3 research outputs found

    Data-driven local coordinate systems for image-based rendering

    No full text
    Image-based representations of an object profit from known geometry. The more accurate this geometry is known, the better corresponding pixels in the different images can be aligned, which leads to less artifacts and better compression performance. For opaque objects the per-pixel data can then be interpreted as a sampling of the BRDF at the respective surface point. In order to parameterize this sampled data a coordinate frame has to be defined. In previous work this coordinate frame was either the global frame or a local frame derived from the base geometry. Both approaches lead to misalignments between sample vectors: Features of basically very similar BRDFs will be shifted to different regions in the sample vector leading to poor compression performance. In order to improve alignment between the sampled BRDFs in image-based rendering, we propose an optimization algorithm which determines consistent coordinate frames for every sample point on the object surface. This way we efficiently align the features even of anisotropic reflection functions and reconstruct approximate local coordinate frames without performing an explicit 3D-reconstruction. The optimization is calculated efficiently by exploiting the Fourier-shift theorem for spherical harmonics. In order to deal with different materials in a scene, the technique is combined with a clustering algorithm. We demonstrate the utility of our method by applying it to BTFs and 6D surface reflectance fields

    Advanced methods for relightable scene representations in image space

    Get PDF
    The realistic reproduction of visual appearance of real-world objects requires accurate computer graphics models that describe the optical interaction of a scene with its surroundings. Data-driven approaches that model the scene globally as a reflectance field function in eight parameters deliver high quality and work for most material combinations, but are costly to acquire and store. Image-space relighting, which constrains the application to create photos with a virtual, fix camera in freely chosen illumination, requires only a 4D data structure to provide full fidelity. This thesis contributes to image-space relighting on four accounts: (1) We investigate the acquisition of 4D reflectance fields in the context of sampling and propose a practical setup for pre-filtering of reflectance data during recording, and apply it in an adaptive sampling scheme. (2) We introduce a feature-driven image synthesis algorithm for the interpolation of coarsely sampled reflectance data in software to achieve highly realistic images. (3) We propose an implicit reflectance data representation, which uses a Bayesian approach to relight complex scenes from the example of much simpler reference objects. (4) Finally, we construct novel, passive devices out of optical components that render reflectance field data in real-time, shaping the incident illumination into the desired imageDie realistische Wiedergabe der visuellen Erscheinung einer realen Szene setzt genaue Modelle aus der Computergraphik für die Interaktion der Szene mit ihrer Umgebung voraus. Globale Ansätze, die das Verhalten der Szene insgesamt als Reflektanzfeldfunktion in acht Parametern modellieren, liefern hohe Qualität für viele Materialtypen, sind aber teuer aufzuzeichnen und zu speichern. Verfahren zur Neubeleuchtung im Bildraum schränken die Anwendbarkeit auf fest gewählte Kameras ein, ermöglichen aber die freie Wahl der Beleuchtung, und erfordern dadurch lediglich eine 4D - Datenstruktur für volle Wiedergabetreue. Diese Arbeit enthält vier Beiträge zu diesem Thema: (1) wir untersuchen die Aufzeichnung von 4D Reflektanzfeldern im Kontext der Abtasttheorie und schlagen einen praktischen Aufbau vor, der Reflektanzdaten bereits während der Messung vorfiltert. Wir verwenden ihn in einem adaptiven Abtastschema. (2) Wir führen einen merkmalgesteuerten Bildsynthesealgorithmus für die Interpolation von grob abgetasteten Reflektanzdaten ein. (3) Wir schlagen eine implizite Beschreibung von Reflektanzdaten vor, die mit einem Bayesschen Ansatz komplexe Szenen anhand des Beispiels eines viel einfacheren Referenzobjektes neu beleuchtet. (4) Unter der Verwendung optischer Komponenten schaffen wir passive Aufbauten zur Darstellung von Reflektanzfeldern in Echtzeit, indem wir einfallende Beleuchtung direkt in das gewünschte Bild umwandeln

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation
    corecore