2,882 research outputs found

    How can graph databases and reasoning be combined and integrated?

    Get PDF
    Nowadays the graph data model has been accepted as one of the most suitable data models to formalize relationships among entities of many domains. Deductive databases based on the Datalog language have been used to deduce new information from large amounts of data. Most of the attempts to combine logic and graph databases are based on translating knowledge in graph databases into Datalog and then use its inference engine. We aim to open the discussion about combining graph databases and a graph-oriented logic to define «native» deductive graph databases. This is, graph databases equipped with an inference mechanism based on graph based logic. To be concrete, we plan to use the recently introduced graph navigational logic.Peer ReviewedPostprint (published version

    Introducing Dynamic Behavior in Amalgamated Knowledge Bases

    Full text link
    The problem of integrating knowledge from multiple and heterogeneous sources is a fundamental issue in current information systems. In order to cope with this problem, the concept of mediator has been introduced as a software component providing intermediate services, linking data resources and application programs, and making transparent the heterogeneity of the underlying systems. In designing a mediator architecture, we believe that an important aspect is the definition of a formal framework by which one is able to model integration according to a declarative style. To this purpose, the use of a logical approach seems very promising. Another important aspect is the ability to model both static integration aspects, concerning query execution, and dynamic ones, concerning data updates and their propagation among the various data sources. Unfortunately, as far as we know, no formal proposals for logically modeling mediator architectures both from a static and dynamic point of view have already been developed. In this paper, we extend the framework for amalgamated knowledge bases, presented by Subrahmanian, to deal with dynamic aspects. The language we propose is based on the Active U-Datalog language, and extends it with annotated logic and amalgamation concepts. We model the sources of information and the mediator (also called supervisor) as Active U-Datalog deductive databases, thus modeling queries, transactions, and active rules, interpreted according to the PARK semantics. By using active rules, the system can efficiently perform update propagation among different databases. The result is a logical environment, integrating active and deductive rules, to perform queries and update propagation in an heterogeneous mediated framework.Comment: Other Keywords: Deductive databases; Heterogeneous databases; Active rules; Update

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables

    Query-Answer Causality in Databases: Abductive Diagnosis and View-Updates

    Full text link
    Causality has been recently introduced in databases, to model, characterize and possibly compute causes for query results (answers). Connections between query causality and consistency-based diagnosis and database repairs (wrt. integrity constrain violations) have been established in the literature. In this work we establish connections between query causality and abductive diagnosis and the view-update problem. The unveiled relationships allow us to obtain new complexity results for query causality -the main focus of our work- and also for the two other areas.Comment: To appear in Proc. UAI Causal Inference Workshop, 2015. One example was fixe

    Automatic generation of simplified weakest preconditions for integrity constraint verification

    Get PDF
    Given a constraint cc assumed to hold on a database BB and an update uu to be performed on BB, we address the following question: will cc still hold after uu is performed? When BB is a relational database, we define a confluent terminating rewriting system which, starting from cc and uu, automatically derives a simplified weakest precondition wp(c,u)wp(c,u) such that, whenever BB satisfies wp(c,u)wp(c,u), then the updated database u(B)u(B) will satisfy cc, and moreover wp(c,u)wp(c,u) is simplified in the sense that its computation depends only upon the instances of cc that may be modified by the update. We then extend the definition of a simplified wp(c,u)wp(c,u) to the case of deductive databases; we prove it using fixpoint induction

    Improving the Deductive System DES with Persistence by Using SQL DBMS's

    Get PDF
    This work presents how persistent predicates have been included in the in-memory deductive system DES by relying on external SQL database management systems. We introduce how persistence is supported from a user-point of view and the possible applications the system opens up, as the deductive expressive power is projected to relational databases. Also, we describe how it is possible to intermix computations of the deductive engine and the external database, explaining its implementation and some optimizations. Finally, a performance analysis is undertaken, comparing the system with current relational database systems.Comment: In Proceedings PROLE 2014, arXiv:1501.0169
    • …
    corecore