close to the ve-
hicle’s location, using the respective Sensor.pullState op-
erations. Next, the CityManagement.getParking opera-
tion uses the sensor states to determine the best (i.e.,
the free and nearest) parking space and then reserves
that parking space using Booking.book. Then, control
is passed to the Payment.pay operation which decides
to invoke Provider1.payVisa, Provider1.payMastercard or
Provider2.payWallet. Finally, the Vehicle.driveVehicle is
invoked for implicitly calling Display.showMap and Driv-
ingCtr.drive, in that order.
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Chapter 5

Concluding Remarks

This chapter provides the overall conclusion of the thesis, outlines the most notable
limitations of the DX-MAN model and discusses future work.

5.1 Conclusions

Existing IoT service composition mechanisms (i.e., orchestration, choreography and
dataflows) do not provide the requisite semantics for tackling the functional scale that
future service-oriented IoT systems pose. This thesis fills such a gap by investigating
the possibility of leveraging algebraic composition to support six functional scalabil-
ity requirements, namely explicit control flow, distributed workflows, location trans-
parency, decentralised data flows, separation of control, data and computation, and
workflow variability. The result is an algebraic service composition model, DX-MAN,
that uses a hierarchical bottom-up approach to incrementally compose services by ex-
ogenous composition operators.

Qualitative and empirical evaluations show that DX-MAN fully fulfils the require-
ments. In particular, composition operators define total compositionality for the ex-
plicit definition of variable control flows between families of workflow variants. In
other words, a composition operator produces a composite service that is equivalent
to a potentially infinite number of Turing machines. In this context, a Turing machine
is expressed as an IoT workflow that is executed through the coordinated exchange
of control among distributed composition operators (deployed on different things over
the network). As coordination occurs from outside services, computation units do
not interact with one another. This separation of control and computation results in
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independent computations performed by location-agnostic services. When an invoca-
tion connector receives control, it reads data from a decentralised data space, invokes
some computation and writes results in the space. Thus, exogenous connectors never
exchange data during workflow execution. This (transparent) decentralised data ex-
change is mainly achieved by the separation of control and data. Remarkably, DX-
MAN is the only service composition model that semantically separates control, data
and computation.

This thesis does not claim that the functional scalability requirements identified
are complete since other aspects need to be considered, e.g., dynamic reconfigura-

tion and support for implicit/explicit data flows. But it takes into account the most
critical desiderata which serve as an (initial) evaluation framework for future service
composition mechanisms. Evidently, the framework can be refined to consider further
requirements.

Although we were not able to validate the proposed model in a real scenario, this
thesis showed that DX-MAN is a novel model that potentially alleviates the crisis that
has shaken service composition over the last decade and it is, therefore, a remarkable
contribution towards the construction of large-scale, service-oriented IoT systems that,
clearly, are yet to come in the following years.

5.2 Limitations and Future Work

The current DX-MAN semantics covers six functional scalability desiderata, but it has
some limitations as discussed below.

5.2.1 Data Flow Variability

One of the major barriers for the realisation of fully autonomous software systems is
that the current DX-MAN semantics require the manual definition of data flows per
workflow variant. Hence, we plan to investigate novel ways of defining data flow

variability by leveraging the separation of control, data and computation. With this
support, a feedback loop can select both the workflow control flow and data flow vari-
ants that best adapt to the current context. In particular, the DX-MAN semantics can
be extended with the notion of data flow spaces.
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5.2.2 Workflow Validation

The separation of control and data allows independent reasoning of such functional
concerns, but it also brings out new challenges. For example, manually ensuring con-
sistency of a workflow is not trivial and becomes infeasible as the number of composed
services increases. To overcome this issue, we plan to develop an efficient approach
that validates control flow consistency with respect to data flow for a given workflow
variant. Consistency validation is crucial to ensure correct behaviour.

5.2.3 Evolution of Algebraic Compositions

A DX-MAN composition is static because it is defined at design-time only. Therefore,
it is only suitable for closed environments where the system designer is fully aware of
the system’s operating environment. However, the dynamic, uncertain and complex na-
ture of IoT makes it difficult to predict all possible scenarios that may potentially arise.
In this regard, we are currently investigating an approach that dynamically evolves a
DX-MAN composition to enable the run-time emergence of workflow spaces. Hence,
composite services shall exhibit self-organising capabilities inspired in biological sys-
tems such as ant colonies, flocks of birds and mycelium. Self-organisation is indeed
another crucial requirement to tackle the functional scale of future IoT systems.

5.2.4 Concurrency Support

DX-MAN currently defines passive services only and provides basic concurrency in
parallel workflow variants. In the future, we plan to extend the DX-MAN semantics
by considering an orthogonal dimension for concurrency management that will enable
the modelling (per workflow variant) of timing constraints via topological ordering
and semantic annotations. We will also investigate if active services can coexist with
passive services in a particular DX-MAN composition. Also, we plan to provide asyn-
chronous operators (e.g., an scheduler) for the aggregation of service behaviour.
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[PVC+14] Juan Luis Pérez, Álvaro Villalba, David Carrera, Iker Larizgoitia,
and Vlad Trifa. The COMPOSE API for the Internet of Things. In
International Conference on World Wide Web (WWW), pages 971–
976. ACM, 2014.

[PZL08] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful
Web Services vs. ”Big”’ Web Services: Making the Right Archi-
tectural Decision. In International Conference on World Wide Web

(WWW), pages 805–814. ACM, 2008.

[QNG+18] Yuansong Qiao, Robert Nolani, Saul Gill, Guiming Fang, and



BIBLIOGRAPHY 82

Brian Lee. ThingNet: A micro-service based IoT macro-
programming platform over edges and cloud. In Conference on In-

novation in Clouds, Internet and Networks and Workshops (ICIN),
pages 1–4. IEEE, 2018.

[Rad12] Tijs Rademakers. Activiti in Action: Executable Business Pro-

cesses in BPMN 2.0. Manning Publications, Greenwich, CT, USA,
1st edition, 2012.

[RAF+17] João Rufino, Muhammad Alam, Joaquim Ferreira, Abdur Rehman,
and Kim Fung Tsang. Orchestration of containerized microservices
for IIoT using Docker. In International Conference on Industrial

Technology (ICIT), pages 1532–1536. IEEE, 2017.

[RCL14] Reza Rezaei, Thiam Kian Chiew, and Sai Peck Lee. An interoper-
ability model for ultra large scale systems. Advances in Engineer-

ing Software, 67:22–46, 2014.

[RMBG18] T. Ramalingeswara Rao, Pabitra Mitra, Ravindara Bhatt, and
A. Goswami. The big data system, components, tools, and tech-
nologies: a survey. Knowledge and Information Systems, pages
1–81, 2018. Advance online publication.

[RNN+16] Damian Roca, Daniel Nemirovsky, Mario Nemirovsky, Rodolfo
Milito, and Mateo Valero. Emergent Behaviors in the Internet
of Things: The Ultimate Ultra-Large-Scale System. IEEE Micro,
36(6):36–44, 2016.

[RTF06] Steve Ross-Talbot and Tony Fletcher. Web Services Choreography
Description Language: Primer, 2006.

[RVC+07] Rebeca P. Diaz Redondo, Ana Fernandez Vilas, Manuel Ramos
Cabrer, Jose J. Pazos Arias, and Marta Rey Lopez. Enhancing Res-
idential Gateways: OSGi Service Composition. IEEE Transactions

on Consumer Electronics, 53(1):87–95, 2007.

[RVHTGGMC14] Sandra Rodrı́guez-Valenzuela, Juan A. Holgado-Terriza, José M.
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