1,015 research outputs found

    Efficient Task Scheduling and Fair Load Distribution Among Federated Clouds

    Get PDF
    The federated cloud is the future generation of cloud computing, allowing sharing of computing and storage resources, and servicing of user tasks among cloud providers through a centralized control mechanism. However, a great challenge lies in the efficient management of such federated clouds and fair distribution of the load among heterogeneous cloud providers. In our proposed approach, called QPFS_MASG, at the federated cloud level, the incoming tasks queue are partitioned in order to achieve a fair distribution of the load among all cloud providers of the federated cloud. Then, at the cloud level, task scheduling using the Modified Activity Selection by Greedy (MASG) technique assigns the tasks to different virtual machines (VMs), considering the task deadline as the key factor in achieving good quality of service (QoS). The proposed approach takes care of servicing tasks within their deadline, reducing service level agreement (SLA) violations, improving the response time of user tasks as well as achieving fair distribution of the load among all participating cloud providers. The QPFS_MASG was implemented using CloudSim and the evaluation result revealed a guaranteed degree of fairness in service distribution among the cloud providers with reduced response time and SLA violations compared to existing approaches. Also, the evaluation results showed that the proposed approach serviced the user tasks with minimum number of VMs

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Data Replication and Its Alignment with Fault Management in the Cloud Environment

    Get PDF
    Nowadays, the exponential data growth becomes one of the major challenges all over the world. It may cause a series of negative impacts such as network overloading, high system complexity, and inadequate data security, etc. Cloud computing is developed to construct a novel paradigm to alleviate massive data processing challenges with its on-demand services and distributed architecture. Data replication has been proposed to strategically distribute the data access load to multiple cloud data centres by creating multiple data copies at multiple cloud data centres. A replica-applied cloud environment not only achieves a decrease in response time, an increase in data availability, and more balanced resource load but also protects the cloud environment against the upcoming faults. The reactive fault tolerance strategy is also required to handle the faults when the faults already occurred. As a result, the data replication strategies should be aligned with the reactive fault tolerance strategies to achieve a complete management chain in the cloud environment. In this thesis, a data replication and fault management framework is proposed to establish a decentralised overarching management to the cloud environment. Three data replication strategies are firstly proposed based on this framework. A replica creation strategy is proposed to reduce the total cost by jointly considering the data dependency and the access frequency in the replica creation decision making process. Besides, a cloud map oriented and cost efficiency driven replica creation strategy is proposed to achieve the optimal cost reduction per replica in the cloud environment. The local data relationship and the remote data relationship are further analysed by creating two novel data dependency types, Within-DataCentre Data Dependency and Between-DataCentre Data Dependency, according to the data location. Furthermore, a network performance based replica selection strategy is proposed to avoid potential network overloading problems and to increase the number of concurrent-running instances at the same time

    PSO-CALBA: Particle Swarm Optimization Based Content-Aware Load Balancing Algorithm in Cloud Computing Environment

    Get PDF
    Cloud computing provides hosted services (i.e., servers, storage, bandwidth, and software) over the internet. The key benefits of cloud computing are scalability, efficiency, and cost reduction. The key challenge in cloud computing is the even distribution of workload across numerous heterogeneous servers. Several Cloud scheduling and load-balancing techniques have been proposed in the literature. These techniques include heuristic-based, meta-heuristics-based, and hybrid algorithms. However, most of the current cloud scheduling and load balancing schemes are not content-aware (i.e., they are not considering the content-type of user tasks). The literature studies show that the content type of tasks can significantly improve the balanced distribution of workload. In this paper, a novel hybrid approach named Particle Swarm Optimization based Content-Aware Load Balancing Algorithm (PSO-CALBA) is proposed. PSO-CALBA scheduling scheme combines machine learning and meta-heuristic algorithm that performs classification utilizing file content type. The SVM classifier is used to classify users' tasks into different content types like video, audio, image, and text. Particle Swarm Optimization (PSO) based meta-heuristic algorithm is used to map user's tasks on Cloud. The proposed approach has been implemented and evaluated using a renowned Cloudsim simulation kit and compared with ACOFTF and DFTF. The proposed study shows significant improvement in terms of makespan, degree of imbalance (DI)

    Hybrid scheduling algorithms in cloud computing: a review

    Get PDF
    Cloud computing is one of the emerging fields in computer science due to its several advancements like on-demand processing, resource sharing, and pay per use. There are several cloud computing issues like security, quality of service (QoS) management, data center energy consumption, and scaling. Scheduling is one of the several challenging problems in cloud computing, where several tasks need to be assigned to resources to optimize the quality of service parameters. Scheduling is a well-known NP-hard problem in cloud computing. This will require a suitable scheduling algorithm. Several heuristics and meta-heuristics algorithms were proposed for scheduling the user's task to the resources available in cloud computing in an optimal way. Hybrid scheduling algorithms have become popular in cloud computing. In this paper, we reviewed the hybrid algorithms, which are the combinations of two or more algorithms, used for scheduling in cloud computing. The basic idea behind the hybridization of the algorithm is to take useful features of the used algorithms. This article also classifies the hybrid algorithms and analyzes their objectives, quality of service (QoS) parameters, and future directions for hybrid scheduling algorithms

    Disaster Recovery Services in Intercloud using Genetic Algorithm Load Balancer

    Get PDF
    Paradigm need to shifts from cloud computing to intercloud for disaster recoveries, which can outbreak anytime and anywhere. Natural disaster treatment includes radically high voluminous impatient job request demanding immediate attention. Under the disequilibrium circumstance, intercloud is more practical and functional option. There are need of protocols like quality of services, service level agreement and disaster recovery pacts to be discussed and clarified during the initial setup to fast track the distress scenario. Orchestration of resources in large scale distributed system having muli-objective optimization of resources, minimum energy consumption, maximum throughput, load balancing, minimum carbon footprint altogether is quite challenging. Intercloud where resources of different clouds are in align, plays crucial role in resource mapping. The objective of this paper is to improvise and fast track the mapping procedures in cloud platform and addressing impatient job requests in balanced and efficient manner. Genetic algorithm based resource allocation is proposed using pareto optimal mapping of resources to keep high utilization rate of processors, high througput and low carbon footprint.  Decision variables include utilization of processors, throughput, locality cost and real time deadline. Simulation results of load balancer using first in first out and genetic algorithm are compared under similar circumstances
    • …
    corecore