1,129 research outputs found

    On the data hiding theory and multimedia content security applications

    Get PDF
    This dissertation is a comprehensive study of digital steganography for multimedia content protection. With the increasing development of Internet technology, protection and enforcement of multimedia property rights has become a great concern to multimedia authors and distributors. Watermarking technologies provide a possible solution for this problem. The dissertation first briefly introduces the current watermarking schemes, including their applications in video,, image and audio. Most available embedding schemes are based on direct Spread Sequence (SS) modulation. A small value pseudo random signature sequence is embedded into the host signal and the information is extracted via correlation. The correlation detection problem is discussed at the beginning. It is concluded that the correlator is not optimum in oblivious detection. The Maximum Likelihood detector is derived and some feasible suboptimal detectors are also analyzed. Through the calculation of extraction Bit Error Rate (BER), it is revealed that the SS scheme is not very efficient due to its poor host noise suppression. The watermark domain selection problem is addressed subsequently. Some implications on hiding capacity and reliability are also studied. The last topic in SS modulation scheme is the sequence selection. The relationship between sequence bandwidth and synchronization requirement is detailed in the work. It is demonstrated that the white sequence commonly used in watermarking may not really boost watermark security. To address the host noise suppression problem, the hidden communication is modeled as a general hypothesis testing problem and a set partitioning scheme is proposed. Simulation studies and mathematical analysis confirm that it outperforms the SS schemes in host noise suppression. The proposed scheme demonstrates improvement over the existing embedding schemes. Data hiding in audio signals are explored next. The audio data hiding is believed a more challenging task due to the human sensitivity to audio artifacts and advanced feature of current compression techniques. The human psychoacoustic model and human music understanding are also covered in the work. Then as a typical audio perceptual compression scheme, the popular MP3 compression is visited in some length. Several schemes, amplitude modulation, phase modulation and noise substitution are presented together with some experimental results. As a case study, a music bitstream encryption scheme is proposed. In all these applications, human psychoacoustic model plays a very important role. A more advanced audio analysis model is introduced to reveal implications on music understanding. In the last part, conclusions and future research are presented

    Robust high-capacity audio watermarking based on FFT amplitude modification

    Get PDF
    This paper proposes a novel robust audio watermarking algorithm to embed data and extract it in a bit-exact manner based on changing the magnitudes of the FFT spectrum. The key point is selecting a frequency band for embedding based on the comparison between the original and the MP3 compressed/decompressed signal and on a suitable scaling factor. The experimental results show that the method has a very high capacity (about 5 kbps), without significant perceptual distortion (ODG about -0.25) and provides robustness against common audio signal processing such as added noise, filtering and MPEG compression (MP3). Furthermore, the proposed method has a larger capacity (number of embedded bits to number of host bits rate) than recent image data hiding methods

    High capacity audio watermarking using FFT amplitude interpolation

    Get PDF
    An audio watermarking technique in the frequency domain which takes advantage of interpolation is proposed. Interpolated FFT samples are used to generate imperceptible marks. The experimental results show that the suggested method has very high capacity (about 3kbps), without significant perceptual distortion (ODG about -0.5) and provides robustness against common audio signal processing such as echo, add noise, filtering, resampling and MPEG compression (MP3). Depending on the specific application, the tuning parameters could be selected adaptively to achieve even more capacity and better transparency

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen

    Data hiding in images based on fractal modulation and diversity combining

    Get PDF
    The current work provides a new data-embedding infrastructure based on fractal modulation. The embedding problem is tackled from a communications point of view. The data to be embedded becomes the signal to be transmitted through a watermark channel. The channel could be the image itself or some manipulation of the image. The image self noise and noise due to attacks are the two sources of noise in this paradigm. At the receiver, the image self noise has to be suppressed, while noise due to the attacks may sometimes be predicted and inverted. The concepts of fractal modulation and deterministic self-similar signals are extended to 2-dimensional images. These novel techniques are used to build a deterministic bi-homogenous watermark signal that embodies the binary data to be embedded. The binary data to be embedded, is repeated and scaled with different amplitudes at each level and is used as the wavelet decomposition pyramid. The binary data is appended with special marking data, which is used during demodulation, to identify and correct unreliable or distorted blocks of wavelet coefficients. This specially constructed pyramid is inverted using the inverse discrete wavelet transform to obtain the self-similar watermark signal. In the data embedding stage, the well-established linear additive technique is used to add the watermark signal to the cover image, to generate the watermarked (stego) image. Data extraction from a potential stego image is done using diversity combining. Neither the original image nor the original binary sequence (or watermark signal) is required during the extraction. A prediction of the original image is obtained using a cross-shaped window and is used to suppress the image self noise in the potential stego image. The resulting signal is then decomposed using the discrete wavelet transform. The number of levels and the wavelet used are the same as those used in the watermark signal generation stage. A thresholding process similar to wavelet de-noising is used to identify whether a particular coefficient is reliable or not. A decision is made as to whether a block is reliable or not based on the marking data present in each block and sometimes corrections are applied to the blocks. Finally the selected blocks are combined based on the diversity combining strategy to extract the embedded binary data

    POWER-SUPPLaY: Leaking Data from Air-Gapped Systems by Turning the Power-Supplies Into Speakers

    Get PDF
    It is known that attackers can exfiltrate data from air-gapped computers through their speakers via sonic and ultrasonic waves. To eliminate the threat of such acoustic covert channels in sensitive systems, audio hardware can be disabled and the use of loudspeakers can be strictly forbidden. Such audio-less systems are considered to be \textit{audio-gapped}, and hence immune to acoustic covert channels. In this paper, we introduce a technique that enable attackers leak data acoustically from air-gapped and audio-gapped systems. Our developed malware can exploit the computer power supply unit (PSU) to play sounds and use it as an out-of-band, secondary speaker with limited capabilities. The malicious code manipulates the internal \textit{switching frequency} of the power supply and hence controls the sound waveforms generated from its capacitors and transformers. Our technique enables producing audio tones in a frequency band of 0-24khz and playing audio streams (e.g., WAV) from a computer power supply without the need for audio hardware or speakers. Binary data (files, keylogging, encryption keys, etc.) can be modulated over the acoustic signals and sent to a nearby receiver (e.g., smartphone). We show that our technique works with various types of systems: PC workstations and servers, as well as embedded systems and IoT devices that have no audio hardware at all. We provide technical background and discuss implementation details such as signal generation and data modulation. We show that the POWER-SUPPLaY code can operate from an ordinary user-mode process and doesn't need any hardware access or special privileges. Our evaluation shows that using POWER-SUPPLaY, sensitive data can be exfiltrated from air-gapped and audio-gapped systems from a distance of five meters away at a maximal bit rates of 50 bit/sec

    Employing Psychoacoustic Model for Digital Audio Watermarking

    Get PDF
    This thesis discusses about digital audio watermarking by employing psychoacoustic model to make the watermarked signal inaudible to the audience. Due to the digital media data able to distribute easily without losing of data information, thus the intellectual property of musical creators and distributor may affected by this kind of circumstance . To prevent this, we propose the usage of spread spectrum technique and psychoacoustic model for embedding process, zero-forcing equalization and detection and wiener filtering for extracting process. Three samples of audio signal have been chosen for this experiment which are categorized as quiet, moderate, and noise state signal. The findings shows that our watermarking scheme achieved the intended purposes which are to test digital audio watermarking by employing psychoacoustic model, to embed different length of messages to test on accuracy of extracted data and to study the suitability on using hash function for verification of modification attacks
    corecore