32 research outputs found

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Disturbance/uncertainty estimation and attenuation techniques in PMSM drives–a survey

    Get PDF
    This paper gives a comprehensive overview on disturbance/uncertainty estimation and attenuation (DUEA) techniques in permanent magnet synchronous motor (PMSM) drives. Various disturbances and uncertainties in PMSM and also other alternating current (AC) motor drives are first reviewed which shows they have different behaviors and appear in different control loops of the system. The existing DUEA and other relevant control methods in handling disturbances and uncertainties widely used in PMSM drives, and their latest developments are then discussed and summarized. It also provides in-depth analysis of the relationship between these advanced control methods in the context of PMSM systems. When dealing with uncertainties,it is shown that DUEA has a different but complementary mechanism to widely used robust control and adaptive control. The similarities and differences in disturbance attenuation of DUEA and other promising methods such as internal model control and output regulation theory have been analyzed in detail. The wide applications of these methods in different AC motor drives (in particular in PMSM drives) are categorized and summarized. Finally the paper ends with the discussion on future directions in this area

    Applications of Power Electronics:Volume 1

    Get PDF

    A novel switching table for a modified three-level inverter-fed DTC drive with torque and flux ripple minimization

    Get PDF
    The use of a direct torque control (DTC) drive is a well-known control strategy that is applied frequently to induction motors. Although torque and stator flux ripples are major disadvantages of this approach, using a higher-level inverter helps to overcome these issues. In this paper, we propose a novel switching table with a modified control strategy for a three-level inverter to achieve ripple minimization, as well as smooth switching and neutral point balance; the latter features are generally ignored in many works. The proposed model is compared with a conventional DTC and an improved three-level inverter-fed voltage vector synthesis model in the Matlab/Simulink® environment with low, normal, and high-speed operation under load torque disturbances. The performance indexes and the comparative results confirm the effectiveness of the proposed model in reducing the torque and stator flux ripples by up to 70% and 78%, respectively, generating a lower total harmonic distortion (THD%) in all scenarios, in addition to maintaining the neutral point balance and preventing voltage jumps across the switches of the inverter

    Near-complete suppression of harmonic currents in SPMSMs caused by back emf and dead time

    Get PDF
    This paper introduces a novel algorithm for suppression of phase current harmonics in three-phase sinusoidal surface mounted permanent magnet synchronous machines (SPMSMs) caused by non-ideal back-emf waveform and dead-time effects. Proposed feedback acquisition chain obtains an exact information on all the relevant harmonics within each period of the fundamental. Design of the harmonic current controller based on the internal model control principle is given. The paper outlines the relevant details of implementation and the results of verification performed by both computer simulations and experimentally, using a laboratory prototype machine. Experimental results, obtained in presence of non-sinusoidal back-emf and with erroneous dead-time compensation, prove the ability of the proposed solution to remove the stator current harmonics quickly, in just two fundamental periods, and thus eliminate torque ripple

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Sensorless Commissioning and Control of High Anisotropy Synchronous Motor Drives

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems

    Direct torque control of permanent magnet synchronous motors with non-sinusoidal back-EMF

    Get PDF
    This work presents the direct torque control (DTC) techniques, implemented in four- and six-switch inverter, for brushless dc (BLDC) motors with non-sinusoidal back- EMF using two and three-phase conduction modes. First of all, the classical direct torque control of permanent magnet synchronous motor (PMSM) with sinusoidal back-EMF is discussed in detail. Secondly, the proposed two-phase conduction mode for DTC of BLDC motors is introduced in the constant torque region. In this control scheme, only two phases conduct at any instant of time using a six-switch inverter. By properly selecting the inverter voltage space vectors of the two-phase conduction mode from a simple look-up table the desired quasi-square wave current is obtained. Therefore, it is possible to achieve DTC of a BLDC motor drive with faster torque response while the stator flux linkage amplitude is deliberately kept almost constant by ignoring the flux control in the constant torque region. Third, the avarege current controlled boost power factor correction (PFC) method is applied to the previously discussed proposed DTC of BLDC motor drive in the constant torque region. The test results verify that the proposed PFC for DTC of BLDC motor drive improves the power factor from 0.77 to about 0.9997 irrespective of the load. Fourth, the DTC technique for BLDC motor using four-switch inverter in the constant torque region is studied. For effective torque control in two phase conduction mode, a novel switching pattern incorporating the voltage vector look-up table is designed and implemented for four-switch inverter to produce the desired torque characteristics. As a result, it is possible to achieve two-phase conduction DTC of a BLDC motor drive using four-switch inverter with faster torque response due to the fact that the voltage space vectors are directly controlled.. Finally, the position sensorless direct torque and indirect flux control (DTIFC) of BLDC motor with non-sinusoidal back-EMF has been extensively investigated using three-phase conduction scheme with six-switch inverter. In this work, a novel and simple approach to achieve a low-frequency torque ripple-free direct torque control with maximum efficiency based on dq reference frame similar to permanent magnet synchronous motor (PMSM) drives is presented
    corecore