232 research outputs found

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    ACCELERATION OF SPARSE MATRIX MULTIPLICATION USING BIT-SERIAL ARITHMETIC

    Get PDF
    Machine Learning inference requires the multiplication of large, sparse matrices. We argue that direct spatial implementation of these fixed matrices minimizes the work per- formed in the computation, and allows for significant reduction in latency and power through constant propagation and logic minimization. Bit-serial arithmetic enables massive static matrices to be implemented. We present the structure of our bit-serial matrix multiplier, and evaluate using canonical signed digit representation to further reduce logic utilization. We have implemented these matrices on a large FPGA and provide a cost model that is simple and extensible. These FPGA implementations, on average, reduce latency by 50x up to 86x versus GPU libraries. Comparing against a recent sparse DNN accelerator, we measure a 4.1x to 47x reduction in latency depending on matrix dimension and sparsity. Throughput of the FPGA solution is also competitive for a wide range of matrix dimensions and batch sizes. Finally, we discuss ways these techniques could be deployed in ASICs, making them applicable for dynamic sparse matrix computations.M.S

    FPGA acceleration of DNA sequence alignment: design analysis and optimization

    Get PDF
    Existing FPGA accelerators for short read mapping often fail to utilize the complete biological information in sequencing data for simple hardware design, leading to missed or incorrect alignment. In this work, we propose a runtime reconfigurable alignment pipeline that considers all information in sequencing data for the biologically accurate acceleration of short read mapping. We focus our efforts on accelerating two string matching techniques: FM-index and the Smith-Waterman algorithm with the affine-gap model which are commonly used in short read mapping. We further optimize the FPGA hardware using a design analyzer and merger to improve alignment performance. The contributions of this work are as follows. 1. We accelerate the exact-match and mismatch alignment by leveraging the FM-index technique. We optimize memory access by compressing the data structure and interleaving the access with multiple short reads. The FM-index hardware also considers complete information in the read data to maximize accuracy. 2. We propose a seed-and-extend model to accelerate alignment with indels. The FM-index hardware is extended to support the seeding stage while a Smith-Waterman implementation with the affine-gap model is developed on FPGA for the extension stage. This model can improve the efficiency of indel alignment with comparable accuracy versus state-of-the-art software. 3. We present an approach for merging multiple FPGA designs into a single hardware design, so that multiple place-and-route tasks can be replaced by a single task to speed up functional evaluation of designs. We first experiment with this approach to demonstrate its feasibility for different designs. Then we apply this approach to optimize one of the proposed FPGA aligners for better alignment performance.Open Acces

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Systolic Array Implementations With Reduced Compute Time.

    Get PDF
    The goal of the research is the establishment of a formal methodology to develop computational structures more suitable for the changing nature of real-time signal processing and control applications. A major effort is devoted to the following question: Given a systolic array designed to execute a particular algorithm, what other algorithms can be executed on the same array? One approach for answering this question is based on a general model of array operations using graph-theoretic techniques. As a result, a systematic procedure is introduced that models array operations as a function of the compute cycle. As a consequence of the analysis, the dissertation develops the concept of fast algorithm realizations. This concept characterizes specific realizations that can be evaluated in a reduced number of cycles. It restricts the operations to remain in the same class but with reduced execution time. The concept takes advantage of the data dependencies of the algorithm at hand. This feature allows the modification of existing structures by reordering the input data. Applications of the principle allows optimum time band and triangular matrix product on arrays designed for dense matrices. A second approach for analyzing the families of algorithms implementable in an array, is based on the concept of array time constrained operation. The principle uses the number of compute cycle as an additional degree of freedom to expand the class of transformations generated by a single array. A mathematical approach, based on concepts from multilinear algebra, is introduced to model the recursive transformations implemented in linear arrays at each compute cycle. The proposed representation is general enough to encompass a large class of signal processing and control applications. A complete analytical model of the linear maps implementable by the array at each compute cycle is developed. The proposed methodology results in arrays that are more adaptable to the changing nature of operations. Lessons learned from analyzing existing arrays are used to design smart arrays for special algorithm realizations. Applications of the methodology include the design of flexible time structures and the ability to decompose a full size array into subarrays implementing smaller size problems
    corecore