7 research outputs found

    LaMMos - Latching Mechanism based on Motorized-screw for Reconfigurable Robots and Exoskeleton Suits

    Full text link
    Reconfigurable robots refer to a category of robots that their components (individual joints and links) can be assembled in multiple configurations and geometries. Most of existing latching mechanisms are based on physical tools such as hooks, cages or magnets, which limit the payload capacity. Therefore, robots re- quire a latching mechanism which can help to reconfigure itself without sacrificing the payload capability. This paper presents a latching mechanism based on the flexible screw attaching principle. In which, actuators are used to move the robot links and joints while connecting them with a motorized-screw and dis- connecting them by unfastening the screw. The brackets used in our mechanism configuration helps to hold maximum force up to 5000N. The LaMMos - Latching Mechanism based on Motorized- screw has been applied to the DeWaLoP - Developing Water Loss Prevention in-pipe robot. It helps the robot to shrink its body to crawl into the pipe with minimum diameter, by recon- figuring the leg positions. And it helps to recover the legs positions to original status once the robot is inside the pipe. Also, LaMMos add stiffness to the robot legs by dynamically integrate them to the structure. Additionally, we present an application of the LaMMos mechanism to exoskeleton suits, for easing the mo- tors from the joints when carrying heavy weights for long periods of time. This mechanism offers many interesting opportunities for robotics research in terms of functionality, pay- load and size.Comment: 14 pages, 15 figure

    Sampling robot for primary circuit pipelines of decommissioned nuclear facilities

    Get PDF
    Nuclear power plants, as one of the cornerstones of today's global and, most importantly, European energy sector, place considerably high demands on all stages from design and construction, through operation and control, to safe decommissioning at the end of the facility's life. A relatively large decommissioning process is underway in Europe, which will increase over the coming decades. This process of decommissioning nuclear facilities is closely linked to the objective assessment of the efficiency of decontamination processes. The present paper deals with techniques and technologies for obtaining samples from the hard-to-reach inner surface of the primary circuit of a nuclear reactor. Sampling by a service robot fitted with sampling probes is assumed to be performed under relatively dry conditions, i.e. before the application and after the discharge of the decontamination solution. The basis of the electro-pneumatic robot for default pipes with a diameter of 500 mm is an eight-wheel mobile platform with self-stabilizing capability thanks to inclined wheels. The robot is equipped with a pair of unique sampling probes and a fixing arm to position the robot in the pipeline during the sampling. The basis of the article is the technical solution of the service robot, with an emphasis on the functioning and efficiency of the sampling probes. The presented comprehensive system constitutes a proven knowledge base for the decommissioning of nuclear power facilities

    Parallel Platform-Based Robot for Operation in Active Water Pipes

    Get PDF
    This thesis presents a novel design for a pipe inspection robot. The main aim of the design has been to allow the robot to operate in a water pipe while it is still in service. Water pipes form a very crucial part of the infrastructure of the world we live in today. Despite their importance, water leakage is a major problem suffered by water companies worldwide, costing them billions of dollars every year. There are a wide variety of different techniques used for leak detection and localisation, but no one method is capable of accurately pinpointing the leak location and severity in all pipe conditions with minimal labour. A survey of existing pipe inspection robots showed that there have been many designs implemented that are capable of navigating the pipeline environment. However, none of these were capable of fully autonomous control in a live water pipe. It was concluded that an autonomous pipe inspection robot capable of working in active pipelines would be of great industrial benefit as it would be able to carry a wide range of sensors directly to the source of the leak with minimal, if any, human intervention. An inchworm robot prototype was constructed based on a Gough-Stewart parallel platform. The robot’s inverse kinematics equations were derived and a simulation model of the robot was constructed. These were verified using a motion capture suite, confirming that they are valid representations of the robot. The simulation was used to determine the robot’s movement limitations and minimum bend radius it could navigate. Several CFD simulations were carried out in order to estimate the maximum fluid force exerted on the robot. It was found that the robot’s design successfully minimised the fluid force such that off-the-shelf actuators had the capability to overcome it. The prototype was successfully tested in both a straight and bent pipe, demonstrating its ability to navigate a dry pipe environment. Overall, the robot prototype served as a successful proof of concept for a design of pipe inspection robot that would be capable of operating in active pipelines

    DeWaLoP — Remote control for in-pipe robot

    No full text
    corecore