20,919 research outputs found

    Granular technologies to accelerate decarbonization

    Get PDF
    Of the 45 energy technologies deemed critical by the International Energy Agency for meeting global climate targets, 38 need to improve substan- tially in cost and performance while accelerating deployment over the next decades.Low-carbon technological solutions vary in scale from solar panels, e-bikes, and smart thermostats to carbon capture and storage, light rail transit, and whole-building retrofits. We make three contributions to long-standing debates on the appropriate scale of technological responses in the energy system. First, we focus on the specific needs of accelerated low-carbon transformation: rapid technology deployment, escaping lock-in, and social legitimacy. Second, we synthesize evidence on energy end-use technologies in homes, transport, and industry, as well as electricity generation and energy supply. Third, we go beyond technical and economic considerations to include innovation, investment, deployment, social, and equity criteria for assessing the relative advantage of alternative technologies as a function of their scale. We suggest numerous potential advantages of more-granular energy technologies for accelerating progress toward climate targets, as well as the conditions on which such progress depends

    Solar energy technologies in sustainable energy action plans of italian big cities

    Get PDF
    Cities, accounting for more than 3/4 of global final energy consumption, are equipping themselves with governance tools to improve energy efficiency. In Europe, urban energy policy has adopted, only recently and voluntarily, the Sustainable Energy Action Plans (SEAP), following the European Strategy 20-20-20. Italy, country most sensitive among European ones, accounts for 53% of SEAPs signatories. In order to evaluate how urban energy system in Italy can match sustainability European goals, it is necessary to analyse the technological options promoted by the energy policies for the urban environment. The paper presents the state-of-art of Urban Energy Planning in Italy, focusing on the implementation of Solar Energy technologies, and their role in new urban energy strategy instruments, i.e. SEAP, to promote renewables deployment. Carbon emission avoidance interventions planned by Italian big cities were analysed, highlighting the chosen Solar Energy technology. The aim of this paper is to discuss and evaluate the differences of solar energy harvesting in Italian urban scenarios, taking into account geographical and morphological constraints, and to compare the forecasts for 2020 and 2030scenarios, in accordance with European and National laws in force

    No way out? The double-bind in seeking global prosperity alongside mitigated climate change

    Get PDF
    In a prior study, I introduced a simple economic growth model designed to be consistent with general thermodynamic laws. Unlike traditional economic models, civilization is viewed only as a well-mixed global whole with no distinction made between individual nations, economic sectors, labor, or capital investments. At the model core is an observationally supported hypothesis that the global economy's current rate of primary energy consumption is tied through a constant to a very general representation of its historically accumulated wealth. Here, this growth model is coupled to a linear formulation for the evolution of globally well-mixed atmospheric CO2 concentrations. While very simple, the coupled model provides faithful multi-decadal hindcasts of trajectories in gross world product (GWP) and CO2. Extending the model to the future, the model suggests that the well-known IPCC SRES scenarios substantially underestimate how much CO2 levels will rise for a given level of future economic prosperity. For one, global CO2 emission rates cannot be decoupled from wealth through efficiency gains. For another, like a long-term natural disaster, future greenhouse warming can be expected to act as an inflationary drag on the real growth of global wealth. For atmospheric CO2 concentrations to remain below a "dangerous" level of 450 ppmv, model forecasts suggest that there will have to be some combination of an unrealistically rapid rate of energy decarbonization and nearly immediate reductions in global civilization wealth. Effectively, it appears that civilization may be in a double-bind. If civilization does not collapse quickly this century, then CO2 levels will likely end up exceeding 1000 ppmv; but, if CO2 levels rise by this much, then the risk is that civilization will gradually tend towards collapse

    Carbon Free Boston: Technical Summary

    Full text link
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Transportation Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Energy Technical Report; Carbon Free Boston: Offsets Technical Report; Available at http://sites.bu.edu/cfb/OVERVIEW: This technical summary is intended to argument the rest of the Carbon Free Boston technical reports that seek to achieve this goal of deep mitigation. This document provides below: a rationale for carbon neutrality, a high level description of Carbon Free Boston’s analytical approach; a summary of crosssector strategies; a high level analysis of air quality impacts; and, a brief analysis of off-road and street light emissions.Published versio
    • …
    corecore