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Abstract

Nowadays the graph data model has been accepted as one of the most suitable data models to
formalize relationships among entities of many domains. Deductive databases based on the Datalog
language have been used to deduce new information from large amounts of data. Most of the
attempts to combine logic and graph databases are based on translating knowledge in graph databases
into Datalog and then use its inference engine. We aim to open the discussion about combining graph
databases and a graph-oriented logic to define “native” deductive graph databases. This is, graph
databases equipped with an inference mechanism based on graph based logic. To be concrete, we
plan to use the recently introduced graph navigational logic.
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1. Introduction

Nowadays the graph data model is accepted as one of the most suitable data models to formalize
relationships among entities of many domains. Despite it could sound like a cliché, it is worth
mentioning that, in the strongly interconnected world we live, graphs rise everywhere. This is why
in the last years there has been a lot of effort in the data management scientific community to
provide theoretical foundations, query languages and tools to make the graph data model amenable
for practical purposes.

In general, in a database system the main components are the schema, the instance and the integrity
constraints. In a graph database system the instance is a data graph. Lately, the property graph
model has been adopted as the standard model underlying graph databases [4, 6]. A property graph
is a multidigraph with labeled nodes and edges. In property graphs, nodes and edges (and even
paths [2, 5]) have attributes called properties. Properties are typed, however unlike attributes in
the relational model, not all the possible properties of a node or an edge (or a path, when this
applies) are forced to be defined. Neo4j [16] is one of the graph database management systems using
the property graph model. Let us consider the following example. Suppose that an International
Office for the Prevention of Drug Trafficking maintains a Drug Trafficking Crime Graph Database
(DGDB). Figure 1 depicts (part of) a property graph.

Based on [2, 8], the schema is a (meta) graph that specifies the structure of the data graph, i.e.
the types of nodes, the type of edges, the attributes (of both, nodes and edges) a their datatypes.
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Figure 1: Partial view of the DGDB instance. Bold names in shadow boxes are nodes and edges labels,
respectively. As we have said previously, not necessarily all the properties are defined in a property graph. In this case,
edges properties years and who are defined for some inJail and journey edges. Node properties name, nickname, quantity
and type are defined for some Person, drugCrime,Prison,Place and criminalGang nodes.

This is, nodes in the schema graph represent classes of nodes in the instance. Edges in the schema
graph represent classes of links between nodes in the instance. The schema also includes hierarchical
relationships, if any. Moreover, one can consider that the database is parameterized by a type
support schema, X , where data types are defined in terms of their sorts and binary relations over
these sorts. This parameter is analogous to the attribute support schema defined in [15] In the case
of the Prevention of Drug Trafficking Crime Graph Database, X = ⟨DT,NT,ET,NP,EP,NPT,EPT⟩,
where

DT = {Int,String,Float,Date}, where
Int = (integer, {=int, ̸=int, <int, <int,≤int,≥int})
String = (string, {=string, ̸=string})
Float = (float, {=float, ̸=float, <float, <float,≤float,≥float})
Date = (date, {=date, ̸=date, <date, <date,≤date,≥date})

DT is the set of sorts in the schema and the binary relations over these sorts1.

NT = {Person,Place,CriminalGang,Prison, drugCrime}
ET = {journey, nearby, isLocated, collaborates, areRivals, belongsTo, knows, livesIn, travels,

inJail, involvedIn, isDirector}

are the set of types of nodes and the set of types of edges, respectively.

NPT : NP → DT and EPT : EP → DT are functions that map nodes properties and edges properties
to their corresponding data type. For example, NPT(name) = String, EPT(since) = Date and so on.

1Notice that we leave out the details about the types (Date,Date) and 1..5 in the schema graph of Figure 2.
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NP = {name, locType, country, secLevel, type, quantity, location, nickName, age, citizenship}
EP = {date,who,Transport, since, address, years,month, poosition, status, }

are the set of properties of nodes and the set of properties of edges, respectively.

Figure 2 depicts the schema graph for the Prevention of Drug Trafficking Crime Graph Database.
Graph database approaches differ in the definition of the integrity constraints. However, most

Figure 2: Drug Trafficking Crime Graph Database Schema. The attributes in nodes and edges are typed
properties. Bold names are labels.

of them require the schema-instance consistency as data-modeling and integrity checking tool [3].
This is, an instance graph must satisfy the structural restrictions given by the schema graph [2].
Considering the three components of a database mentioned above, we can assume that a graph
database is a pair (SX ,G) where SX is a schema parameterized by X and G, the instance graph, is
a data (property) graph satisfying the schema-instance consistency integrity constraint.

Once the data model and the schema are established and a database begins its operation from
scratch, the processes of evolution of contained data and querying it take place according to the
use of applications based on that database. The evolution of a (relational) database, i.e. successive
changes induced by insertion, deletion and update operations, change the instances of some tables
but do not modify the structure of the underlying relational model. This is, depending on the
operation, after it takes place, some tables have more/less rows when an insertion/deletion takes
place or some attribute values have changed according to an update. However, the number of tables
and their attributes/types are invariant with respect to any of these operations. On the contrary, this
is not the case with the evolution of graph databases. There are topological issues to be considered.
Indeed, after inserting or deleting edges, nodes and even entire subgraphs, topology of the graph
databases change, possibly in a drastic way. For instance, after deleting a node, the graph can become
disconnected and after inserting an edge new paths can occur. In general, new topological graph
patterns can appear and other existing prior the operation can disappear. Apart from topological
issues, since nodes and edges as data containers in graph databases are not monolithic entities,
update operations of graph databases could modify these attributes. Therefore, although topology
remains the same, it could happen that after an update operation the minimum path between a
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couple of nodes in the graph would no longer satisfy that property.

Regarding querying, according to [4] there are two natural querying operations in the context of graph
databases: graph pattern matching queries and path queries. Regarding graph pattern matching
queries, a pattern is a graph in which nodes and edges can be variables possibly equipped with some
constraints over some node/edge properties. Roughly speaking the evaluation of a graph pattern
matching query against a graph database consists in finding a mapping from variables in the graph
pattern to constant values in the instance such that, when the mapping is applied to the pattern,
the resulting graph is contained in this data graph. This is, the resulting graph is a subgraph of the
data graph. In regards to path queries, they corresponds to querying for specific path patterns. The
most general form is querying for a path pattern whose initial and ending points are connected by
a regular expression. The evaluation of a navigational query against a graph database consists in
computing/listing paths in the data graph such that the concatenation of the labels in their edges
are words in the language of the regular expression in the path-pattern. Bonifati et al. [6] study in
details the most representative kinds of path queries. The combination of path queries and pattern
matching queries is called navigational queries.

A deductive database system [13] is a database management system based on a logical model and
equipped with an inference engine and a logic query language (for instance, Datalog). In a deductive
database the instance database is called extensional database. Additionally, in a deductive database
system there is a set of logic programming style rules allows for deducting new knowledge. This set of
rules is called the intensional database. Rules in the intensional database include predicates/relations
no occurring in the extensional database. Since deductive databases based on a Datalog language
[1, 7] have been used to deduce new information from large amounts of data (mostly relational
databases), it is worth wondering how to deduce new knowledge based on graph databases. There
are some pioneer works combining logic and graph databases. Paredaens et al. [10, 11] introduce
G-Log. This approach is based on a mapping that transforms an instance over a G-Log scheme into
an interpretation over the many sorted first-order language corresponding to the schema. In [12], the
instance of a graph database is translated into a Datalog extensional database on relational tables.
The intensional databases are Datalog rules. This implies that, instead of deducting new patterns
(subgraphs), typical Datalog query answers are obtained. The same approach has been recently
used in [14] to address the problem of discovering relationships over a drug-drug interactions graph
database. In [6], regular property graph logic queries are presented as a variant of Datalog (syntax
and semantics) extended for property graphs. From our point of view, a graph logic providing an
inference mechanism on property graphs is the main requirement to address the problem of defining a
“native” deductive graph databases. By “native” we mean an inference mechanism directly applying
on graphs patterns instead of (relational) extensional Datalog database. In our pure graph approach,
the knowledge (i.e. extensional database) will be the instance data/ground (property) graph and
rules (intensional database) will be expressed in terms of graph patterns.

Recently, Navarro et al. [9] have defined a graph navigational logic that allows for formalizing
property graphs, including path properties. This logic is equipped with a sound and complete
deductive (tableau) method. We have insights that graph navigational logic and its deductive
mechanism provides the foundation for “native” graph deductive databases. In this work we aim to
open the discussion about this topic.

2. Motivating Example

In this section we present an example of a rule for inferring new knowledge from a Drug Trafficking
Crime Deductive Graph Database. Part of the extensional database is given in Figure 1.
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Example. Let us suppose that by their experience, analysts of the Office for the Prevention of Drug
Trafficking, use the rule formalized in Figure 3 to prevent new drug trafficking crime networks in
some places. Following a logic programming style, the left part corresponds to the head of the rule
and the right part corresponds to the body. This is, there is a head graph pattern (left) and a body
graph pattern (right). In the body pattern persons p1 and p2 have been involved in the same type
of drug crime. Moreover, p1 and p2 have shared some time in prison pr. Double links labelled with
regular expressions represent paths. The path e12 between p1 and the place t2 corresponds to, first
a travel of p1 to some intermediate place and then, a journey through one or more places to t2. This
is the place where p2 lives and the gang g2 is located. In addition, p2 belongs to g2 and this gang
and gang g1, located in t1 cooperate with each other. This pattern gives insights of a possible new
drug crime activity by person p1 in the place t1. Moreover, p1 seems to be connected to the gang g1
and, hence, this gang could start operating in t1. This is represented by the head pattern. Notice
that some properties for paths, non specified in the schema, are being used in the body of the rule
(e12.term and e16.term). Together the rising of new nodes and edges in the patterns of intensional
graph database, the management of paths properties is one of the feature we plan address in our
proposal. Roughly speaking, we envision a querying-matching mechanism as follows: If (i) the query
pattern (goal) matches the head of the rule, (ii) there exists a match for the body pattern against
the data graph and (iii) the property-constraints are satisfied, then the answer will be an instance
of the head pattern. Otherwise, no answer is obtained.

Figure 3: Rule for discovering possible new drug trafficking crime in some place. Following a logic
programming style, the left part corresponds to the head of the rule and the right part corresponds to the body.
Notice that in the head graph there are new kind of edges, startOperating? and possiblyConnected. Variables
occurring in patterns are denoted by p1, p2, t2, etc. Logical expression below the body pattern, at the right of □, is a
constraint with respect to some properties of nodes/edges in the patterns. This constraint is based on the relational
operators and the predicates provided by the type support schema-constraint.

3. Our Proposal

The question in the title of this paper has been formulated in [17]. In that work authors pose
the need of developing logic-based and declarative formalisms for graph processing. In particular,
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they ask “Which underlying formalisms make this possible?”. To address this problem we plan
to define a constraint graph-logic formalism having the graph navigational logic [9] as underlying
logic. This formalism must be amenable for representing instances (extensional databases), integrity
constraints and production-rules (intensional databases). Since new entities (edges and/or nodes)
and their properties could appear in rules, it will be necessary a way to consistently extend, when
necessary, the type support schema-constraint. Moreover, possibly new integrity constraints may
also be consistently added and the use of some forms of aggregation [4] required.
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query languages for graph databases. ACM Computing Surveys (CSUR), 50(5):1–40, 2017.
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